首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, P meta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, P meta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (P meta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (P meta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.  相似文献   

4.
We identify and characterize two human serum proteins with an apparent molecular mass of 24 and 29 kDa, which are antigenically related to complement factor H. These proteins represent differently glycosylated forms and are encoded by the same mRNA. The corresponding cDNA clone is 1051 bp in size and hybridized to a 1.4-kb mRNA derived from human liver. The predicted translation product represents a protein of 270 amino acids, which displays a hydrophobic leader sequence, indicative of a secreted protein. The secreted part is organized in four short consensus repeats (SCR) and has a single putative N-linked glycosylation site. This predicted sequence is closely related to that of the previously described factor H-related proteins h37 and h42, which are also derived from a 1.4-kb mRNA. Amino acid comparison of these factor H-related proteins showed identical leader sequences, an exchange of three amino acids in SCR1, identical sequences of SCR2, and a lower degree of homology between SCR3-4 (h24 and h29) and SCR4-5 (h37 and h42). In addition, SCR3-4 of h24 and h29 display homology to SCR19-20 of human complement factor H. The relatedness of structural elements of the factor H-related proteins h24, h29, h37, and h42 and of factor H, suggests a function common to these proteins and indicates the existence of a gene family consisting of factor H and at least two factor H-related genes.  相似文献   

5.
6.
7.
The complete amino acid sequence of human complement factor H.   总被引:17,自引:2,他引:17       下载免费PDF全文
The complete amino acid sequence of the human complement system regulatory protein, factor H, has been derived from sequencing three overlapping cDNA clones. The sequence consists of 1213 amino acids arranged in 20 homologous units, each about 60 amino acids long, and an 18-residue leader sequence. The 60-amino-acid-long repetitive units are homologous with those found in a large number of other complement and non-complement proteins. Two basic C-terminal residues, deduced from the cDNA sequence, are absent from factor H isolated from outdated plasma. A tyrosine/histidine polymorphism was observed within the seventh homologous repeat unit of factor H. This is likely to represent a difference between the two major allelic variants of factor H. The nature of the cDNA clones indicates that there is likely to be an alternative splicing mechanism, resulting in the formation of at least two species of factor H mRNA.  相似文献   

8.
9.
Atypical hemolytic uremic syndrome (aHUS) is associated with defective complement regulation. Disease-associated mutations have been described in the genes encoding the complement regulators complement factor H, membrane cofactor protein, factor B, and factor I. In this study, we show in two independent cohorts of aHUS patients that deletion of two closely related genes, complement factor H-related 1 (CFHR1) and complement factor H-related 3 (CFHR3), increases the risk of aHUS. Amplification analysis and sequencing of genomic DNA of three affected individuals revealed a chromosomal deletion of approximately 84 kb in the RCA gene cluster, resulting in loss of the genes coding for CFHR1 and CFHR3, but leaving the genomic structure of factor H intact. The CFHR1 and CFHR3 genes are flanked by long homologous repeats with long interspersed nuclear elements (retrotransposons) and we suggest that nonallelic homologous recombination between these repeats results in the loss of the two genes. Impaired protection of erythrocytes from complement activation is observed in the serum of aHUS patients deficient in CFHR1 and CFHR3, thus suggesting a regulatory role for CFHR1 and CFHR3 in complement activation. The identification of CFHR1/CFHR3 deficiency in aHUS patients may lead to the design of new diagnostic approaches, such as enhanced testing for these genes.  相似文献   

10.
A family of protein kinases, termed G-protein-coupled receptor kinases (GRK1-6), is known to phosphorylate agonist-occupied G-protein-coupled receptors. We have identified mRNAs encoding four distinct mouse GRK6 isoforms (mGRK6), designated mGRK6-A through mGRK6-D. Mouse GRK6-B and mGRK6-C diverge from the known human GRK6 (577 residues) at residue 560 and are 13 residues longer and 16 residues shorter, respectively, than human GRK6, while mGRK6-A very likely represents the mouse equivalent of human GRK6. Mouse GRK6-D is identical to the other mGRK6 variants in the amino-terminal region, but comprises only 59 of the 263 amino acids of the putative catalytical domain. As mGRK6-D retains the region involved in interacting with activated receptors, but most likely lacks catalytic activity, this variant might represent a naturally occurring inhibitor of other GRKs. Analysis of the genomic organization of mGRK6 gene revealed that the four mRNAs are generated by alternative RNA splicing from a single approximately 14. 5-kb gene, made up of at least 17 exons and located on mouse chromosome 13. Similar to human GRK6, mGRK6-A contains three cysteine residues within its carboxyl-terminal region known to serve as substrates for palmitoylation. Mouse GRK6-B lacks these palmitoylation sites, but carries a basic carboxyl-terminus containing consensus sequences for phosphorylation by protein kinases C and cAMP/cGMP-dependent protein kinases. Mouse GRK6-C displays none of these motifs. Thus, mGRK6-A, mGRK6-B, and mGRK6-C are predicted to differ in terms of their regulation by carboxyl-terminal posttranslational modification. Analysis of mRNA expression revealed that the four mGRK6 mRNAs are differentially expressed in mouse tissues, suggesting that the four mGRK6 isoforms are involved in regulating tissue- or cell type-specific functions in vivo.  相似文献   

11.
12.
A technique for replication R- and G-banding of mouse lymphocyte chromosomes was developed, and the replication R-banding pattern was analyzed. Optimal banding patterns were obtained with thymidine- and BrdU-treatment of lymphocytes in the same cell cycle. This produced replication R-band patterns that were the complete reverse of the G-band patterns on all chromosomes. Replication R-banding methods can be used in conjunction with nonisotopic, fluorescence in situ hybridization (FISH) to localize cloned probes to specific chromosomal bands on mouse chromosomes. with these methods the mouse complement factor H gene (cfh) was localized to the terminal portion of the F region of Chromosome 1. Q-banding patterns were also obtained by the replication R-banding method and may be useful for rapid identification of each chromosome.  相似文献   

13.
14.
A cDNA clone encoding the mouse counterpart to adult hamster liver purified growth inhibitory factor (PGIF) was isolated from a mouse liver cDNA library by using antibodies raised against PGIF and sequenced. It contained a single open reading frame with a coding capacity for a 323 amino acid protein. Sequence analysis showed that it shared high homology with rat- and human liver arginases: the cDNA clone was 92% identical for rat arginase at the nucleotide level and was 93% identical to it at the deduced amino acid level. These results suggest that PGIF derived from adult hamster liver was identical or closely related to an isoform of hamster liver arginases.  相似文献   

15.
16.
17.
18.
19.
20.
Albumin-synthesizing polysomes from mouse liver and mouse hepatoma cells in in tissue culture have been localized on sucrose gradients with 125I-labeled antimouse serum albumin used as a marker. Competition studies show that the 125I-labeled antibody binds specifically to albumin-synthesizing polysomes from both tissues. The 125I-labeled polysomes from liver and hepatoma cells have identical sedimentation properties on sucrose gradients, which indicates that the polysomes range in size from 9–14 ribosomes. This is comparable in size to polysomes from rat liver and Morris hepatoma. One significant difference between these albumin-synthesizing polysomes is that those extracted from hepatoma cells bind 70% less antibody than equivalent amounts of polysomes from liver cells. Since the level of albumin synthesis in the hepatoma cells is comparable to the level of albumin synthesis in vivo, this difference in antibody-binding capacity is not likely to be due to differences in polysomal content, but appears to be a characteristic difference between hepatoma and normal mouse liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号