首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In chronic myeloid leukemia K562 cells, differentiation is also blocked because of low levels of ganglioside GM3, derived by the high expression of sialidase Neu3 active on GM3. In this article, we studied the effects of Neu3 silencing (40-70% and 63-93% decrease in protein content and activity, respectively) in these cells. The effects were as follows: (a) gangliosides GM3, GM1, and sialosylnorhexaosylceramide increased markedly; (b) cell growth and [(3)H]thymidine incorporation diminished relevantly; (c) as mRNA, cyclin D2, and Myc were much less expressed, whereas cyclin D1 was expressed more like its inhibitor p21; (d) as mRNA, pro-apoptotic proteins Bax and Bad increased with concurrent decrease and increase in the anti-apoptotic proteins Bcl-2 and Bcl-XL, respectively; (e) the apoptosis inducers etoposide and staurosporine were active on Neu3 silencing cells but not on mock cells; (f) as mRNA, the megakaryocytic markers CD10, CD44, CD41, and CD61 increased similar to the case of mock cells stimulated with PMA; (g) the signaling cascades mediated by PLC-beta2, PKC, RAF, ERK1/2, RSK90, and JNK were largely activated. The induction of a GM3-rich ganglioside pattern in K562 cells by treatment with brefeldin A elicited a phenotype similar to that of Neu3 silencing cells. In conclusion, upon Neu3 silencing, K562 cells show a decrease in proliferation, propensity to undergo apoptosis, and megakaryocytic differentiation.  相似文献   

2.
3.
Two signaling pathways, the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK)-dependent pathway and the nuclear factor-kappaB (NF-kappaB)-dependent pathway, have been known to mediate megakaryocytic differentiation of K562 cells induced by phorbol 12-myristate 13-acetate (PMA). In this study, we examined whether 90-kDa ribosomal S6 kinase (RSK), known as a substrate of ERK/MAPK and a signal-inducible IkappaBalpha kinase, would link two pathways during the differentiation. RSK1 was activated in a time- and dose-dependent manner during the PMA-induced differentiation. Overexpression of wild-type or dominant inhibitory mutant (D205N) of RSK1 enhanced or suppressed PMA-stimulated NF-kappaB activation and megakaryocytic differentiation as shown by morphology, nonspecific esterase activity, and expression of the CD41 megakaryocytic marker, respectively. In addition, overexpression of the dominant inhibitory mutant (S32A/S36A) of IkappaBalpha inhibited PMA-stimulated and RSK1-enhanced megakaryocytic differentiation, indicating that NF-kappaB mediates a signal for megakaryocytic differentiation downstream of RSK1. PMA-stimulated activation of ERK/MAPK, RSK1, and NF-kappaB and the PMA-induced megakaryocytic differentiation were prevented by pretreatment with PD98059, a specific inhibitor of the mitogen-activated ERK kinase (MEK). Therefore, these results demonstrate that the sequential ERK/RSK1/NF-kappaB pathway mediates PMA-stimulated megakaryocytic differentiation of K562 cells.  相似文献   

4.
In vitromegakaryocytic differentiation of the pluripotent K562 human leukemia cell line is induced by PMA. Treatment of K562 cells with PMA results in growth arrest, polyploidy, morphological changes, and increased cell–cell and cell–substrate adhesion. These PMA-induced changes in K562 cells are preceded by a rapid rise in the activity of MEK (MAP kinase/extracellular regulated kinases) that leads to a sustained activation of ERK2 (extracellular regulated kinase; MAPK). Blockade of MEK1 activation by PD098059, a recently described specific MEK inhibitor [D. T. Dudleyet al.(1995).Proc. Natl. Acad. Sci. USA92, 7686–7689], reverses both the growth arrest and the morphological changes of K562 cells induced by PMA treatment. These changes are not associated with a disruption of PMA-induced down-regulation of BCR-ABL kinase or early integrin signaling events but are associated with a block of the cell-surface expression of the gpIIb/IIIa (CD41) integrin, a cell marker of megakaryocytic differentiation. These results demonstrate that the PMA-induced signaling cascade initiated by protein kinase C activation requires the activity of the MEK/ERK signaling complex to regulate cell cycle arrest, thus regulating the program that leads to the cell-surface expression of markers associated with megakaryocytic differentiation.  相似文献   

5.
6.
7.
Humanin delays apoptosis in K562 cells by downregulation of P38 MAP kinase   总被引:2,自引:0,他引:2  
Humanin (HN) is a newly identified neuroprotective peptide. In this study, we investigated its antiapoptotic effect and the potential mechanisms in K562 cells. Upon serum deprivation, expression of HN in K562 cells decreased and its intracellular distribution changed from cytoplasm to cell membrane. In HN stably transfected K562 cells, apoptosis was delayed compared with control vector transfected cells as measured by flow cytometry. Furthermore, analysis of different mitogen-activated protein (MAP) kinases activity revealed that extracellular signal-regulated kinase (ERK) pathway was inhibited while p38 signaling was activated following serum deprivation in K562 cells. And in HN transfected K562 cells, ERK downregulation was not affected, but p38 activation was suppressed, which may responsible for the delayed apoptosis in these cells. Activation of the ERK signaling pathway by phorbol myristate 13-acetate (PMA) and sorbitol protected K562 cells from serum deprivation induced apoptosis. Additionally, overexpression of HN reduced megakaryocytic differentiation of K562 cells. The present data outline the role of ERK and p38 MAP kinases in serum deprivation induced apoptosis in K562 cells and figure out p38 signaling pathway as molecular target for HN delaying apoptosis in K562 cells.  相似文献   

8.
9.
10.
To study the control of hematopoietic cell differentiation, a human negative differentiation regulator (NDR) gene was identified by the comparative analysis of differentially expressed genes in hemato-lymphoid tissues.NDR is expressed preferentially in the adult bone marrow, fetal liver and testis. Immunocytochemistry with anti-NDR antiserum showed the presence of NDR in human erythroleukemia K562 cell line and CD34+ cells sorted from the umbilical cord blood. When fused to the green fluorescent protein (GFP), NDR was directed to the nucleus of mouse 3T3 and K562 cells. Fusion protein with a deletion from residues 7 to 87 was detected in the cytoplasm. NDR appeared not to affect the proliferation of K562 cells when overly expressed. However, its expression was down-regulated during megakaryocytic differentiation of K562 cells induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Down-regulation of NDR correlated well with up-regulation of megakaryocytic markers, CD41 and CD61. Overexpression of the nuclear NDR-GFP in K562 cells inhibited the expression of CD41 and CD61 in megakaryocytic differentiation. Treatment of K562 cells with GF-109203X (GFX), an antagonist of the protein kinase C (PKC), blocked NDR down-regulation, up-regulated expression of CD41/CD61 and TPA-induced megakaryocytic differentiation. These results suggest a novel function of nuclear NDR protein in regulating hematopoietic cell development.  相似文献   

11.
We report that phytosphingosine, a sphingolipid found in many organisms and implicated in cellular signaling, promotes megakaryocytic differentiation of myeloid leukemia cells. Specifically, phytosphingosine induced several hallmark changes associated with megakaryopoiesis from K562 and HEL cells including cell cycle arrest, cell size increase and polyploidization. We also confirmed that cell type specific markers of megakaryocytes, CD41a and CD42b are induced by phytosphingosine. Phospholipids with highly similar structures were unable to induce similar changes, indicating that the activity of phytosphingosine is highly specific. Although phytosphingosine is known to activate p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis, the signaling mechanisms involved in megakaryopoiesis appear to be distinct. In sum, we present another model for dissecting molecular details of megakaryocytic differentiation which in large part remains obscure. [BMB Reports 2015; 48(12): 691-695]  相似文献   

12.
Previously, we reported that ZNF300 might play a role in leukemogenesis. In this study, we further investigated the function of ZNF300 in K562 cells undergoing differentiation. We found that ZNF300 upregulation in K562 cells coincided with megakaryocytic differentiation induced by phorbol-12-myristate-13-acetate (PMA) or erythrocytic differentiation induced by cytosine arabinoside (Ara-C), respectively. To further test whether ZNF300 upregulation promoted differentiation, we knocked down ZNF300 and found that ZNF300 knockdown effectively abolished PMA-induced megakaryocytic differentiation, evidenced by decreased CD61 expression. Furthermore, Ara-C-induced erythrocytic differentiation was also suppressed in ZNF300 knockdown cells with decreased γ-globin expression and CD235a expression. These observations suggest that ZNF300 may be a critical factor controlling distinct aspects of K562 cells. Indeed, ZNF300 knockdown led to increased cell proliferation. Consistently, ZNF300 knockdown cells exhibited an increased percentage of cells at S phase accompanied by decreased percentage of cells at G0/G1 and G2/M phase. Increased cell proliferation was further supported by the increased expression of cell proliferation marker PCNA and the decreased expression of cell cycle regulator p15 and p27. In addition, MAPK/ERK signaling was significantly suppressed by ZNF300 knockdown. These findings suggest a potential mechanism by which ZNF300 knockdown may impair megakaryocytic and erythrocytic differentiation.  相似文献   

13.
Human Polo-like kinase 3 (Plk3), a protein serine/threonine kinase, is involved in the regulation of cell cycle progression at multiple stages. Our previous studies revealed that Plk3 is closely associated with centrosomes and plays an important role in the regulation of microtubule dynamics. Here we describe the physical interaction of Plk3 with Aurora A and BubR1 kinases, and the significance of this interaction during terminal differentiation and polyploidization of megakaryocytes. Specifically, double immunofluorescence staining confirms that Plk3 and Aurora A co-localize to centrosomes or spindle poles during essentially all phases of the cell cycle and that BubR1 also exhibits spindle pole localization during metaphase. Pull-down assays show that Plk3 physically interacts with Aurora A as well as BubR1. Upon treatment with phorbol 12-myristate 13-acetate (PMA), human erythroleukemic cells (K562) underwent megakaryocytic differentiation characterized by polyploidization and expression of mature megakaryocyte surface markers such as CD41. Plk3 protein levels were seen to be increased during PMA-induced megakaryocytic differentiation of K562 cells, correlating well with the ploidy level in these cells. Similarly, Aurora A and its phosphorylated form also increased after PMA treatment. In contrast, BubR1 levels were markedly reduced. Taken together, our study suggests that Plk3 and Aurora A kinases may lie in the same regulatory pathway and that Plk3 and Aurora A as well as BubR1 may play an important role in polyploidization and megakaryocytic differentiation.  相似文献   

14.
15.
Previously we showed that the human GM3 synthase gene was expressed during the induction of megakaryocytic differentiation in human leukemia K562 cells by phorbol 12-myristate 13-acetate (PMA). In this study we found that treatment of PMA-induced K562 cells with G?6976, a specific inhibitor of PKC, and U0126, an inhibitor of the extracellular signal-regulated kinase (ERK) reduced expression of GM3 synthase, whereas wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K) did not. Moreover, activation of ERK and cAMP response element binding protein (CREB) was prevented by pretreatment with G?6976 and U0126. PMA stimulated the promoter activity of the 5'-flanking region from -177 to -83 region of the GM3 synthase gene, and mutation or deletion of a CREB site located around -143 of the promoter reduced PMA-stimulated promoter activity, as did the inhibitors G?6976 and U0126. Our results demonstrate that induction of GM3 synthase during megakaryocytic differentiation in PMA-stimulated human leukemia K562 cells depends upon the PKC/ERK/CREB pathway.  相似文献   

16.
Activin A, a member of the transforming growth factor (TGF)-beta superfamily, is involved in the regulation of erythroid differentiation. Previous studies have shown that activin A inhibited the colony-forming activity of mouse Friend erythroleukemia cells, however, the mechanism remains unknown. First, we show herein that activin A induced the expression and activated the promoters of alpha-globin and zeta-globin in K562 cells, confirming that activin A induces erythroid differentiation in K562 cells. The p38 mitogen activated protein kinase (MAPK) inhibitor, SB203580, inhibited and the extracellular signal regulated kinase (ERK) inhibitor, PD98059, enhanced the expression and promoter activities of alpha-globin and zeta-globin by activin A, indicating that p38 MAPK and ERK are crucial for activin A-induced erythroid genes expression. Second, SB203580 inhibited the inhibitory effect of activin A on the colony-forming activity of K562 cells using the methylcellulose colony assay, indicating that activin A inhibits K562 colony formation by activating p38 MAPK. In addition, mitogenic cytokines SCF, IL-3, and GM-CSF induced colony formation of K562 cells that could be inhibited by PD98059 or enhanced by SB203580, respectively, indicating that these mitogenic cytokines induce K562 colony formation by activating ERK and inactivating p38 MAPK. Furthermore, activin A reduced the induction effect of these mitogenic cytokines on K562 colony formation in a dose-dependent manner. The inhibition of p38 MAPK reverted the inhibitory effect of activin A on mitogenic cytokine-mediated K562 colony formation. We conclude that activin A can regulate the same pathway via p38 MAPK to coordinate cell proliferation and differentiation of K562 cells.  相似文献   

17.
Contact with bone marrow stromal cells maintains normal and leukemic hematopoietic progenitors in an undifferentiated state. Recently, stromal contact has been shown to diminish the yield of megakaryocytes in cultures of primary human hematopoietic stem cells. This inhibition may explain the poor megakaryocytic engraftment frequently observed after bone marrow transplantation. In the current study, stromal co-culture is shown to render K562 cells refractory to megakaryocytic induction. This stromal inhibition correlated with the selective down-regulation in K562 cells of protein kinase C-epsilon (PKC-epsilon), which has recently been implicated in regulation of megakaryocytic lineage commitment. In addition, the stromal inhibition correlated with inactivation of the ERK/MAPK pathway, which has also been implicated in promoting megakaryocytic development. Forced expression of PKC-epsilon by retroviral transduction was insufficient to reverse the stromal blockade of ERK/MAPK signaling or of megakaryocytic induction. Thus stromal interruption of ERK/MAPK signaling occurred independently of PKC-epsilon levels and correlated more closely with megakaryocytic blockade. These findings provide potential mechanisms for stromal inhibition of hematopoietic differentiation and possibly for the poor megakaryocytic engraftment seen after bone marrow transplantation.  相似文献   

18.
Lee CH  Yun HJ  Kang HS  Kim HD 《IUBMB life》1999,48(6):585-591
Phorbol 12-myristate 13-acetate (PMA)-induced differentiation of human erythroleukemic K562 cells is characterized by growth arrest, morphological change, and expression of megakaryocyte-specific proteins. We examined the possible involvement of cell cycle regulators with PMA-induced growth arrest and megakaryocytic differentiation of K562 cells. The concentrations of cyclin D1 and p21Waf1/Cip1 were dramatically increased, whereas those of cyclin B1 and cdc2 were decreased, by PMA treatment. The concentrations of most cyclin-dependent kinases (Cdk2, Cdk4, and Cdk6), however, were unchanged by PMA treatment. PD98059, a specific inhibitor of MEK1, partially prevented the increase in cyclin D1 caused by PMA and fully reversed the down-regulation of cyclin B1 protein seen in response to PMA treatment. Thus, it is demonstrated here that the PMA-mediated changes of cyclin D1 and B1 are the result of a persistent increase in extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) activity.  相似文献   

19.
Previous studies have shown that Disabled-2 (DAB2) is up-regulated during megakaryocytic differentiation of human K562 cells. To delineate the consequences of DAB2 induction, a DNA vector-based small interfering RNA (siRNA) was designed to intervene in DAB2 expression. We found that DAB2 siRNA specifically inhibited DAB2 induction, resulting in the modulation of cell-cell adhesion and mitogen-activated protein kinase (MAPK) phosphorylation. The morphological changes and beta3 integrin expression associated with megakaryocytic differentiation were not affected. Since the MAPK pathway has been shown to involve DAB2 induction [Tseng et al., Biochem. Biophys. Res. Commun. 285 (2001) 129-135], our results suggest a reciprocal regulation between DAB2 and MAPK in the differentiation of K562 cells. In addition, we have demonstrated for the first time that DAB2 siRNA is a valuable tool for unveiling the biological consequences of DAB2 expression.  相似文献   

20.
Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号