首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Kaposi sarcoma associated herpesvirus (KSHV) latency associated nuclear antigen (LANA) is expressed in all KSHV associated malignancies and is essential for maintenance of KSHV genomes in infected cells. To identify kinases that are potentially capable of modifying LANA, in vitro phosphorylation assays were performed using an Epstein Barr virus plus LANA protein microarray and 268 human kinases purified in active form from yeast. Interestingly, of the Epstein-Barr virus proteins on the array, the EBNA1 protein had the most similar kinase profile to LANA. We focused on nuclear kinases and on the N-terminus of LANA (amino acids 1–329) that contains the LANA chromatin binding domain. Sixty-three nuclear kinases phosphorylated the LANA N-terminus. Twenty-four nuclear kinases phosphorylated a peptide covering the LANA chromatin binding domain (amino acids 3–21). Alanine mutations of serine 10 and threonine 14 abolish or severely diminish chromatin and histone binding by LANA. However, conversion of these residues to the phosphomimetic glutamic acid restored histone binding suggesting that phosphorylation of serine 10 and threonine 14 may modulate LANA function. Serine 10 and threonine 14 were validated as substrates of casein kinase 1, PIM1, GSK-3 and RSK3 kinases. Short-term treatment of transfected cells with inhibitors of these kinases found that only RSK inhibition reduced LANA interaction with endogenous histone H2B. Extended treatment of PEL cell cultures with RSK inhibitor caused a decrease in LANA protein levels associated with p21 induction and a loss of PEL cell viability. The data indicate that RSK phosphorylation affects both LANA accumulation and function.  相似文献   

3.
4.
5.
To clarify the mechanism of the cellular DNA-breaking reaction of epinephrine (Ep), we examined the interaction between Ep and chromatin components. The Ep-binding activity of histone increased after the dissociation of histone subunits. The Ep bound to DNA increased with the increase of Ep concentration and pH. Solubilized chromatin, v bodies, showed Ep-oxidizing activity in the absence of Cu2+. The binding of Ep to v bodies occurred immediately after mixing and was highly specific. These data suggest the presence of some Ep-specific binding protein(s) in chromatin which oxidizes Ep and induces DNA breakage.  相似文献   

6.
The papillomavirus E2 protein is involved in the maintenance of persistent infection and known to bind either to cellular factors or directly to mitotic chromosomes in order to partition the viral genome into the daughter cells. However, how the HPV-16 E2 protein acts to facilitate partitioning of the viral genome remains unclear. In this study, we found that serine 243 of HPV-16 E2, located in the hinge region, is crucial for chromosome binding during mitosis. Bromodomain protein 4 (Brd4) has been identified as a cellular binding target through which the E2 protein of bovine papillomavirus type 1 (BPV-1) tethers the viral genome to mitotic chromosomes. Mutation analysis showed that, when the residue serine 243 was substituted by glutamic acid or aspartic acid, whose negative charges mimic the effect of constitutive phosphorylation, the protein still can interact with Brd4 and colocalize with Brd4 in condensed metaphase and anaphase chromosomes. However, substitution by the polar uncharged residues asparagine or glutamine abrogated Brd4 and mitotic chromosome binding. Moreover, following treatment with the inhibitor JQ1 to release Brd4 from the chromosomes, Brd4 and E2 formed punctate foci separate from the chromosomes, further supporting the hypothesis that the association of the HPV-16 E2 protein with the chromosomes is Brd4-dependent. In addition, the S243A E2 protein has a shorter half-life than the wild type, indicating that phosphorylation of the HPV-16 E2 protein at serine 243 also increases its half-life. Thus, phosphorylation of serine 243 in the hinge region of HPV-16 E2 is essential for interaction with Brd4 and required for host chromosome binding.  相似文献   

7.
Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization.  相似文献   

8.
9.
10.
Cdc25B is a key regulator of entry into mitosis, and its activity and localization are regulated by binding of the 14-3-3 dimer. There are three 14-3-3 binding sites on Cdc25B, with Ser323 being the highest affinity binding and is highly homologous to the Ser216 14-3-3 binding site on Cdc25C. Loss of 14-3-3 binding to Ser323 increases cyclin/Cdk substrate access to the catalytic site, thereby increasing its activity. It also affects the localization of Cdc25B. Thus, phosphorylation and 14-3-3 binding to this site is essential for down-regulating Cdc25B activity, blocking its mitosis promoting function. The question of how this inhibitory signal is relieved to allow Cdc25B activation and entry into mitosis is yet to be resolved. Here, we show that Ser323 phosphorylation is maintained into mitosis, but phosphorylation of Ser321 disrupts 14-3-3 binding to Ser323, mimicking the effect of inhibiting Ser323 phosphorylation on both Cdc25B activity and localization. The unphosphorylated Ser321 appears to have a role in stabilizing 14-3-3 binding to Ser323, and loss of the Ser hydroxyl group appears to be sufficient to significantly reduce 14-3-3 binding. A consequence of loss of 14-3-3 binding is dephosphorylation of Ser323. Ser321 is phosphorylated in mitosis by Cdk1. The mitotic phosphorylation of Ser321 acts to maintain full activation of Cdc25B by disrupting 14-3-3 binding to Ser323 and enhancing the dephosphorylation of Ser323 to block 14-3-3 binding to this site.  相似文献   

11.
12.
13.
Abstract: The effects of enzymatic dephosphorylation on neurofilament interaction with two calcium-binding proteins, calpain and calmodulin, were examined. Dephosphorylation increased the rate and extent of 200-kDa neurofilament protein proteolysis by calpain. In contrast, dephosphorylation of the 160-kDa neurofilament protein did not alter the rate or extent of calpain proteolysis. However, the calpain-induced breakdown products of native and dephosphorylated 160-kDa neurofilament protein were different. Dephosphorylation did not change the proteolytic rate, extent, or breakdown products of the 68-kDa neurofilament protein. Calmodulin binding to the purified individual 160- and 200-kDa neurofilament proteins was increased following dephosphorylation. These results suggest that phosphorylation may regulate the metabolism and function of neurofilaments by modulating interactions with the calcium-activated proteins calpain and calmodulin.  相似文献   

14.
Endogenous proteolysis of the major central benzodiazepine (BZ) binding protein of 53K occurs rapidly postmortem and leads to a fragment of 47K. To determine indirectly the protease responsible for this proteolysis, membranes of porcine cortex were prepared from homogenates, which were either frozen immediately or left at room temperature for 12 h in the presence or absence of various representative protease inhibitors. Membranes were subsequently photolabeled with [3H]flunitrazepam, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography or immunoblotted using an alpha-subunit-specific monoclonal antibody bd-24. Both fluorographs and immunoblots revealed that calpain inhibitor I, Ep-459 (E-64 analogue), and EDTA (greater than or equal to 1 mM) prevent endogenous proteolysis. In future studies one of these inhibitors should be added to receptor preparations. The results indicate that calpain is the responsible protease.  相似文献   

15.
Cells from complementation groups A through G of the heritable sun-sensitive disorder xeroderma pigmentosum (XP) show defects in nucleotide excision repair of damaged DNA. Proteins representing groups A, B, C, D, F, and G are subunits of the core recognition and incision machinery of repair. XP group E (XP-E) is the mildest form of the disorder, and cells generally show about 50% of the normal repair level. We investigated two protein factors previously implicated in the XP-E defect, UV-damaged DNA binding protein (UV-DDB) and replication protein A (RPA). Three newly identified XP-E cell lines (XP23PV, XP25PV, and a line formerly classified as an XP variant) were defective in UV-DDB binding activity but had levels of RPA in the normal range. The XP-E cell extracts did not display a significant nucleotide excision repair defect in vitro, with either UV-irradiated DNA or a uniquely placed cisplatin lesion used as a substrate. Purified UV-DDB protein did not stimulate repair of naked DNA by DDB XP-E cell extracts, but microinjection of the protein into DDB XP-E cells could partially correct the repair defect. RPA stimulated repair in normal, XP-E, or complemented extracts from other XP groups, and so the effect of RPA was not specific for XP-E cell extracts. These data strengthen the connection between XP-E and UV-DDB. Coupled with previous results, the findings suggest that UV-DDB has a role in the repair of DNA in chromatin.The heritable human disorder xeroderma pigmentosum (XP) is chiefly characterized by an increased incidence of benign and malignant skin lesions after exposure to sunlight. Affected individuals fall into one of eight different genetic complementation groups. Cells from the seven complementation groups A through G have reduced nucleotide excision repair (NER) of damaged DNA, while cells from the variant, or V, group are defective in a less-defined process of cellular recovery after DNA damage (11). Genes and proteins representing XP groups A (XP-A) B, C, D, F, and G have all been isolated and found to represent some of the subunits of the core NER recognition and incision machinery. XP-E is the mildest form of the disorder, and cells of this group generally have 40 to 60% of the normal repair level, as shown by autoradiographic measurement of unscheduled DNA synthesis (UDS) after UV irradiation. Cell fusion studies have assigned at least 16 individuals to this form of the disorder (6, 19, 23, 40).There are several indications that a DNA damage binding protein denoted UV-DDB (or DDB) is involved in the primary XP-E defect. The protein has been detected in extracts of vertebrate cells as an activity that preferentially binds damaged oligonucleotides in electrophoretic mobility shift or filter binding assays. The protein has a particular affinity for (6-4) photoproducts in UV-irradiated DNA (10, 15, 16, 34, 41, 43), but UV-DDB also binds to DNA damaged by other agents, including cisplatin and nitrogen mustard (32). The activity has been purified as a single 127-kDa protein (2) and as a complex with two subunits of 127 and 48 kDa (21). Damage-binding activity is missing from some cells in the XP-E group, designated DDB, but is present in other XP-E cell lines, designated DDB+ (3, 15, 19, 23). The genes encoding the p127 protein (7, 17, 39) and the p48 protein (7) have been isolated, but DNA sequence features have not yet yielded firm clues about their functions. Microinjection of purified UV-DDB into XP-E cells lacking UV-DDB activity substantially corrects the NER defect, as measured by UDS after UV irradiation, but UV-DDB+ cells are not corrected (22). Sequence alterations in the gene for p48 have been reported for several XP-E cell lines (29), and it is possible that these are causative mutations for XP-E.There are also suggestions that the single-stranded DNA binding activity of replication protein A (RPA) is involved in the XP-E defect. RPA is a heterotrimer of three subunits with sizes of 70, 34, and 14 kDa that plays key roles in DNA replication, recombination, and DNA repair (44). It is one of the core components of the eukaryotic nucleotide excision-incision system (1, 12, 28). With regard to XP, it was recently reported that XP-E cell extracts are severely defective in NER in vitro and that RPA can specifically correct the repair defect of these extracts, but not those of extracts of other complementation groups (20). Moreover, it has been found that RPA copurifies to some extent with UV-DDB protein and that the two proteins interact, showing a tighter association with chromatin after UV irradiation of cells (31).The availability of lymphoblastoid cell lines derived from three newly identified XP-E individuals has given us the opportunity to further investigate the possible relationships of UV-DDB and RPA to the molecular defect in XP-E and the influence of these proteins on NER.  相似文献   

16.
The E3-ubiquitin ligase, c-Cbl, is a multi-functional scaffolding protein that plays a pivotal role in controlling cell phenotype. As part of the ubiquitination and downregulation process, c-Cbl recognizes targets, such as tyrosine kinases and the Sprouty proteins, by binding to a conserved (NX/R)pY(S/T)XXP motif via its uniquely embedded SH2 domain (TKB domain). We previously outlined the mode of binding between the TKB domain and various substrate peptide motifs, including epidermal growth factor receptor (EGFR) and Sprouty2 (Spry2), and demonstrated that an intrapetidyl hydrogen bond forms between the (pY-1) arginine or (pY-2) asparagine and the phosphorylated tyrosine, which is crucial for binding. Recent reports demonstrated that, under certain types of stimulation, the serine/threonine residues at the pY+1 and/or pY+2 positions within this recognition motif of EGFR and Sprouty2 may be endogenously phosphorylated. Using structural and binding studies, we sought to determine whether this additional phosphorylation could affect the binding of the TKB domain to these peptides and consequently, whether the type of stimulation can dictate the degree to which substrates bind to c-Cbl. Here, we show that additional phosphorylation significantly reduces the binding affinity between the TKB domain and its target proteins, EGFR and Sprouty2, as compared to peptides bearing a single tyrosine phosphorylation. The crystal structure indicates that this is accomplished with minimal changes to the essential intrapeptidyl bond and that the reduced strength of the interaction is due to the charge repulsion between c-Cbl and the additional phosphate group. This obvious reduction in binding affinity, however, indicates that Cbl''s interactions with its TKB-centered binding partners may be more favorable in the absence of Ser/Thr phosphorylation, which is stimulation and context specific in vivo. These results demonstrate the importance of understanding the environment in which certain residues are phosphorylated, and the necessity of including this in structural investigations.  相似文献   

17.
It was observed before that DNAin situin chromatin of mitotic cells is more sensitive to denaturation than DNA in chromatin of interphase cells. DNA sensitivity to denaturation, in these studies, was analyzed by exposing cells to heat or acid and using acridine orange (AO), the metachromatic fluorochrome which can differentially stain double-stranded (ds) vs single-stranded (ss) nucleic acids, as a marker of the degree of DNA denaturation. However, without prior cell treatment with heat or acid no presence of single-stranded DNA in either mitotic or interphase cells was detected by this assay. In the present experiments we demonstrate that DNAin situin mitotic cells, without any prior treatment that can induce DNA denaturation, is sensitive to ss-specific S1 and mung bean nucleases. Incubation of permeabilized human T cell leukemic MOLT-4, promyelocytic HL-60, histiomonocytic lymphoma U937 cells, or normal PHA-stimulated lymphocytes with S1 or mung bean nucleases generated extensive DNA breakage in mitotic cells. DNA strand breaks were detected using fluorochrome-labeled triphosphonucleotides in the reaction catalyzed by exogenous terminal deoxynucleotidyl transferase. Under identical conditions of the cells’ exposure to ss-specific nucleases, DNA breakage in interphase cells was of an order of magnitude less extensive compared to mitotic cells. The data indicate that segments of DNA in mitotic chromosomes, in contrast to interphase cells, may be in a conformation which is sensitive to ss nucleases. This may be a reflection of the differences in the torsional stress of DNA loops between interphase and mitotic chromatin. Namely, greater stress in mitotic loops may lead to formation of the hairpin-loop structures by inverted repeats; such structures are sensitive to ss nucleases. The present method of detection of such segments appears to be more sensitive than the use of AO. The identification of mitotic cells based on sensitivity of their DNA to ss nucleases provides an additional method for their quantification by flow cytometry.  相似文献   

18.
19.
20.
Vitronectin (VN) is an extracellular matrix protein abundantly present in blood and a wide variety of tissues and plays important roles in a number of biological phenomena mainly through its binding to αV integrins. However, its definite function in the brain remains largely unknown. Here we report the identification of telencephalin (TLCN/ICAM-5) as a novel VN receptor on neuronal dendrites. VN strongly binds to TLCN, a unique neuronal member of the ICAM family, which is specifically expressed on dendrites of spiny neurons in the mammalian telencephalon. VN-coated microbeads induce the formation of phagocytic cup-like plasma membrane protrusions on dendrites of cultured hippocampal neurons and trigger the activation of TLCN-dependent intracellular signaling cascade including the phosphorylation of ezrin/radixin/moesin actin-binding proteins and recruitment of F-actin and phosphatidylinositol 4,5-bisphosphate for morphological transformation of the dendritic protrusions. These results suggest that the extracellular matrix molecule VN and its neuronal receptor TLCN play a pivotal role in the phosphorylation of ezrin/radixin/moesin proteins and the formation of phagocytic cup-like structures on neuronal dendrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号