共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanistic basis for protection of exogenous ascorbate against photoinhibition at low temperature was examined in leaves of rice (Oryza sativa L.). Exposure of intact leaves to chilling temperature resulted in a drastic decrease in the speed of development of non-photochemical fluorescence quenching (NPQ). This was related to the low temperature-imposed restriction on the formation of the fast relaxing component of NPQ (qf). Feeding with 20 mM ascorbate markedly increased the rate of qf development at chilling temperature due primarily to the enhanced rate of zeaxanthin (Z) formation. On the other hand, ascorbate feeding had no influence on photosystem 2 (PS2)-driven electron flow. The reduced state of the PS2 primary electron acceptor QA decreased in ascorbate-fed leaves exposed to high irradiance at chilling temperature owing to the increased Z-associated thermal energy dissipation in the light-harvesting antenna system of PS2. Furthermore, ascorbate feeding increased the photosynthetic apparatus of rice leaves to resist photoinhibition at low temperature. The protective effect of exogenous ascorbate was fully accounted for by the enhanced xanthophyll cycle activity. 相似文献
2.
Dual Role of Superoxide Radicals in the Chilling-Induced photoinhibition in Maize Seedlings 总被引:1,自引:0,他引:1
Maize (Zea mays) seedlings were exposed for 6 h to strong irradiance (1 000 mol m–1 s–1 of PPFD) at 5, 12, 17, or 25 °C, followed by an exposure to the darkness for 6 h at 22 °C. Leaf chlorophyll fluorescence, net photosynthetic rate (P
N), and the amount of superoxide radicals (O2
–) in relation to chilling-induced photoinhibition were investigated. During the photophase, a good correlation (r=–0.879) was observed between PS2 (relative quantum efficiency of PS2 electron transport) and the amount of O2
–. Treatment with exogenous O2
– reduced the P
N and PS2 as the chilling stress did, that was inhibited by specific scavenger of O2
–. Hence chilling-induced photoinhibition might be due to the production of O2
–. In contrast, in the dark period, P
N and PS2 of the seedlings treated with the exogenous O2
– were enhanced, but they were inhibited by the specific scavenger of O2
–, showing the photoprotective role of O2
– in the recovery phase. Furthermore, in terms of the effect of exogenous O2
– on the xanthophyll cycle, the O2
– production suggested a promotion effect for the de-epoxidation of violaxanthin during the photophase, the epoxidation of zeaxanthin at the dark stage, and the increase of the xanthophyll pool both in the photophase and dark phase, resulting in an enhancement of the ability of non-photochemical quenching to avoid or alleviate the damage to photosynthetic apparatus. 相似文献
3.
The low chlorophyll b mutant of high yield rice had a lower light-harvesting complex 2 content than the wild type. The stability of oxygen evolution side of photosystem 2 was only slightly lower. A lower photon absorption rate and a stronger xanthophyll cycle capacity of this mutant led to a higher endurance to strong irradiance and a lower photoinhibition as compared with the wild type rice. 相似文献
4.
Photoinhibition of photosynthesis was investigated in Vitis berlandieri and Vitis rupestris leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of PS2, Fv/Fm, markedly declined, F0 increased significantly in leaves of V. berlandieri, while F0 did not increase in V. rupestris leaves. Isolated thylakoids of leaves of V. berlandieri showed significant inhibition of whole chain and PS2 activities at midday. A smaller inhibition was observed for V. rupestris. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both species, while DPC and NH2OH significantly restored PS2 activity in V. rupestris midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in V. berlandieri while in V. rupestris it was the 33 kDa protein. 相似文献
5.
Seasonal Variation of Photoinhibition of Photosynthesis in Bark from Populus Tremula L. 总被引:1,自引:0,他引:1
In the bark of Populus tremula L. photochemical efficiency of photosystem 2 (PS2) determined as Fv/Fm decreased during winter. The strongest reduction was found after cold periods. The degree of reduction depended on irradiance since the lowest levels of Fv/Fm were found on the sun-exposed side of the stem and below thin phellem. Therefore, photoinhibition was partly responsible for the reduction in Fv/Fm. The photochemical efficiency of PS2 recovered in late April about a month before the trees got leaves. In the laboratory, Fv/Fm recovered within about a week under low irradiance at 20 °C. Rapid recovery of photochemical efficiency of PS2 in the bark may be important to reduce respiratory loss of CO2 from the stem before the trees get leaves. 相似文献
6.
7.
Two cultivars of Capsicum annuum L. were acclimated for 5 d at sub-optimal temperature (14 °C) and irradiance of 250 µmol m–2 s–1. This cold-hardening resulted in some reduction in the extent of photoinhibition during an 8 h exposure to high irradiance at 4 °C. Obvious differences were observed between non-hardened leaves (NHL) and cold-hardened leaves (CHL) in the recovery under low irradiance at room temperature. The CHL of both cultivars recovered faster than NHL, especially during the initial fast phase of recovery. Compared with NHL, the total content of carotenoids (Cars), based on chlorophyll, Chl (a+b), and the proportions of xanthophyll cycle pigments referred to total Cars increased in CHL, mainly due to an increase of violaxanthin (V) + antheraxanthin (A) + zeaxanthin (Z) content per mol Chl (a+b). Faster development and a higher non-photochemical quenching (NPQ) of Chl fluorescence, related to a stronger deepoxidation of the larger xanthophyll cycle pool in NHL, could act as a major defence mechanism to reduce the formation of reactive oxygen species during severe chilling. This is suggested by higher content of Z or Z+A in photoinhibition as well as by its rapid decline during the initial fast phase of recovery. In contrast to the chilling-sensitive cv. 0004, the chilling-tolerant cv. 1141 did more easily acclimate its photosynthetic apparatus to low temperatures. 相似文献
8.
植物的生命活动离不开充足的光照,但是当光照过强时,叶片吸收的光能超过了光合电子传递所需,过剩的光能便会对光合器官产生潜在的危害,引起光合作用的光抑制或光破坏.依赖于叶黄素循环的热耗散被认为是光保护的主要途径.本文着重介绍近年来有关植物叶黄素循环在酶学方面的分子调控、它的主要功能以及依赖于叶黄素循环的热耗散在光保护中的分子机理等,并对需进一步研究的问题作了探讨. 相似文献
9.
叶黄素循环及其在光保护中的分子机理研究 总被引:9,自引:0,他引:9
植物的生命活动离不开充足的光照 ,但是当光照过强时 ,叶片吸收的光能超过了光合电子传递所需 ,过剩的光能便会对光合器官产生潜在的危害 ,引起光合作用的光抑制或光破坏。依赖于叶黄素循环的热耗散被认为是光保护的主要途径。本文着重介绍近年来有关植物叶黄素循环在酶学方面的分子调控、它的主要功能以及依赖于叶黄素循环的热耗散在光保护中的分子机理等 ,并对需进一步研究的问题作了探讨 相似文献
10.
The photoprotective role of carotenoids in higher plants 总被引:16,自引:0,他引:16
Andrew John Young 《Physiologia plantarum》1991,83(4):702-708
Carotenoids have two important roles in photosynthetic organisms. First, they act as accessory light-harvesting pigments, effectively extending the range of light absorbed by the photosynthetic apparatus. Secondly, they perform an essential photoprotective role by quenching triplet state chlorophyll molecules and scavenging singlet oxygen and other toxic oxygen species formed within the chloroplast. Only recently an additional, novel, protective role has been proposed for the carotenoid zeaxanthin, involving the dissipation of harmful excess excitation energy under stress conditions. Zeaxanthin may be formed through de novo synthesis in response to long-term environmental stress, and through the rapid enzymic de-epoxidation of the carotenoid violaxanthin (the xanthophyll cycle) in response to short-term alterations in the plant's light environment. Interspecific differences occur in the ability of plants and algae to produce zeaxanthin under stress conditions, and hence the ability to photoprotect the photosynthetic apparatus through this means varies from species to species. The ability of a plant to respond to light-mediated environmental stress by producing zeaxanthin may therefore affect, at least in part, the ability of that plant to inhabit or colonise certain habitats (e.g. sun or shade conditions). 相似文献
11.
Niyogi KK Shih C Soon Chow W Pogson BJ Dellapenna D Björkman O 《Photosynthesis research》2001,67(1-2):139-145
When light absorption by a plant exceeds its capacity for light utilization, photosynthetic light harvesting is rapidly downregulated by photoprotective thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). To address the involvement of specific xanthophyll pigments in NPQ, we have analyzed mutants affecting xanthophyll metabolism in Arabidopsis thaliana. An npq1 lut2 double mutant was constructed, which lacks both zeaxanthin and lutein due to defects in the violaxanthin de-epoxidase and lycopene -cyclase genes. The npq1 lut2 strain had normal Photosystem II efficiency and nearly wild-type concentrations of functional Photosystem II reaction centers, but the rapidly reversible component of NPQ was completely inhibited. Despite the defects in xanthophyll composition and NPQ, the npq1 lut2 mutant exhibited a remarkable ability to tolerate high light.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
12.
The effects of Mn-deficiency on CO2 assimilation and excitation energy distribution were studied using Mn-starved maize leaves. Mn-deficiency caused about 70 % loss in the photon-saturated net photosynthetic rate (P
N) compared to control leaves. The loss of P
N was associated with a strong decrease in the activity of oxygen evolution complex (OEC) and the linear electron transport driven by photosystem 2 (PS2) in Mn-deficienct leaves. The photochemical quenching of PS2 (qP) and the maximum efficiency of PS2 photochemistry (Fv/Fm) decreased significantly in Mn-starved leaves under high irradiance, implicating that serious photoinhibition took place. However, the high-energy fluorescence quenching (qE) decreased, which was associated with xanthophyll cycle. The results showed that the pool of de-epoxidation components of the xanthophyll cycle was lowered markedly owing to Mn deficiency. Linear electron transport driven by PS2 de-creased significantly and was approximately 70 % lower in Mn-deficient leaves than that in control, indicating less trans-thylakoid pH gradient was built in Mn deficient leaves. We suggest that the decrease of non-radiative dissipation depending on xanthophyll cycle in Mn-starved leaves is a result of the deficiency of trans-thylakoid pH gradient. 相似文献
13.
This paper discusses biochemical and regulatory aspects of the violaxanthin cycle as well as its possible role in photoprotection. The violaxanthin cycle responds to environmental conditions in the short-term and long-term by adjusting rates of pigment conversions and pool sizes of cycle pigments, respectively. Experimental evidence indicating a relationship between zeaxanthin formation and non-photochemical energy dissipation is reviewed. Zeaxanthin-associated energy dissipation appears to be dependent on transthylakoid pH. The involvement of light-harvesting complex II in this quenching process is indicated by several studies. The current hypotheses on the underlying mechanism of zeaxanthin-dependent quenching are alterations of membrane properties, including conformational changes of the light-harvesting complex II, and singlet-singlet energy transfer from chlorophyll to zeaxanthin 相似文献
14.
As a part of our investigations to test the hypothesis that zeaxanthin formed by reversible de-epoxidation of violaxanthin serves to dissipate any excessive and potentially harmful excitation energy we determined the influence of light climate on the size of the xanthophyll cycle pool (violaxanthin + antheraxanthin + zeaxanthin) in leaves of a number of species of higher plants. The maximum amount of zeaxanthin that can be formed by de-epoxidation of violaxanthin and antheraxanthin is determined by the pool size of the xanthophyll cycle. To quantitate the individual leaf carotenoids a rapid, sensitive and accurate HPLC method was developed using a non-endcapped Zorbax ODS column, giving baseline separation of lutein and zeaxanthin as well as of other carotenoids and Chl a and b.The size of the xanthophyll cycle pool, both on a basis of light-intercepting leaf area and of light-harvesting chlorophyll, was ca. four times greater in sun-grown leaves of a group of ten sun tolerant species than in shade-grown leaves in a group of nine shade tolerant species. In contrast there were no marked or consistent differences between the two groups in the content of the other major leaf xanthophylls, lutein and neoxanthin. Also, in each of four species examined the xanthophyll pool size increased with an increase in the amount of light available during leaf development whereas there was little change in the content of the other xanthophylls. However, the -carotene/-carotene ratio decreased and little or no -carotene was detected in sun-grown leaves. Among shade-grown leaves the -carotene/-carotene ratio was considerably higher in species deemed to be umbrophilic than in species deemed to be heliophilic.The percentage of the xanthophyll cycle pool present as violaxanthin (di-epoxy-zeaxanthin) at solar noon was 96–100% for shade-grown plants and 4–53% for sun-grown plants with zeaxanthin accounting for most of the balance. The percentage of zeaxanthin in leaves exposed to midday solar radiation was higher in those with low than in those with high photosynthetic capacity.The results are consistent with the hypothesis that the xanthophyll cycle is involved in the regulation of energy dissipation in the pigment bed, thereby preventing a buildup of excessive excitation energy at the reaction centers.Abbreviations A
antheraxanthin
- C
-carotene
- C
-carotene
- EPS
epoxidation state (V+0.5A)/(V+A+Z)
- L
lutein
- N
neoxanthin
- PFD
photon flux density
- V
violaxanthin
- Z
zeaxanthin
C.I.W.-D.P.B. Publiation No. 1035 相似文献
15.
Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps 总被引:12,自引:1,他引:12
G. H. Krause O. Y. Koroleva J. W. Dalling & K. Winter 《Plant, cell & environment》2001,24(12):1345-1352
Acclimation to periodic high‐light stress was studied in tree seedlings from a neotropical forest. Seedlings of several pioneer and late‐succession species were cultivated under simulated tree‐fall gap conditions; they were placed under frames covered with shade cloth with apertures of different widths that permitted defined periods of daily leaf exposure to direct sunlight. During direct sun exposure, all plants exhibited a marked reversible decline in potential photosystem II (PSII) efficiency, determined by means of the ratio of variable to maximum Chl a fluorescence (Fv/Fm). The decline in Fv/Fm under full sunlight was much stronger in late‐succession than in pioneer species. For each gap size, all species exhibited a similar degree of de‐epoxidation of violaxanthin in direct sunlight and similar pool sizes of xanthophyll cycle pigments. Pool sizes increased with increasing gap size. Pioneer plants possessed high levels of β‐carotene that also increased with gap size, whereas α‐carotene decreased. In contrast to late‐succession plants, pioneer plants were capable of adjusting their Chl a/b ratio to a high value in wide gaps. The content of extractable UV‐B‐absorbing compounds was highest in the plants acclimated to large gaps and did not depend on the successional status of the plants. The results demonstrate a better performance of pioneer species under high‐light conditions as compared with late‐succession plants, manifested by reduced photoinhibition of PSII in pioneer species. This was not related to increased pool size and turnover of xanthophyll cycle pigments, nor to higher contents of UV‐B‐absorbing substances. High β‐carotene levels and increased Chl a/b ratios, i.e. reduced size of the Chl a and b binding antennae, may contribute to photoprotection in pioneer species. 相似文献
16.
The degree of photoinhibition of sun and shade grown leaves of grapevine was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined under high irradiance (HI) in shade leaves with less than 10 % of F0 level. In contrast, Fv/Fm ratio declined with about 20 % increase of F0 level in sun leaves. In isolated thylakoids, the rate of whole chain and PS2 activity in HI shade and sun leaves was decreased by about 60 and 40 %, respectively. A smaller inhibition of photosystem 1 (PS1) activity was also observed in both leaf types. In the subsequent dark incubation, fast recovery was observed in both leaf types that reached maximum PS2 efficiencies similar to non-photoinhibited control leaves. The artificial exogenous electron donors DPC, NH2OH, and Mn2+ failed to restore the HI-induced loss of PS2 activity in sun leaves, while DPC and NH2OH were significantly restored in shade leaves. Hence HI in shade leaves inactivates on the donor side of PS2 whereas it does at the acceptor side in sun leaves, respectively. Quantification of the PS2 reaction centre protein D1 and the 33 kDa protein of water splitting complex following HI-treatment of leaves showed pronounced differences between shade and sun leaves. The marked loss of PS2 activity in HI leaves was due to the marked loss of D1 protein of the PS2 reaction centre protein and the 33 kDa protein of the water splitting complex in sun and shade leaves, respectively. 相似文献
17.
The concentrations of photosynthetic pigments decreased in both chilling stressed species but the ratios of chlorophyll (Chl) a/b and total carotenoids (Car)/Chls were depressed only in faba bean. The contents of + carotene and lutein+lutein-5,6-epoxide remained unaffected in both species, but the de-epoxidation state involving the components of xanthophyll cycle increased in pea. Under chilling stress the photosynthetic electron transport associated with photosystem 2, PS2 (with and without the water oxidising complex) decreased in both plant species, the inhibition being higher in faba bean. The intrachloroplast quinone pool also decreased in both stressed species, yet an opposite trend was found for cytochrome b
559LP. Under stress an increasing peroxidation of thylakoid acyl lipids was detected in pea, but higher protein/Chl ratio was detected in faba bean. Thus the acceptor side of PS2 is mostly affected in both chilling stressed species, but faba bean is more sensitive. 相似文献
18.
Photoinhibition and Active Oxygen Species Production in Detached Apple Leaves During Dehydration 总被引:1,自引:0,他引:1
In the course of dehydration, the gas exchange and chlorophyll (Chl) fluorescence were measured under irradiance of 800 mol m–2 s–1 in detached apple leaves, and the production of active oxygen species (AOS), hydrogen peroxide (H2O2), superoxide (O2
–), hydroxyl radical (–OH), and singlet oxygen (1O2), were determined. Leaf net photosynthetic rate (P
N) was limited by stomatal and non-stomatal factors at slight (2–3 h dehydration) and moderate (4–5 h dehydration) water deficiency, respectively. Photoinhibition occurred after 3-h dehydration, which was defined by the decrease of photosystem 2 (PS2) non-cyclic electron transport (P-rate). After 2-h dehydration, an obvious rise in H2O2 production was found as a result of photorespiration rise. If photorespiration was inhibited by sodium bisulfite (NaHSO3), the rate of post-irradiation transient increase in Chl fluorescence (Rfp) was enhanced in parallel with a slight decline in P-rate and with an increase in Mehler reaction. At 3-h dehydration, leaf P-rate decrease could be blocked by glycine (Gly) or methyl viologen (MV) pre-treatment, and MV was more effective than Gly at moderate drought time. AOS (H2O2 and O2
–), prior to photoinhibition produced from photorespiration and Mehler reaction in detached apple leaves at slight water deficiency, were important in dissipating photon energy which was excess to the demand of CO2 assimilation. So photoinhibition could be effectively prevented by the way of AOS production. 相似文献
19.
The aim of the work was to find the optimal photon irradiance for the growth of green cells of Haematococcus pluvialis and to study the interrelations between changes in photochemical parameters and pigment composition in cells exposed to photon irradiances between 50 and 600?µmol?m?2?s?1 and a light:dark cycle of 12:12?h. Productivity of cultures increased with irradiance. However, the rate of increase was higher in the range 50–200?µmol??2?s?1. The carotenoid content increased with increasing irradiance, while the chlorophyll content decreased. The maximum quantum yield of PSII (Fv/Fm) gradually declined from 0.76 at the lowest irradiance of 50?µmol??2?s?1 to 0.66 at 600?µmol??2?s?1. Photosynthetic activity showed a drop at the end of the light period, but recovered fully during the following dark phase. A steep increase in non-photochemical quenching was observed when cultures were grown at irradiances above 200?µmol??2?s?1. A sharp increase in the content of secondary carotenoids also occurred above 200?µmol?m?2?s?1. According to our results, with H. pluvialis green cells grown in a 5-cm light path device, 200?µmol??2?s?1 was optimal for growth, and represented a threshold above which important changes in both photochemical parameters and pigment composition occurred. 相似文献
20.
Cloned saplings of beech (7-y-old) were exposed to enhanced UV-B irradiation (+25 %) continuously over three growing seasons (1999–2001). Analysis of CO2 assimilation, variable chlorophyll (Chl) a fluorescence, and pigment composition was performed in late summer of the third growing season to evaluate the influence of long-term elevated UV-B irradiation. This influence was responsible for the stimulation of the net assimilation rate (P
N) over a range of irradiances. The increase in P
N was partially connected to increase of the area leaf mass, and thus to the increased leaf thickness. Even a higher degree of UV-B induced stimulation was observed at the level of photosystem 2 (PS2) photochemistry as judged from the irradiance response of electron transport rate and photochemical quenching of Chl a. The remarkably low irradiance-induced non-photochemical quenching of maximum Chl a fluorescence (NPQ) in the UV-B plants over the entire range of applied irradiances was attributed both to the reduced demand on non-radiative dissipation processes and to the considerably reduced contribution of the quenching localised in the inactivated PS2 reaction centres. Neither the content of Chls and total carotenoids expressed per leaf area nor the contents of lutein, neoxanthin, and the pool of xanthophyll cycle pigments (VAZ) were affected under the elevated UV-B. However, the contributions of antheraxanthin (A) and zeaxanthin (Z) to the entire VAZ pool in the dark-adapted UV-B treated plants were 1.61 and 2.14 times higher than in control leaves. Surprisingly, the retained A+Z in UV-B treated plants was not accompanied with long-term down-regulation of the PS2 photochemical efficiency, but it facilitated the non-radiative dissipation of excitation energy within light-harvesting complexes (LHC) of PS2. Thus, in the beech leaves the accumulation of A+Z, induced by other factors than excess irradiance itself, supports the resistance of PS2 against combined effects of high irradiance and elevated UV-B. 相似文献