首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
Here we identify a new role for Syndecan (Sdc), the only transmembrane heparan sulphate proteoglycan in Drosophila, in tracheal development. Sdc is required cell autonomously for efficient directed migration and fusion of dorsal branch cells, but not for dorsal branch formation per se. The cytoplasmic domain of Sdc is dispensable, indicating that Sdc does not transduce a signal by itself. Although the branch-specific phenotype of sdc mutants resembles those seen in the absence of Slit/Robo2 signalling, genetic interaction experiments indicate that Sdc also helps to suppress Slit/Robo2 signalling. We conclude that Sdc cell autonomously regulates Slit/Robo2 signalling in tracheal cells to guarantee ordered directional migration and branch fusion.  相似文献   

2.
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.  相似文献   

3.
Migrating neuronal cells are directed to their final positions by an array of guidance cues. It has been shown that guidance molecules such as UNC-6/Netrin and SLT-1/Slit play a major role in controlling cell and axon migrations along the dorsal-ventral body axis. Much less is known, however, about the mechanisms that mediate migration along the anterior-posterior (AP) body axis. Recent research in Caenorhabditis elegans has uncovered an important role of the Wnt family of signalling molecules in controlling AP-directed neuronal cell migration and polarity. A common theme that emerges from these studies is that multiple Wnt proteins function in parallel as instructive cues or permissive signals to control neuronal patterning along this major body axis.  相似文献   

4.
Tangential migration from the basal telencephalon to the cortex is a highly directional process, yet the mechanisms involved are poorly understood. Here we show that the basal telencephalon contains a repulsive activity for tangentially migrating cells, whereas the cerebral cortex contains an attractive activity. In vitro experiments demonstrate that the repulsive activity found in the basal telencephalon is maintained in mice deficient in both Slit1 and Slit2, suggesting that factors other than these are responsible for this activity. Correspondingly, in vivo analysis demonstrates that interneurons migrate to the cortex in the absence of Slit1 and Slit2, or even in mice simultaneously lacking Slit1, Slit2 and netrin 1. Nevertheless, loss of Slit2 and, even more so, Slit1 and Slit2 results in defects in the position of other specific neuronal populations within the basal telencephalon, such as the cholinergic neurons of the basal magnocellular complex. These results demonstrate that whereas Slit1 and Slit2 are not necessary for tangential migration of interneurons to the cortex, these proteins regulate neuronal migration within the basal telencephalon by controlling cell positioning close to the midline.  相似文献   

5.
The neural crest (NC) cells have been called the 'explorers of the embryos' because they migrate all over the embryo where they differentiate into a variety of diverse kinds of cells. In this work, we analyse the role of different molecules controlling the migration of NC cells. First, we describe the strong similarity between the process of NC migration and metastasis in tumour cells. The epithelial-mesenchymal transition process that both kinds of cells undergo is controlled by the same molecular machinery, including cadherins, connexins, Snail and Twist genes and matrix metalloproteases. Second, we analysed the molecular signals that control the patterned migration of the cephalic and trunk NC cells. Most of the factors described so far, such as Eph/ephrins, semaphorins/neuropilins and Slit/Robo, are negative signals that prohibit the migration of NC cells into target areas of the embryo. Finally, we analyse how the direction of migration is controlled by regulation of cell polarity and how the planar cell polarity or non-canonical Wnt signalling is involved in this process.  相似文献   

6.
abstract

The objective of this study was to investigate whether human placental multipotent mesenchymal stromal cell (hPMSC)-derived Slit2 and endothelial cell Roundabout (Robo) receptors are involved in placental angiogenesis. The hPMSC-conditioned medium and human umbilical vein endothelial cells were studied for Slit2 and Robo receptor expression by immunoassay and RT-PCR. The effect of the conditioned medium of hPMSCs with or without Slit2 depletion on endothelial cells was investigated by in vitro angiogenesis using growth factor-reduced Matrigel. hPMSCs express Slit2 and both Robo1 and Robo4 are present in human umbilical vein endothelial cells. Human umbilical vein endothelial cells do not express Robo2 and Robo3. The hPMSC-conditioned medium and Slit2 recombinant protein significantly inhibit the endothelial cell migration, but not by the hPMSC-conditioned medium with Slit2 depletion. The hPMSC-conditioned medium and Slit2 significantly enhance endothelial tube formation with increased cumulated tube length, polygonal network number and vessel branching point number compared to endothelial cells alone. The tube formation is inhibited by the depletion of Slit2 from the conditioned medium, or following the expression of Robo1, Robo4, and both receptor knockdown using small interfering RNA. Furthermore, co-immunoprecipitation reveals Slit2 binds to Robo1 and Robo4. Robo1 interacts and forms a heterodimeric complex with Robo4. These results suggest the implication of both Robo receptors with Slit2 signaling, which is involved in endothelial cell angiogenesis. Slit2 in the conditioned medium of hPMSCs has functional effect on endothelial cells and may play a role in placental angiogenesis.  相似文献   

7.
H Hu 《Neuron》1999,23(4):703-711
Newborn cerebral cortical neurons migrate along radial glia to the cortical plate. Experiments using a collagen gel assay revealed that the choroid plexus repelled cerebral cortical neurons and olfactory interneuron precursors, which were mimicked by Neuro-2A cells. Fractionation of Neuro-2A-conditioned medium identified a protein of 190 kDa, equivalent to full-length Slit proteins. Indeed, it cross-reacted with an antibody against Slit2, suggesting that it is either Slit2 or another Slit protein. Further, Slit2, expressed in COS cells, repelled cerebral cortical neurons and olfactory interneuron precursors. Thus, Slit2, which is expressed by the choroid plexus and the septum, acts as a chemorepulsive factor for neuronal migration. These results suggest chemorepulsion as a guidance mechanism for neuronal migration in the developing forebrain.  相似文献   

8.
Maintenance of bilateral symmetry throughout animal development requires that both left and right halves of the body follow nearly identical patterns of cell proliferation, differentiation, death and migration. During formation of the perfectly bilateral Drosophila larval peripheral nervous system (PNS), the sensory precursor cells of the ventral multidendritic neuron vmd1a originating from each hemisegment migrate away from the ventral midline. Our observations indicate that in slit mutant embryos, as well as in robo, robo2 double mutants, sensory precursor cells of the left and right vmd1a neurons aberrantly cluster at the midline and then the pair of vmd1a neurons migrate to their final position on the same side of the embryo. This results in disruption of PNS bilateral symmetry. Expression of slit at the midline rescues the slit mutant vmd1a phenotype, suggesting that midline-secreted Slit activates Robo/Robo2 signalling to control the migration of the vmd1a sensory precursor cells. Our study indicates that midline-secreted Slit prevents vmd1a sensory cells from crossing the midline and thereby maintains PNS bilateral symmetry during development.  相似文献   

9.
Kraut R  Zinn K 《Current biology : CB》2004,14(15):1319-1329
BACKGROUND: Roundabout (Robo) receptors and their ligand Slit are important regulators of axon guidance and cell migration. The development of Drosophila embryonic sense organs provides a neuronal migration paradigm where the in vivo roles of Slit and Robo can be assayed using genetics. RESULTS: Here we show that Slit-Robo signaling controls migration of Drosophila larval sensory neurons that are part of the Chordotonal (Cho) stretch receptor organs. We used live imaging to show that abdominal Cho organs normally migrate ventrally during development, whereas thoracic Cho organs do not. Robo2 overexpression in cis (in the sensory neurons) or in trans (on neighboring visceral mesoderm) transforms abdominal organs to a thoracic morphology and position by blocking migration, while loss of Slit-Robo signaling produces a reverse transformation in which thoracic organs migrate ectopically. Rescue and tissue-specific knockout experiments indicate that trans signaling by Robo2 contributes to the normal positioning of the thoracic Cho organs. The differential positioning of Cho organs between the thorax and abdomen is known to be regulated by Hox genes, and we show that the essential Hox cofactor Homothorax, represses Robo2 expression in the abdominal visceral mesoderm. CONCLUSIONS: Our results suggest that segment-specific neuronal migration patterns are directed through a novel signaling complex (the "Slit sandwich") in which Robo2 on the thoracic visceral mesoderm binds to Slit and presents it to Robo receptors on Cho neurons. The differential positioning of Cho organs between thorax and abdomen may be determined by Hox gene-mediated repression of robo2.  相似文献   

10.
The Slit molecules are chemorepulsive ligands that regulate axon guidance at the midline of both vertebrates and invertebrates. In mammals, there are three Slit genes, but only Slit2 has been studied in any detail with regard to mammalian brain commissure formation. Here, we sought to understand the relative contributions that Slit proteins make to the formation of the largest brain commissure, the corpus callosum. Slit ligands bind Robo receptors, and previous studies have shown that Robo1(-/-) mice have defects in corpus callosum development. However, whether the Slit genes signal exclusively through Robo1 during callosal formation is unclear. To investigate this, we compared the development of the corpus callosum in both Slit2(-/-) and Robo1(-/-) mice using diffusion magnetic resonance imaging. This analysis demonstrated similarities in the phenotypes of these mice, but crucially also highlighted subtle differences, particularly with regard to the guidance of post-crossing axons. Analysis of single mutations in Slit family members revealed corpus callosum defects (but not complete agenesis) in 100% of Slit2(-/-) mice and 30% of Slit3(-/-) mice, whereas 100% of Slit1(-/-); Slit2(-/-) mice displayed complete agenesis of the corpus callosum. These results revealed a role for Slit1 in corpus callosum development, and demonstrated that Slit2 was necessary but not sufficient for midline crossing in vivo. However, co-culture experiments utilising Robo1(-/-) tissue versus Slit2 expressing cell blocks demonstrated that Slit2 was sufficient for the guidance activity mediated by Robo1 in pre-crossing neocortical axons. This suggested that Slit1 and Slit3 might also be involved in regulating other mechanisms that allow the corpus callosum to form, such as the establishment of midline glial populations. Investigation of this revealed defects in the development and dorso-ventral positioning of the indusium griseum glia in multiple Slit mutants. These findings indicate that Slits regulate callosal development via both classical chemorepulsive mechanisms, and via a novel role in mediating the correct positioning of midline glial populations. Finally, our data also indicate that some of the roles of Slit proteins at the midline may be independent of Robo signalling, suggestive of additional receptors regulating Slit signalling during development.  相似文献   

11.
Directional migration is an essential step for monocytes to infiltrate sites of inflammation, a process primarily regulated by chemoattractants. Slits are large matrix proteins that are secreted by endothelial cells; they were reported to inhibit the chemoattractant-induced migration of different cell types, including leukocytes. The aim of this study was to determine the effect of Slit3 on primary monocyte migration and to address the underlying mechanisms. We show that Roundabout (Robo)1, one of the Robo receptors that recognize Slit3, is the only Robo homolog expressed by CD14(+) monocytes. Interestingly, we found that stimulation with Slit3 increased the spontaneous and chemoattractant-induced migration of primary monocytes in vitro and increased the myeloid cell recruitment during peritoneal inflammation in vivo. In addition, Slit3 did not seem to act as a chemoattractant itself; it promoted directed migration triggered by chemoattractants, such as CXCL12, by inducing a chemokinetic effect. We further show that Slit3 prevented monocyte spreading and induced rounding of spread monocytes without affecting monocyte adhesion. Stimulation with Slit3 was not associated with changes in the levels of phosphorylated p38, p42/p44, or Src, known regulators of monocyte migration, but it directly acts on molecular pathways involved in basal leukocyte migration by activating RhoA. These findings show an unexpected response of monocytes to Slit3 and add insights into the possible role of Slit proteins during inflammatory cell recruitment.  相似文献   

12.
Researches have been focusing on the role of Slit2 in angiogenesis, specifically in cell migration and vessel permeability. Nevertheless, the role of Slit2-N, the bioactive fragment of Slit2, in the proliferation of vascular endothelia in choroidal neovascularization and some related mechanisms have not been studied yet. Thus, our study aimed to explore the role of Slit2-N in proliferation of vascular endothelia and the related mechanisms in choroidal neovascularization. Fluorescein isothiocyanate perfusion and HE staining were performed to evaluate volumes of choroidal neovascularization lesions. The effect of Slit2-N on VEGF165-induced cell proliferation and some related mechanisms were detected by CCK8 assay, flow cytometry, siRNA transfection, and western blotting. We found that Slit2-N reduced volumes of laser-induced choroidal neovascularization networks in vivo. Results of the in vitro study showed Slit2-N reduced VEGF165-induced cell proliferation of both human umbilical vascular endothelial cells and human microvascular endothelial cells possibly via activation of AKT rather than that of ERK1/2. Additionally, Robo4, one of the receptors binding to Slit2-N, was involved in the inhibitory effect of Slit2-N. Generally, our findings revealed the inhibitory role of Slit2-N in proliferation of vascular endothelia and some related mechanisms, and presented some potential targets, molecules along Slit2-N-Robo4-AKT axis, to choroidal neovascularization therapy.  相似文献   

13.
韩哲  杨雪松  耿建国  王丽京 《生命科学》2010,(10):1020-1024
分泌型糖蛋白Slit及其受体Roundabout(Robo)最初是作为一类重要的发育中神经元轴突导向分子而被发现的。目前为止对Slit/Robo信号对神经系统发育过程中轴突吸引或排斥的导向功能研究比较多,而对在发育中生长方式与其非常相似的血管发生过程中研究比较少。现有研究提示两者在发育过程中可能存在共同的信号调控机制,是Slit/Robo信号通路在血管新生中充当着重要的角色。该文就Slit/Robo信号对血管内皮细胞迁移的调节、对血管新生的作用及其可能介导的信号通路进行综述,以期进一步推动Slit/Robo信号通路在血管发生中的研究。  相似文献   

14.
Slit molecules comprise one of the four canonical families of axon guidance cues that steer the growth cone in the developing nervous system. Apart from their role in axon pathfinding, emerging lines of evidence suggest that a wide range of cellular processes are regulated by Slit, ranging from branch formation and fasciculation during neurite outgrowth to tumor progression and to angiogenesis. However, the molecular and cellular mechanisms downstream of Slit remain largely unknown, in part, because of a lack of a readily manipulatable system that produces easily identifiable traits in response to Slit. The present study demonstrates the feasibility of using the cell line CAD as an assay system to dissect the signaling pathways triggered by Slit. Here, we show that CAD cells express receptors for Slit (Robo1 and Robo2) and that CAD cells respond to nanomolar concentrations of Slit2 by markedly decelerating the rate of process extension. Using this system, we reveal that Slit2 inactivates GSK3β and that inhibition of GSK3β is required for Slit2 to inhibit process outgrowth. Furthermore, we show that Slit2 induces GSK3β phosphorylation and inhibits neurite outgrowth in adult dorsal root ganglion neurons, validating Slit2 signaling in primary neurons. Given that CAD cells can be conveniently manipulated using standard molecular biological methods and that the process extension phenotype regulated by Slit2 can be readily traced and quantified, the use of a cell line CAD will facilitate the identification of downstream effectors and elucidation of signaling cascade triggered by Slit.  相似文献   

15.
Slit proteins are secreted ligands that interact with the Roundabout (Robo) receptors to provide important guidance cues in neuronal and vascular development. Slit–Robo signalling is mediated by an interaction between the second Slit domain and the first Robo domain, as well as being dependent on heparan sulphate. In an effort to understand the role of the other Slit domains in signalling, we determined the crystal structure of the fourth Slit2 domain (D4) and examined the effects of various Slit2 constructs on chick retinal ganglion cell axons. Slit2 D4 forms a homodimer using the conserved residues on its concave face, and can also bind to heparan sulphate. We observed that Slit2 D4 frequently results in growth cones with collapsed lamellipodia and that this effect can be inhibited by exogenously added heparan sulphate. Our results show that Slit2 D4–heparan sulphate binding contributes to a Slit–Robo signalling mechanism more intricate than previously thought.  相似文献   

16.
The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.  相似文献   

17.
A novel aspect of cellular signalling during the formation of the nervous system is the involvement of the messenger molecule nitric oxide (NO), which has been discovered in the mammalian vascular system as mediator of smooth muscle relaxation. NO is a membrane-permeant molecule, which activates soluble guanylyl cyclase (sGC) and leads to the formation of cyclic GMP (cGMP) in target cells. The analysis of specific cell types in model insects such as Locusta, Schistocerca, Acheta, Manduca, and Drosophila shows that the NO/cGMP pathway is required for the stabilization of photoreceptor growth cones at the start of synaptic assembly in the optic lobe, for regulation of cell proliferation, and for correct outgrowth of pioneer neurons. Inhibition of the NOS and sGC enzymes combined with rescue experiments show that NO, and potentially also another atypical messenger, carbon monoxide (CO), orchestrate cell migration of enteric neurons. Cultured insect embryos are accessible model systems in which the molecular pathways linking cytoskeletal rearrangement to directed cell movements can be analyzed in natural settings. Based on the results obtained from the insect models, I discuss current evidence for NO and cGMP as essential signalling molecules for the development of vertebrate brains.  相似文献   

18.
First isolated in the fly and now characterised in vertebrates, the Slit proteins have emerged as pivotal components controlling the guidance of axonal growth cones and the directional migration of neuronal precursors. As well as extensive expression during development of the central nervous system (CNS), the Slit proteins exhibit a striking array of expression sites in non-neuronal tissues, including the urogenital system, limb primordia and developing eye. Zebrafish Slit has been shown to mediate mesodermal migration during gastrulation, while Drosophila slit guides the migration of mesodermal cells during myogenesis. This suggests that the actions of these secreted molecules are not simply confined to the sphere of CNS development, but rather act in a more general fashion during development and throughout the lifetime of an organism. This review focuses on the non-neuronal activities of Slit proteins, highlighting a common role for the Slit family in cellular migration.  相似文献   

19.
Alder J  Zheng JQ 《Neuron》2007,54(4):502-505
A key question in brain development is how migration of neuronal precursors is guided to establish the ordered laminar layers. In the April 20, 2007 issue of Cell, Guan et al. show that the leading process of migrating cerebellar granule neurons senses repulsive Slit molecules by generating a Ca(2+) wave that propagates to the soma to cause reversal of cell polarity and migration.  相似文献   

20.
The Slit family of secreted proteins acts through the Roundabout (Robo) receptors to repel axonal migration during central nervous system development. Emerging evidence shows that Slit/Robo interactions also play a role in angiogenesis. The effect of Robo signaling on endothelial cells has been shown to be context-dependent. However, the role of Slit/Robo in pericytes has been largely unexplored. The aim of this study was to determine the effect of Slit2 on primary human pericytes and to address the underlying mechanisms, including the receptors potentially implicated. We demonstrate that both Robo1 and Robo4 are expressed by human pericytes. In the presence of their ligand Slit2, spontaneous and PDGF-induced migration of pericytes was impaired. This antimigratory activity of Slit-2 correlated with the inhibition of actin-based protrusive structures. Interestingly, human pericyte interaction with immobilized Slit2 was inhibited in the presence of anti-Robo1 and anti-Robo4 blocking antibodies, suggesting the implication of both receptors. These results add new insights into the role of Slit proteins during the angiogenic process that relies on the directional migration not only of endothelial cells but also of pericytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号