首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adherence of Streptococcus pneumoniae (the pneumococcus) to the epithelial lining of the nasopharynx can result in colonization and is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. In vitro adherence assays can be used to study the attachment of pneumococci to epithelial cell monolayers and to investigate potential interventions, such as the use of probiotics, to inhibit pneumococcal colonization. The protocol described here is used to investigate the effects of the probiotic Streptococcus salivarius on the adherence of pneumococci to the human epithelial cell line CCL-23 (sometimes referred to as HEp-2 cells). The assay involves three main steps: 1) preparation of epithelial and bacterial cells, 2) addition of bacteria to epithelial cell monolayers, and 3) detection of adherent pneumococci by viable counts (serial dilution and plating) or quantitative real-time PCR (qPCR). This technique is relatively straightforward and does not require specialized equipment other than a tissue culture setup. The assay can be used to test other probiotic species and/or potential inhibitors of pneumococcal colonization and can be easily modified to address other scientific questions regarding pneumococcal adherence and invasion.  相似文献   

2.
Probiotics are used for the improvement of gut disorders. To explore the potential of probiotics, a gnotobiotic study using BALB/c mice to analyze epithelial gene expression was performed. Microarray analysis of probiotic strain-monoassociated mice showed that Lactobacillus casei Shirota and Bifidobacterium breve Yakult noticeably affected gene expression in the ileal and colonic epithelial cells, respectively, although to a smaller extent than segmented filamentous bacteria (SFB). Lactobacillus casei Shirota enhanced the gene expression involving defense/immune functions and lipid metabolism more strongly than B. breve Yakult. In the colon, expression of a chloride transporter was slightly enhanced, although downregulation of many genes, such as guanine nucleotide-binding protein, was evident in mice with B. breve Yakult compared with the ones with L. casei Shirota. SFB affected gene expression more strongly than the probiotic strains. In particular, alpha(1-2) fucosyltransferase and pancreatitis-associated protein were significantly enhanced only in SFB-monoassociated mice but not probiotic strain-monoassociated mice. Gene expression of SFB-monoassociated mice was either stimulated or repressed in a manner similar to or opposite that of conventional colonized mice. Taken together, probiotic strains of L. casei Shirota and B. breve Yakult differentially affect epithelial gene expression in the small intestine and colon, respectively.  相似文献   

3.
We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars.Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation.In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.  相似文献   

4.
Rotavirus is the most important cause of infantile gastroenteritis. Since in vivo mucosal responses to a rotavirus infection thus far have not been extensively studied, we related viral replication in the murine small intestine to alterations in mucosal structure, epithelial cell homeostasis, cellular kinetics, and differentiation. Seven-day-old suckling BALB/c mice were inoculated with 2 x 10(4) focus-forming units of murine rotavirus and were compared to mock-infected controls. Diarrheal illness and viral shedding were recorded, and small intestinal tissue was evaluated for rotavirus (NSP4 and structural proteins)- and enterocyte-specific (lactase, SGLT1, and L-FABP) mRNA and protein expression. Morphology, apoptosis, proliferation, and migration were evaluated (immuno)histochemically. Diarrhea was observed from days 1 to 5 postinfection, and viral shedding was observed from days 1 to 10. Two peaks of rotavirus replication were observed at 1 and 4 days postinfection. Histological changes were characterized by the accumulation of vacuolated enterocytes. Strikingly, the number of vacuolated cells exceeded the number of cells in which viral replication was detectable. Apoptosis and proliferation were increased from days 1 to 7, resulting in villous atrophy. Epithelial cell turnover was significantly higher (<4 days) than that observed in controls (7 days). Since epithelial renewal occurred within 4 days, the second peak of viral replication was most likely caused by infection of newly synthesized cells. Expression of enterocyte-specific genes was downregulated in infected cells at mRNA and protein levels starting as early as 6 h after infection. In conclusion, we show for the first time that rotavirus infection induces apoptosis in vivo, an increase in epithelial cell turnover, and a shutoff of gene expression in enterocytes showing viral replication. The shutoff of enterocyte-specific gene expression, together with the loss of mature enterocytes through apoptosis and the replacement of these cells by less differentiated dividing cells, likely leads to a defective absorptive function of the intestinal epithelium, which contributes to rotavirus pathogenesis.  相似文献   

5.
The epithelial cell response to rotavirus infection.   总被引:14,自引:0,他引:14  
Rotavirus is the most important worldwide cause of severe gastroenteritis in infants and young children. Intestinal epithelial cells are the principal targets of rotavirus infection, but the response of enterocytes to rotavirus infection is largely unknown. We determined that rotavirus infection of HT-29 intestinal epithelial cells results in prompt activation of NF-kappaB (<2 h), STAT1, and ISG F3 (3 h). Genetically inactivated rotavirus and virus-like particles assembled from baculovirus-expressed viral proteins also activated NF-kappaB. Rotavirus infection of HT-29 cells induced mRNA for several C-C and C-X-C chemokines as well as IFNs and GM-CSF. Mice infected with simian rotavirus or murine rotavirus responded similarly with the enhanced expression of a profile of C-C and C-X-C chemokines. The rotavirus-stimulated increase in chemokine mRNA was undiminished in mice lacking mast cells or lymphocytes. Rotavirus induced chemokines only in mice <15 days of age despite documented infection in older mice. Macrophage inflammatory protein-1beta and IFN-stimulated protein 10 mRNA responses occurred, but were reduced in p50-/- mice. Macrophage inflammatory protein-1beta expression during rotavirus infection localized to the intestinal epithelial cell in murine intestine. These results show that the intestinal epithelial cell is an active component of the host response to rotavirus infection.  相似文献   

6.
The oral cavity is the major site for transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV), but how KSHV establishes infection and replication in the oral epithelia remains unclear. Here, we report a KSHV spontaneous lytic replication model using fully differentiated, three-dimensional (3D) oral epithelial organoids at an air-liquid interface (ALI). This model revealed that KSHV infected the oral epithelia when the basal epithelial cells were exposed by damage. Unlike two-dimensional (2D) cell culture, 3D oral epithelial organoid ALI culture allowed high levels of spontaneous KSHV lytic replication, where lytically replicating cells were enriched at the superficial layer of epithelial organoid. Single cell RNA sequencing (scRNAseq) showed that KSHV infection induced drastic changes of host gene expression in infected as well as uninfected cells at the different epithelial layers, resulting in altered keratinocyte differentiation and cell death. Moreover, we identified a unique population of infected cells containing lytic gene expression at the KSHV K2-K5 gene locus and distinct host gene expression compared to latent or lytic infected cells. This study demonstrates an in vitro 3D epithelial organoid ALI culture model that recapitulates KSHV infection in the oral cavity, where KSHV undergoes the epithelial differentiation-dependent spontaneous lytic replication with a unique cell population carrying distinct viral gene expression.  相似文献   

7.
Single-chain antibodies (scFv) recognizing the VP8* fraction of rotavirus outer capsid and blocking rotavirus infection in vitro were isolated by phage display. Vectors for the extracellular expression in Lactobacillus casei of one of the scFv were constructed. L. casei was able to secrete active scFv to the growth medium, showing the potential of probiotic bacteria to be engineered to express molecules suitable for in vivo antirotavirus therapies.  相似文献   

8.
Rotavirus is the leading cause of severe acute gastroenteritis among children worldwide. It is well known that breast-feeding and vaccination afford infants protection. Since breast-feeding has drastically decreased in developed countries, efforts have been focused on the potential use of probiotics as preventive agents. In this study, a novel Bifidobacterium longum subsp. infantis strain was isolated from infant feces and selected, based on its capacity to inhibit in vitro rotavirus Wa replication (up to 36.05% infectious foci reduction) and also to protect cells from virus infection (up to 48.50% infectious foci reduction) in both MA-104 and HT-29 cell lines. Furthermore, studies using a BALB/c mouse model have proved that this strain provides preliminary in vivo protection against rotavirus infection. The strain has been deposited in the Spanish Type Culture Collection under the accession number CECT 7210. This novel strain has the main properties required of a probiotic, such as resistance to gastrointestinal juices, biliary salts, NaCl, and low pH, as well as adhesion to intestinal mucus and sensitivity to antibiotics. The food safety status has been confirmed by the absence of undesirable metabolite production and in acute ingestion studies of mice. Overall, these results demonstrate that Bifidobacterium longum subsp. infantis CECT 7210 can be considered a probiotic able to inhibit rotavirus infection.  相似文献   

9.
Escherichia coli Nissle 1917 (EcN) is among the best characterised probiotics, with a proven clinical impact in a range of conditions. Despite this, the mechanisms underlying these "probiotic effects" are not clearly defined. Here we applied random transposon mutagenesis to identify genes relevant to the interaction of EcN with intestinal epithelial cells. This demonstrated mutants disrupted in the kfiB gene, of the K5 capsule biosynthesis cluster, to be significantly enhanced in attachment to Caco-2 cells. However, this phenotype was distinct from that previously reported for EcN K5 deficient mutants (kfiC null mutants), prompting us to explore further the role of kfiB in EcN:Caco-2 interaction. Isogenic mutants with deletions in kfiB (EcNΔkfiB), or the more extensively characterised K5 capsule biosynthesis gene kfiC (EcNΔkfiC), were both shown to be capsule deficient, but displayed divergent phenotypes with regard to impact on Caco-2 cells. Compared with EcNΔkfiC and the EcN wild-type, EcNΔkfiB exhibited significantly greater attachment to Caco-2 cells, as well as apoptotic and cytotoxic effects. In contrast, EcNΔkfiC was comparable to the wild-type in these assays, but was shown to induce significantly greater COX-2 expression in Caco-2 cells. Distinct differences were also apparent in the pervading cell morphology and cellular aggregation between mutants. Overall, these observations reinforce the importance of the EcN K5 capsule in host-EcN interactions, but demonstrate that loss of distinct genes in the K5 pathway can modulate the impact of EcN on epithelial cell health.  相似文献   

10.
Rotavirus is a major cause of diarrhea worldwide and exhibits a pronounced small intestinal epithelial cell (IEC) tropism. Both human infants and neonatal mice are highly susceptible, whereas adult individuals remain asymptomatic and shed only low numbers of viral particles. Here we investigated age-dependent mechanisms of the intestinal epithelial innate immune response to rotavirus infection in an oral mouse infection model. Expression of the innate immune receptor for viral dsRNA, Toll-like receptor (Tlr) 3 was low in the epithelium of suckling mice but strongly increased during the postnatal period inversely correlating with rotavirus susceptibility, viral shedding and histological damage. Adult mice deficient in Tlr3 (Tlr3−/−) or the adaptor molecule Trif (TrifLps2/Lps2) exerted significantly higher viral shedding and decreased epithelial expression of proinflammatory and antiviral genes as compared to wild-type animals. In contrast, neonatal mice deficient in Tlr3 or Trif did not display impaired cell stimulation or enhanced rotavirus susceptibility. Using chimeric mice, a major contribution of the non-hematopoietic cell compartment in the Trif-mediated antiviral host response was detected in adult animals. Finally, a significant age-dependent increase of TLR3 expression was also detected in human small intestinal biopsies. Thus, upregulation of epithelial TLR3 expression during infancy might contribute to the age-dependent susceptibility to rotavirus infection.  相似文献   

11.
The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva.  相似文献   

12.
As sentinels of host defense, intestinal epithelial cells respond to the viral pathogen rotavirus by activating a gene expression that promotes immune cell recruitment and activation. We hypothesized that epithelial sensing of rotavirus might target dsRNA, which can be detected by TLR3 or protein kinase R (PKR). Accordingly, we observed that synthetic dsRNA, polyinosinic acid:cytidylic acid (poly(I:C)), potently induced gene remodeling in model intestinal epithelia with the specific pattern of expressed genes, including both classic proinflammatory genes (e.g., IL-8), as well as genes that are classically activated in virus-infected cells (e.g., IFN-responsive genes). Poly(I:C)-induced IL-8 was concentration dependent (2-100 mug/ml) and displayed slower kinetics compared with IL-8 induced by bacterial flagellin (ET(50) approximately 24 vs 8 h poly(I:C) vs flagellin, respectively). Although model epithelia expressed detectable TLR3 mRNA, neither TLR3-neutralizing Abs nor chloroquine, which blocks activation of intracellular TLR3, attenuated epithelial responses to poly(I:C). Conversely, poly(I:C)-induced phosphorylation of PKR and inhibitors of PKR, 2-aminopurine and adenine, ablated poly(I:C)-induced gene expression but had no effect on gene expression induced by flagellin, thus suggesting that intestinal epithelial cell detection of dsRNA relies on PKR. Consistent with poly(I:C) detection by an intracellular molecule such as PKR, we observed that both uptake of and responses to poly(I:C) were polarized to the basolateral side. Lastly, we observed that the pattern of pharmacologic inhibition of responses to poly(I:C) was identical to that seen in response to infection by live rotavirus, indicating a potentially important role for PKR in activating intestinal epithelial gene expression in rotavirus infection.  相似文献   

13.
A commercially available product containing three probiotic bacterial strains (Lactobacillus helveticus R0052, Bifidobacterium longum subsp. infantis R0033, and Bifidobacterium bifidum R0071) was previously shown in animal trials to modulate both TH1 and TH2 immune responses. Clinical studies on this combination of bacteria have also shown positive health effects against seasonal winter diseases and rotavirus infection. The goal of this study was to use a well-established in vitro intestinal epithelial (HT-29) cell model that has been shown to constitutively express double-stranded RNA (dsRNA) sensors (Toll-like receptor 3 [TLR3], retinoic acid-inducible gene I, melanoma differentiation-associated gene 5, and dsRNA-activated protein kinase). By using the HT-29 cell model, we wanted to evaluate whether or not this combination of three bacteria had the capacity to immune modulate the host cell response to a dsRNA ligand, poly(I·C). Using a custom-designed, two-color expression microarray targeting genes of the human immune system, we investigated the response of HT-29 cells challenged with poly(I·C) both in the presence and in the absence of the three probiotic bacteria. We observed that the combination of the three bacteria had a major impact on attenuating the expression of genes connected to proinflammatory TH1 and antiviral innate immune responses compared to that obtained by the poly(I·C)-only challenge. Major pathways through which the multistrain combination may be eliciting its immune-modulatory effect include the TLR3 domain-containing adapter-inducing beta interferon (TRIF), mitogen-activated protein kinase, and NF-κB signaling pathways. Such a model may be useful for selecting potential biomarkers for the design of future clinical trials.  相似文献   

14.
Rotavirus is the leading worldwide cause of gastroenteritis in children under five years of age. Even though there are some available vaccines to prevent the disease, there are limited strategies for challenging diarrhea induced by rotavirus infection. For this reason, researchers are constantly searching for other approaches to control diarrhea by means of probiotics. In order to demonstrate the ability of some probiotic bacteria to interfere with the in vitro rotavirus infection in MA104 cells, strains of Lactobacillus sp. and Bifidobacterium sp. were tested in MA104 cells before the viral infection. As a preliminary assay, a blocking effect treatment was performed with viable bacteria. In this screening assay, four of initial ten bacteria showed a slight reduction of the viral infection (measured by percentage of infection). L. casei (Lafti L26-DSL), L. fermentum(ATCC 9338), B. adolescentis (DSM 20083), and B. bifidum (ATCC 11863) were used in further experiments. Three different treatments were tested in order to evaluate protein-based metabolites obtained from mentioned bacteria: (i) cell exposure to the protein-based metabolites before viral infection, (ii) exposure to protein-based metabolites after viral infection, and (iii) co-incubation of the virus and protein-based metabolites before viral infection to the cell culture. The best effect performed by protein-based metabolites was observed during the co-incubation assay of the virus and protein-based metabolites before adding them into the cell culture. The results showed 25 and 37% of infection in the presence of L. casei and B. adolescentis respectively. These results suggest that the antiviral effect may be occurring directly with the viral particle instead of making a blocking effect of the cellular receptors that are needed for the viral entrance.  相似文献   

15.
Campylobacter jejuni is the most common bacterial cause of enterocolitis in humans, leading to diarrhoea and chronic extraintestinal diseases. Although probiotics are effective in preventing other enteric infections, beneficial microorganisms have not been extensively studied with C. jejuni . The aim of this study was to delineate the ability of selected probiotic Lactobacillus strains to reduce epithelial cell invasion by C. jejuni . Human colon T84 and embryonic intestine 407 epithelial cells were pretreated with Lactobacillus strains and then infected with two prototypic C. jejuni pathogens. Lactobacillus helveticus , strain R0052 reduced C. jejuni invasion into T84 cells by 35–41%, whereas Lactobacillus rhamnosus R0011 did not reduce pathogen invasion. Lactobacillus helveticus R0052 also decreased invasion of one C. jejuni isolate (strain 11168) into intestine 407 cells by 55%. Lactobacillus helveticus R0052 adhered to both epithelial cell types, which suggest that competitive exclusion could contribute to protection by probiotics. Taken together, these findings indicate that the ability of selected probiotics to prevent C. jejuni -mediated disease pathogenesis depends on the pathogen strain, probiotic strain and the epithelial cell type selected. The data support the concept of probiotic strain selectivity, which is dependent on the setting in which it is being evaluated and tested.  相似文献   

16.

Background

Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection.

Methodology/Principal Findings

The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (LbpLAP) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to LbpLAP for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, LbpLAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. LbpLAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, LbpLAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h.

Conclusions/Significance

Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, LbpLAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations.  相似文献   

17.
Several studies have stressed the importance of the microbiota in the maintenance of the gastrointestinal epithelium. Administration of probiotic bacteria, supplements composed of microbiota constituents, was previously shown to diminish symptoms in patients suffering from inflammatory bowel diseases. This raises the possibility that probiotics may play an active role in enhancing the intestinal barrier at the mucosal surface. In this study, we investigated whether the clinically tested VSL#3 probiotic formula and/or its secreted components can augment the protective mucus layer in vivo and in vitro. For in vivo studies, Wistar rats were orally administered the probiotic mixture VSL#3 on a daily basis for seven days. After treatment, basal luminal mucin content increased by 60%. In addition, we exposed isolated rat colonic loops to the VSL#3 probiotic formula, which significantly stimulated colonic mucin (MUC) secretion and MUC2 gene expression; however, MUC1 and MUC3 gene expression were only slightly elevated. The effect of the VSL#3 mucin secretagogue was also tested in vitro by use of LS 174T colonic epithelial cells. In contrast to the animal studies, cultured cells incubated with VSL#3 bacteria did not exhibit increased mucin secretion. However, the bacterial secreted products contained in the conditioned media stimulated a remarkable mucin secretion effect. Among the three bacterial groups (Lactobacilli, Bifidobacteria, and Streptococci) contained in VSL#3, the Lactobacillus species were the strongest potentiator of mucin secretion in vitro. A preliminary characterization of the putative mucin secretagogue suggested that it was a heat-resistant soluble compound, which is not sensitive to protease and DNase treatment. These findings contribute to a better understanding of the complex and beneficial interaction between colonic epithelial cells and intestinal bacteria.  相似文献   

18.
In the present scenario, it is now well documented that probiotics confer health benefits to the host and the purported probiotic effects are highly strain specific. Hence, accurate genotypic identification is extremely important to link the strain to the specific health effect. With this aim, specific primed-PCR assays were developed and explored for the molecular identification and typing of a putative indigenous probiotic isolate Lp91 of human faecal origin. PCR with specific primers targeting 23S rRNA gene of genus Lactobacillus and 16S rRNA gene of species L. plantarum resulted positive for Lp91. In addition, BLAST analysis of 16S rRNA gene sequence of Lp91 and multiple sequence alignment of 16S rRNA gene variable (V2-V3) regions along with the reference sequences revealed it as L. plantarum with a sequence identity of more than 99%. Furthermore, resolution of 16S rRNA gene sequences was sufficient to infer a phylogenetic relationship amongst Lactobacillus species. In order to determine strain-level variations, randomly amplified polymorphic DNA (RAPD) banding profiles of Lp91 obtained with OPAA-01, OPAP-01 and OPBB-01 primers were compared with those of reference strains of Lactobacillus spp., and Lp91 could be delineated as a distinct strain. Apart from this, presence of probiotic markers viz. bile salt hydrolase (bsh) and collagen-binding protein (cbp) encoding genes in Lp91 genome could be attributed to its exploitation as a potential probiotic adjunct in the development of indigenous functional foods. Lactobacillus isolates/or strains from the gastrointestinal system, fermented products and other environmental niches could be identified and characterized by employing the PCR methods developed in this study; they are rapid, reproducible and more accurate than the conventional methods based on the fermentation profiles.  相似文献   

19.
Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic of EBV-infected nasopharyngeal carcinoma. The establishment of an efficient method to immortalize primary nasopharyngeal epithelial cells will facilitate the investigation into the role of EBV infection in pathogenesis of nasopharyngeal carcinoma.  相似文献   

20.
Aims:  The aim of this study was to assess the efficacy of in-feed probiotics as a preventive measure against skin infections caused by Aeromonas bestiarum and Ichthyophthirius multifiliis (Ich) in rainbow trout.
Methods and Results:  Fin rot was induced in fish by intradermal injection with 0·1 ml volumes containing 105 cells per ml A. bestiarum at the base of the dorsal fin. Ich infections resulted from immersion in Ich-contaminated water. Each probiotic was administered orally [108 cells per g feed for GC2 ( Aeromonas sobria ) and 1010 cells per g feed for BA211 ( Brochothrix thermosphacta )] for 14 days. Results showed that, after challenge with A. bestiarum , probiotics GC2 and BA211 led to 76% and 88% survival, respectively, in contrast to 22% survival for controls. Fish fed with probiotic GC2 had 100% survival after challenge with Ich compared with 2% for probiotic BA211 and 0% for controls. Analysis of innate immune responses revealed that probiotic GC2 promoted higher phagocytic activity, whereas probiotic BA211 led to enhanced respiratory burst activity.
Conclusion:  Of the two probiotics examined, GC2 was more effective in protecting against both fin rot and Ich. Each probiotic appeared to stimulate different pathways within the innate immune system.
Significance and Impact of the Study:  This is the first demonstration that probiotics can protect fish against surface infections. Furthermore, this is the first time a probiotic has been shown to protect against a eucaryotic pathogen, namely I. multifiliis .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号