首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
I. ABBOTT 《Austral ecology》1992,17(3):289-296
Abstract The number of native grass species and exotic grass species present on 129 offshore islands of southwestern Australia is best predicted by island area and island disturbance, respectively. Isolation of islands and gull activity on islands only slightly improved these predictions. Species turnover on a subset of 30 islands indicated that exotic grass species were more prone to local extinction and more likely to immigrate than native grass species. The major conservation implication of this study is that habitat disturbance on these islands should be minimized to reduce establishment of exotic grass species.  相似文献   

2.
Abstract. 60 of the 75 Banksia species are confined to southwestern Australia where five or six species often coexist. We explored the role of regional species richness, niche differentiation, and habitat specialization in structuring banksia assemblages. The diversity of growth forms and categories of seed production and response to fire were assessed in actual assemblages at 40 sites throughout southwestern Australia. Diversity indices at each site were compared with those from null communities assembled on the basis of the abundance and sociability of taxa in regional species pools. The relationship between local and regional species richness suggests that processes at the scale of 100-m2 quadrats limit local richness and therefore coexistence. However, there was no consistent evidence that taxa are differentiated by growth form or regeneration strategy. No particular biological profile makes a banksia adept at coexisting with a wide range of other taxa. Habitat specialization is an important factor contributing to lower local richness than would be predicted from niche differentiation of taxa in regional pools. There is recent empirical evidence of several mechanisms whereby the number of coexisting banksias is increased beyond the limits suggested by simple niche theories. Variability in the fire regime also provides a mechanism for maintaining local species richness because different fires favour recruitment of different taxa.  相似文献   

3.
4.
Ninetysix species of Cladocera, comprising 8 Sididae, 50 Chydoridae, 17 Macrothricidae, 5 Moinidae, 2 Bosminidae, and 14 Daphniidae, occur in tropical Australia. Of this number 38% are cosmopolitan including so-called cosmopolitan species, 13.5% are circumtropical, 13.5% occur as well innear by countries, and 35% are endemic. North Queensland is a major area of speciation. Species richness varies from north to south and from wetter coastal areas to the drier inland. Major factors influencing richness and distribution are the relative proportion of floodplain billabongs in an area, coupled with rainfall reliability. The most common species include Alonella clathratula, Chydorus nr. pubsecens, Macrothrix triserialis, Oxyurella singalensis, Ephemeroporus nr. barroisi, Dadaya macrops, Diaphanosoma sarsi, Ceriodaphnia cornuta, and Dunhevedia crassa.  相似文献   

5.
Germination responses of species from the native plant communities of southwestern Western Australia can be related to syndromes of life history, fire response, and seed storage, and also to factors related to environmental stress. The Mediterranean-type climate of the region with periodic drought and recurrent fires affects the production of viable seeds in plants of limited stature and rooting depth. Fire response ephemerals and species cued to flower by fire tend to produce viable, readily germinable seeds, but there are instances where seed production is aborted in these predominantly herbaceous life forms. Clonal, rhizomatous species often produce mainly inviable seeds. Production of viable seeds in woody species of these highly diverse communities may also be restricted by limitations to cross pollination. Obligate post-fire seeding species tend to produce a greater proportion of viable seeds than species which are capable of resprouting following fire. Serotinous species, whether post-fire re-seeders or post-fire resprouting species, produce mainly viable seeds, which germinate readily once freed from protective fruits. Species of the legume families and a few others of the soil seed bank produce innately dormant seeds which can be germinated following heat shock treatments which simulate the effects of fire. Heat shock in these species appears mainly as a mechanism to crack the hard seed coats, but the effect of heat to denature seed coat inhibitors has not been eliminated. Western Australian species do not seem to break dormancy when exposed to leachates from burned wood as has been observed in comparable habitats in California and South Africa, but further research is advised. Germination in many native southwestern Australian species is cued by temperatures that correspond to the winter rainfall period. There are also indications that an after-ripening period of warm, dry storage increases percentage of germinable seeds. Stimulation of germination by hormones is almost unresearched in Western Australia, but germination percentages have been increased in a small number of species of horticultural potential. Stimulation of germination by soil nutrient concentrations is almost unresearched in Western Australia, except for the inhibitory effect of excess sodium chloride levels inEucalyptus andMelaleuca. These species only germinate when osmotic effects are reduced to lower levels as would occur when winter rains dilute soil salts. Application of research on seed germination has already enhanced the establishment of seedlings in the restoration of mine sites and is becoming important in aspects of the breeding and selection of native plants for the cut flower, bedding plant and essential oil industries.  相似文献   

6.
Abstract

Honeyeaters were the most numerous birds in banksia woodland near Perth, Western Australia, throughout the year. Numbers were greatest in a Banksia littoralis swamp, but only during those few months when it contained large amounts of nectar. In the surrounding woodland, numbers were lower but fairly constant during the year. This reflects the smaller amounts of nectar produced throughout the year, by the overlapping flowering patterns of several Banksia and Adenanthos species.

Large and medium-sized honeyeaters (wattlebirds and New Holland Honeyeaters) and flocking silvereyes dominated the swamp when it flowered. In contrast, small honeyeaters (spinebills and Brown Honeyeaters), many of whom were highly territorial residents, comprised the majority of the woodland assemblage throughout the year. These observations support a model based upon aggressive defence of rich nectar sources by the larger honeyeater species, and more efficient exploitation of dispersed flowers by smaller honeyeaters.  相似文献   

7.
Aim Phylogenetic and phenotypic patterns among coexisting banksias (Banksia, Proteaceae) in the infertile, fire‐prone landscapes of south‐western Australia were examined for evidence of community structuring. It was expected that closely related species would be spatially clustered (underdispersed) as a consequence of widespread recent speciation, strong edaphic fidelity and low dispersability. We also expected that edaphic filtering would result in phenotypic clustering of traits related to habitat specialization and that competitive exclusion among closely related species with similar regeneration biology and growth form would result in phenotypic overdispersion of these latter traits. Location Southwest Australian Floristic Region (SWAFR). Methods Based on published data for coexistence (richness and frequency) of Banksia species at 40 sites in the three floristic provinces, phylogenetic, soil type and morphological mean pairwise distance and mean nearest taxon distance were calculated for each site and compared with null communities. Patterns of co‐occurrence were examined at the local and subregional (provincial) scales. Results Of the 40 sites assessed, 21–30 displayed phylogenetic clustering of Banksia species (5–11 significantly) such that, overall, co‐occurring taxa were more closely related than expected by chance. Banksias in the Transitional Rainfall and Southeast Coastal Provinces were more likely to display phylogenetic clustering than in the High Rainfall Province. A significant trend for phylogenetic clustering associated with edaphic specialization (27–30 sites) was observed, as well as a significant trend for phenotypic overdispersion associated with growth form (25–28 sites). Results for regeneration biology depended on the metric used. Main conclusions We demonstrate spatial clustering of closely related banksias at the local and provincial scales, consistent with their restricted distribution (recent widespread speciation, patchy habitat availability and limited dispersability) in this geologically old and stable region. The clustering of closely related species may also be a consequence of habitat filtering linked to edaphic fidelity in the SWAFR flora, while overdispersion in growth form suggests that functional divergence favours coexistence in Banksia communities.  相似文献   

8.
Southwestern Australia is recognised as a global biodiversity hotspot, characterised by high diversity and endemism of vascular terrestrial plants. However, the significance of its freshwater biodiversity is not well understood. This review provides an updated account of species richness in rivers in the Mediterranean region (med-region) of southwestern Australia. Taxonomic knowledge of many aquatic invertebrate groups in this region has improved significantly in the last two decades as a result of ecological surveys and government funding for taxonomic research. Of the 662 species of plants and animals surveyed, 43% were found to be endemic to the region, yet when taxonomic groups were considered separately, levels of endemism were varied. To date, few aquatic species from the med-region are listed as threatened; however, many more species would be expected to be included if assessed against appropriate criteria. Conservation efforts are focussed on climate change mitigation and managing the impacts of broad scale land clearing for agriculture. Reserve design and location of important nature reserves on the extreme south coast, limits the ability for species’ movement to cooler, wetter regions. This will necessitate supporting restoration which leads to increased resilience in freshwater ecosystems to withstand the combined effects of climate change and land use.  相似文献   

9.
Abstract Diurnal and seasonal water relations were measured in understorey species from a Banksia woodland. The shrubs exhibited various responses to summer drought. Stirlingia latifolia had high xylem pressure potential and transpiration in late summer. Adenanthos cygnorum maintained high xylem pressure potential year round with dawn values around ? 0.3 MPa and minimum values around ?1.3 MPa, but showed severe restriction of transpiration in late summer. Eremaea pauciflora and Jacksonia floribunda had high transpiration and xylem pressure potential levels in early summer, but exhibited water stress in late summer when transpiration rates were low and minimum xylem pressure potentials were as low as ? 5.5 MPa. Late summer xylem pressure potentials in 27 other shrub species were, in general, inversely related to root system depth with minimum values below ? 5.0 MPa in some species. The water relations of S. latifolia, E. pauciflora and J. floribunda indicated a phreatophytic habit: all possessed deep roots of sufficient size to reach groundwater that was located 6–7 m deep at the study site. Stirlingia latifolia functioned phreatophytically year round, while E. pauciflora and J. floribunda were phreatophytes until the falling water table carried ground-water beyond the reach of their roots in late summer. However, most understorey species depended on soil-stored water. Water use by the understorey was greatest in early summer.  相似文献   

10.
Summary The Gnangara Groundwater Mound, centred 38 km north of Perth, Western Australia, is a large, shallow unconfined aquifer that is currently under abstraction as part of the public metropolitan water supply. To investigate the impact of lowering groundwater levels on a Banksia woodland on the Mound, vegetation monitoring near a groundwater abstraction bore (known as P50) began 1 year before becoming operational. In February 1991, 2 years after abstraction commenced, extensive death of the Banksia overstorey was observed within close proximity of the bore, following a short period of high summer temperatures. The site was subsequently revisited and the understorey floristic composition, abundance and vigour of overstorey species resurveyed, and compared with data collected from a site under long‐term monitoring and not currently influenced by abstraction. A lowering of groundwater level by 2.2 m at P50 between the summers of 1990 and 1991, resulting from the cumulative effects of abstraction and below average annual rainfall (low groundwater recharge), coincided with a loss of between 20 and 80% of adults of overstorey species and up to 64% of adults of understorey species within 200 m of the bore. Over a similar time period no significant decreases in the abundance of overstorey or understorey species were recorded in the monitored site not influenced by groundwater abstraction. Of the overstorey species, Holly‐leaf Banksia (Banksia ilicifolia) displayed the greatest susceptibility and lowest net recovery following the abstraction event at P50. The negative impact of groundwater drawdown on Holly‐leaf Banksia populations makes this overstorey species an important indicator of decreasing groundwater levels on the Gnangara Groundwater Mound. Water stress may have been the primary cause of vegetation death in close proximity to the P50 bore, although this would have been exacerbated by extreme summer temperatures (> 45°C) recorded during February 1991. The P50 scenario represents a localized response to an acute drawdown event, in association with other environmental factors, and provides invaluable information on the assessment of groundwater abstraction and poor groundwater recharge events on a Banksia woodland community. However, there are limitations in using the community response at P50 to manage the impact of drawdown events on other plant communities occurring on sandy, shallow aquifers.  相似文献   

11.
The first extensive and stratigraphically detailed taxonomic study of the Middle to Late Eocene Bryozoa of the St Vincent Basin has identified more than 200 species of Cheilostomata and 50 species of Cyclostomata. There are three biogeographic groups: basin endemic, Australian and global. Two-thirds (116) of the cheilostome species and seven genera are currently considered endemic to this basin. Most species are endemic to Australia and similar to those found in the Oligo-Miocene of Victoria. The Cellariidae are a common component of most Australian Cainozoic deposits, but the species are highly dissimilar, with 13 of the 17 species here being new. The global component indicates that biogeographic links with regions outside Australia still existed in the Eocene. The cyclostome genus Reticrescis is only known from the Australian and Antarctic Eocene. Ten genera have their first occurrence in the Eocene St Vincent Basin. The Phidoloporidae and Smittinidae represent the most diverse and ubiquitous groups at a geological time close to their time of origination. Contemporaneous sediments in Antarctica, eastern Europe and North America also have a diverse fauna of this family, pointing to a strong Tethyan link. Rhamphosmittina lateralis (MacGillivray) is still extant in New Zealand, having an exceptionally long time range of 40 million years. Overall, the fauna has a distinct Late Cretaceous character. A new genus of Onychocellidae appears similar to genera that were common in Cretaceous Tethyan faunas but rare during the Cainozoic. This similarity ends in the Oligocene, after which the Australian bryozoan became endemic  相似文献   

12.
Aim Nicotiana section Suaveolentes is largely endemic to Australia but includes one species endemic to Africa, one to New Caledonia and Tongatupa, and one to the Marquesas Islands in the Pacific. Other sections of Nicotiana are found in the New World. In Australia, Suaveolentes is widespread across the continent, with many taxa adapted to the Eremean zone. We aim to analyse the biogeography of the Australian clade, both to shed light on the evolution of the group and to determine general area relationships that provide insight into the history of the arid‐zone biota. Location Mesic and arid regions of continental Australia, the Central–South Pacific and Namibia, Africa. Methods A phylogeny of Suaveolentes, based on morphology and molecular data, was used to analyse the relationships of areas in which the taxa occur. The section is monophyletic, and all but three taxa were included (25). The method of paralogy‐free subtree analysis was employed, with the basal taxon Nicotiana africana used as the outgroup. Results Paralogy‐free subtree analysis found five area subtrees that, when combined, resulted in a minimal area cladogram with six resolved nodes. Pacific and mesic eastern Australia (including Lord Howe Island) are at the base of the area cladogram, followed by the differentiation of North West Australia and later South East Australia. Arid regions of Australia are related, revealing three biogeographical tracks: a northern track including the Great Sandy Desert and Tanami, which are related to the Pilbara; a central track relating the Western Desert, Central Ranges, Eastern Desert and North East Interzone; and a southern track relating the South West Interzone, Nullarbor, Adelaide/Eyre and the South East Interzone. Plesiomorphic taxa with chromosome number n = 24–23 occur on the periphery of the continent, and derived taxa with n = 21, 20, 18, 16–15 identify the tracks across arid Australia. Main conclusions The patterns of distribution and differentiation of Suaveolentes in Australia show that the age of the clade is at least Early Miocene, dating to before the onset of aridification in Australia about 15 Ma. The patterns are also interpreted as evidence that it was vicariance that largely shaped speciation in the Eremean zone, with range expansion of some widespread taxa probably occurring in the most recent cycles of severe drying and mobilization of desert dune sands.  相似文献   

13.
Abstract. This study assesses the utility of modelling approaches to predict vegetation distribution in agricultural landscapes of southwestern Australia. Climate surfaces, hy‐drologic and erosion process models are used to link vegetation to environmental variables. Generalized additive models (GAM) are derived for presence/absence data of mapped vegetation types. Vegetation distribution shows significant responses to rainfall and subsequent water redistribution due to the relief; however, these variables are insufficient to effectively explain vegetation patterns at the local scale. Accordingly, prediction accuracy remains low (κ‐values below 0.5). The striking unpredictability of the local distribution of the vegetation in the Wheatbelt is discussed with regard to the performance of topographically driven processes in subdued landscapes and with regard to geological, historical and biological factors determining the southwestern Australian plant species distribution.  相似文献   

14.
Abstract Diurnal and seasonal water relations were measured in selected species of a Banksia woodland at a site with groundwater at a depth of 6–7 m. The canopy co-dominants Banksia attenuata and Banksia menziesii exhibited similar patterns of variation in water relations, both diurnally and seasonally. Stomatal conductance was usually 0.4–0.5 cm s?1 diurnally and seasonally and, generally, did not respond to water deficit and other factors. Transpiration was correlated positively with factors indicative of atmospheric evaporative demand, especially total global radiation and pan evaporation, and was highest in summer when canopy water use reached 2.1 mm d?1. Xylem pressure potential at dawn averaged ?0.25 MPa in both species throughout the year. Minimum xylem pressure potential varied seasonally and was negatively correlated with transpiration. Seasonal means of minimum xylem pressure potential varied from ?1.0 MPa in winter to ?1.5 MPa in early summer. Both Banksia species appeared to function as phreatophytes, utilizing groundwater which enabled them to maintain high rates of water use in late summer. Water use over a 12 month period totalled 635 mm, of which the canopy and understorey contributed 61% and 39%, respectively. Water use in the woodland was dominated by the canopy in late summer and the understorey at other times.  相似文献   

15.
Distinct O1 and O2 layers, representing annual litter fall, enabled the sequential loss of biomass and nutrients (phosphorus and nitrogen) to be reconstructed in undisturbed litter layers of Banksia ornata in the Dark Island heathland, South Australia. Apart from an initial loss in biomass and nitrogen, the dry weight and nutrient content of the O1 layer, exposed to the desiccating influence of the atmosphere, remained relatively constant until covered by the following year's leaf fall. Under the blanket of newly fallen leaves, biomass decomposition proceeded continuously through autumn, winter, spring, into the dry summer season. Even though the biomass of the decomposing leaf (O2) layer decreased continuously, its nutrient content remained relatively constant until the summer season was reached when total decomposition and nutrient loss occurred. During spring, fine rootlets invaded the decomposing litter layer (O2) and, together with decomposer fungi, bacteria and soil fauna, maintained the total nutrient content of the decomposing leaf at a constant level. By late spring-early summer shoot growth of the dominant heath species was initiated, inducing the mobilization of the nutrients stored in the decomposing litter layer.  相似文献   

16.
The distribution, host associations, and phylogenetic relationships of the unicellular cyanobacterial symbionts of selected marine sponges were investigated with direct 16s rDNA sequencing. The results indicate that the symbionts of the marine sponges Aplysina aerophoba, Ircinia variabilis, and Petrosia ficiformis from the Mediterranean, four Chondrilla species from Australia and the Mediterranean, and Haliclona sp. from Australia support a diversity of symbionts comprising at least four closely related species of Synechococcus. These include the symbionts presently described as Aphanocapsa feldmannii from P. ficiformis and Chondrilla nucula. A fifth symbiont from Cymbastela marshae in Australia is an undescribed symbiont of sponges, related to Oscillatoria rosea. One symbiont, Candidatus Synechococcus spongiarum, was found in diverse sponge genera in the Mediterranean Sea and the Indian, Pacific, and Southern oceans, whereas others were apparently more restricted in host association and distribution. These results are discussed in terms of the biodiversity and biogeographic distributions of cyanobacterial symbionts.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

17.
The influence of fucalean canopy species and dominant understory macroalgae on algal colonization was investigated to evaluate whether layering contributes to patterns in algal diversity. Patterns in recruitment were compared among total-clearing, understory-removal, canopy-removal, and undisturbed plots (plot area = 0.25 m2), using a randomized block design in depths <10 m and 10–20 m at Woody Island, Western Australia. To evaluate if propagules were available in the water column above the canopy layer, settlement plates (plate area = 0.04 m2) were deployed in depths <10 m, 10–20 m, and >20 m. A total of 198 macroalgal species was recorded. Biomass of the understory species Osmundaria prolifera Lamouroux and Botryocladia sonderi Silva was similar between canopy-removal and undisturbed plots. Diversity of macroalgae was similar in the presence and absence of a canopy layer. Taxa found in the canopy showed different patterns in recruitment. Cystoseiraceae recruited predominantly in total-clearings in both depth strata. Sargassaceae recruited most abundantly in depths <10 m. Density of canopy taxa on settlement plates was similar with depth (20–30 juveniles per plate), and juveniles were mainly Cystoseiraceae. In contrast to kelp beds or forests, patterns in algal colonization appeared to be maintained by environmental factors or processes other than the direct effects of layering in the subtidal fucoid-dominated assemblages at Woody Island. Handling editor: K. Martens  相似文献   

18.
19.
Biogeography     
《Plant Ecology》1983,54(2):128-128
  相似文献   

20.
This study investigated the interspecific differences in vulnerability to xylem embolism of four phreatophytes – two facultative phreatophytes ( Banksia attenuata and B. menziesii ) and two obligate phreatophytes ( B. ilicifolia and B. littoralis ). Species differences at the same position along an ecohydrological gradient on the Gnangara Groundwater Mound, Western Australia were determined in addition to intraspecific differences to water stress between populations in contrasting ecohydrological habitats. Stem- and leaf-specific hydraulic conductivity, as well as Huber values (ratio of stem to leaf area), were also determined to support these findings. We found that where water is readily accessible, there were no interspecific differences in vulnerability to water stress. In contrast both facultative phreatophyte species were more resistant to xylem embolism at the more xeric dune crest site than at the wetter bottom slope site. B. ilicifolia did not differ in vulnerability to embolism, supporting its classification as an obligate phreatophyte. Other measured hydraulic traits ( K S, K L and Huber value) showed no adaptive responses, although there was a tendency for plants at the wetter site to have higher K S and K L. This study highlights the influence site hydrological attributes can have on plant hydraulic architecture across species and environmental gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号