首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete mitochondrial cytochromebgenes of 53 genera of oscine passerine birds representing the major groups of finches and some allies were compared. Phylogenetic trees resulting from three levels of character partition removal (no data removed, transitions at third positions of codons removed, and all transitions removed [transversion parsimony]) were generally concordant, and all supported several basic statements regarding relationships of finches and finch-like birds, including: (1) larks (Alaudidae) show no close relationship to any finch group; (2)Peucedramus(olive warbler) is phylogenetically far removed from true wood warblers; (3) a clade consisting of fringillids, passerids, motacillids, and emberizids is supported, and this clade is characterized by evolution of a vestigial 10th wing primary; and (4) Hawaiian honeycreepers are derived from within the cardueline finches. Excluding transition substitutions at third positions of codons resulted in phylogenetic trees similar to, but with greater bootstrap nodal support than, trees derived using either all data (equally weighted) or transversion parsimony. Relative to the shortest trees obtained using all data, the topologies obtained after elimination of third-position transitions showed only slight increases in realized treelength and homoplasy. These increases were negligable compared to increases in overall nodal support; therefore, this partition removal scheme may enhance recovery of deep phylogenetic signal in protein-coding DNA datasets.  相似文献   

2.
The phylogenetic relationships of the African lungfish (Protopterus dolloi) and the coelacanth (Latimeria chalumnae) with respect to tetrapods were analyzed using complete mitochondrial genome DNA sequences. A lungfish + coelancanth clade was favored by maximum parsimony (although this result is dependent on which transition:transversion weights are applied), and a lungfish + tetrapod clade was supported by neighbor-joining and maximum-likelihood analyses. These two hypotheses received the strongest statistical and bootstrap support to the exclusion of the third alternative, the coelacanth + tetrapod sister group relationship. All mitochondrial protein coding genes combined favor a lungfish + tetrapod grouping. We can confidently reject the hypothesis that the coelacanth is the closest living relative of tetrapods. When the complete mitochondrial sequence data were combined with nuclear 28S rRNA gene data, a lungfish + coelacanth clade was supported by maximum parsimony and maximum likelihood, but a lungfish + tetrapod clade was favored by neighbor-joining. The seeming conflicting results based on different data sets and phylogenetic methods were typically not statistically strongly supported based on Kishino-Hasegawa and Templeton tests, although they were often supported by strong bootstrap values. Differences in rate of evolution of the different mitochondrial genes (slowly evolving genes such as the cytochrome oxidase and tRNA genes favored a lungfish + coelacanth clade, whereas genes of relatively faster substitution rate, such as several NADH dehydrogenase genes, supported a lungfish + tetrapod grouping), as well as the rapid radiation of the lineages back in the Devonian, rather than base compositional biases among taxa seem to be directly responsible for the remaining uncertainty in accepting one of the two alternate hypotheses.  相似文献   

3.
The ever-larger data matrices resulting from continuing improvements in DNA sequencing techniques require faster and more efficient methods of phylogenetic analysis. Here we explore a promising new method, parsimony jackknifing, by analyzing a matrix comprising 2538 sequences of the chloroplast generbcL. The sequences included cover a broad taxonomic range, from cyanobacteria to flowering plants. Several parsimony jackknife analyses were performed, both with and without branch-swapping and multiple random addition sequences: 1) including all positions; 2) including only first and second codon positions; 3) including only third positions; and 4) using only transversions. The best resolution was obtained using all positions. Removal of third positions or transitions led to massive loss of resolution, although using only transversions somewhat improved basal resolution. While branch-swapping improved both resolution and the support found for several groups, most of the groups could be recovered by faster simple analyses. Designed to eliminate groups poorly supported by the data, parsimony jackknifing recognizes 1400 groups on the basis of allrbcL positions. These include major taxa such as green plants, land plants, flowering plants, monocots and eudicots. We include appendices of supported angiosperm families, as well as larger groups.  相似文献   

4.
The Channichthyidae is a lineage of 16 species in the Notothenioidei, a clade of fishes that dominate Antarctic near-shore marine ecosystems with respect to both diversity and biomass. Among four published studies investigating channichthyid phylogeny, no two have produced the same tree topology, and no published study has investigated the degree of phylogenetic incongruence between existing molecular and morphological datasets. In this investigation we present an analysis of channichthyid phylogeny using complete gene sequences from two mitochondrial genes (ND2 and 16S) sampled from all recognized species in the clade. In addition, we have scored all 58 unique morphological characters used in three previous analyses of channichthyid phylogenetic relationships. Data partitions were analyzed separately to assess the amount of phylogenetic resolution provided by each dataset, and phylogenetic incongruence among data partitions was investigated using incongruence length difference (ILD) tests. We utilized a parsimony-based version of the Shimodaira-Hasegawa test to determine if alternative tree topologies are significantly different from trees resulting from maximum parsimony analysis of the combined partition dataset. Our results demonstrate that the greatest phylogenetic resolution is achieved when all molecular and morphological data partitions are combined into a single maximum parsimony analysis. Also, marginal to insignificant incongruence was detected among data partitions using the ILD. Maximum parsimony analysis of all data partitions combined results in a single tree, and is a unique hypothesis of phylogenetic relationships in the Channichthyidae. In particular, this hypothesis resolves the phylogenetic relationships of at least two species (Channichthys rhinoceratus and Chaenocephalus aceratus), for which there was no consensus among the previous phylogenetic hypotheses. The combined data partition dataset provides substantial statistical power to discriminate among alternative hypotheses of channichthyid relationships. These findings suggest the optimal strategy for investigating the phylogenetic relationships of channichthyids is one that uses all available phylogenetic data in analyses of combined data partitions.  相似文献   

5.
Animal mitochondrial DNA (mtDNA) is known to contain information about the genealogical relations among closely related species and is shown here to yield information about distant relations as well. Our results also draw attention to the need for caution in using third positions of codons for tree construction. This is evident from comparative studies of the cytochrome b gene in 13 species representing major groups within the order of perching birds (Passeriformes). Sequences of a 924 base-pair segment of this gene were obtained from each of these species via the polymerase chain reaction and a novel set of versatile primers. With a woodpecker sequence as an outgroup, trees that separate songbirds from other perching birds and resolve the ancient branch leading to songbirds were obtained utilizing the conservative first and second positions of codons. Analysis of positions within codons suggests that, for deep branches, the skewed base composition at the fast-changing third positions can result in phylogenetic disinformation, which conflicts with the information retained in the first and second positions. The mitochondrial tree shows broad concordance with that based on hybridization of nuclear DNA; however, parsimony and maximum likelihood methods suggest a close kinship between thrushes and Australian babblers, in agreement with the traditional morphological classification.  相似文献   

6.
The cyprinid fish fauna of North America is relatively large, with approximately 300 species, and all but one of these are considered phoxinins. The phylogenetic relationships of the North American phoxinins continue to pose difficulties for systematists. Results of morphological analyses are not consistent owing to differences interpreting and coding characters. Herein, we present phylogenetic analyses of mitochondrial 12S and 16S ribosomal RNA sequence data for representatives of nearly all genera of North American phoxinins. The data were analysed using parsimony, weighted parsimony, maximum likelihood and bayesian analyses. Results from weighted parsimony, likelihood and the bayesian analysis are largely consistent as they all account for differing substitution rates between transitions and transversions. Several major clades within the fauna can be recognized and are strongly supported by all analyses. These include the western clade, creek chub–plagopterin clade and the open posterior myodome clade. The shiner clade is nested in the open posterior myodome clade and is the most species-rich clade of North American phoxinins. Relationships within this clade were not well resolved by our analyses. This may reflect the inability of the mitochondrial RNA genes to resolve recent speciation events or taxon sampling within the shiner clade.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 139 , 63–80.  相似文献   

7.
To provide a robust phylogeny of Pezizaceae, partial sequences from two nuclear protein-coding genes, RPB2 (encoding the second largest subunit of RNA polymerase II) and beta-tubulin, were obtained from 69 and 72 specimens, respectively, to analyze with nuclear ribosomal large subunit RNA gene sequences (LSU). The three-gene data set includes 32 species of Peziza, and 27 species from nine additional epigeous and six hypogeous (truffle) pezizaceous genera. Analyses of the combined LSU, RPB2, and beta-tubulin data set using parsimony, maximum likelihood, and Bayesian approaches identify 14 fine-scale lineages within Pezizaceae. Species of Peziza occur in eight of the lineages, spread among other genera of the family, confirming the non-monophyly of the genus. Although parsimony analyses of the three-gene data set produced a nearly completely resolved strict consensus tree, with increased confidence, relationships between the lineages are still resolved with mostly weak bootstrap support. Bayesian analyses of the three-gene data, however, show support for several more inclusive clades, mostly congruent with Bayesian analyses of RPB2. No strongly supported incongruence was found among phylogenies derived from the separate LSU, RPB2, and beta-tubulin data sets. The RPB2 region appeared to be the most informative single gene region based on resolution and clade support, and accounts for the greatest number of potentially parsimony informative characters within the combined data set, followed by the LSU and the beta-tubulin region. The results indicate that third codon positions in beta-tubulin are saturated, especially for sites that provide information about the deeper relationships. Nevertheless, almost all phylogenetic signal in beta-tubulin is due to third positions changes, with almost no signal in first and second codons, and contribute phylogenetic information at the "fine-scale" level within the Pezizaceae. The Pezizaceae is supported as monophyletic in analyses of the three-gene data set, but its sister-group relationships is not resolved with support. The results advocate the use of RPB2 as a marker for ascomycete phylogenetics at the inter-generic level, whereas the beta-tubulin gene appears less useful.  相似文献   

8.
We reanalysed Yang & Pattern's allozyme data, published in Auk in 1981, of Darwin's finches with a variety of distance and cladistic methods to estimate the phylogeny of the group. Different methods yielded different results, nevertheless there was widespread agreement among the distance methods on several groupings. First, the two species of Camarhynchus grouped near one another, but not always as a monophyletic group. Second, Cactospiza pallida and Platyspiza crassirostris formed a monophyletic group. Finally, all the methods (including parsimony) supported the monophyly of the ground finches. The three distance methods also found close relationships generally between each of two populations of Geospiza scandens, G. difficilis and G. conirostris. There is evidence for inconstancy of evolutionary rates among species. Results from distance methods allowing for rate variation among lineages suggest three conclusions which differ from Yang and Patton's findings. First, the monophyletic ground finches arose from the paraphyletic tree finches. Yang and Patton found that the ground finches and tree finches were sister monophyletic taxa. Second, Geospiza scandens appears to be a recently derived species, and not the most basal ground finch. Third, G. fuliginosa is not a recently derived species of ground finch, but was derived from an older split from the remaining ground finches. Most of these conclusions should be considered tentative both because the parsimony trees disagreed sharply with the distance trees and because no clades were strongly supported by the results of bootstrapping and statistical tests of alternative hypotheses. Absence of strong support for clades was probably due to insufficient data. Future phylogenetic studies, preferably using DNA sequence data from several unlinked loci, should sample several populations of each species, and should attempt to assess the importance of hybridization in species phylogeny.  相似文献   

9.
Nearly complete ribulose-1,5-bisphosphate carboxylase/ oxygenase (rbcL)sequences from 27 taxa of heterokont algae were determined and combined with rbcL sequences obtained from GenBank for four other heterokont algae and three red algae. The phylogeny of the morphologically diverse haterokont algae was inferred from an unambiguously aligned data matrix using the red algae as the root, Significantly higher levels of mutational saturation in third codon positions were found when plotting the pair-wise substitutions with and without corrections for multiple substitutions at the same site for first and second codon positions only and for third positions only. In light of this observation, third codon positions were excluded from phylogenetic analyses. Both weighted-parsimony and maximum-likelihood analyses supported with high bootstrap values the monophyly of the nine currently recognized classes of heterokont algae. The Eustigmatophyceae were the most basal group, and the Dictyochophyceae branched off as the second most basal group. The branching pattern for the other classes was well supported in terms of bootstrap values in the weightedparsimony analysis but was weakly supported in the maximum-likelihood analysis (<50%). In the parsimony analysis, the diatoms formed a sister group to the branch containing the Chrysophyceae and Synurophyceae. This clade, charactetized by siliceous structures (frustules, cysts, scales), was the sister group to the Pelagophyceae/Sarcinochrysidales and Phaeo-/Xantho-/ Raphidophyceae clades. In the latter clade, the raphido-phytes were sister to the Phaeophyceae and Xanthophyceae. A relative rate test revealed that the rbcL gene in the Chrysophyceae and Synurophyceae has experienced a significantly different rate of substitutions compared to other classes of heterokont algae. The branch lengths in the maximum-likelihood reconstruction suggest that these two classes have evolved at an accelerated rate. Six major carotenoids were analyzed cladistically to study the usefulness of carotenoid pigmentation as a class-level character in the heterokont algae. In addition, each carotenoid was mapped onto both the rbcL tree and a consensus tree derived from nuclear-encoded small-subunit ribosomal DNA (SSU rDNA) sequences. Carotenoid pigmentation does not provide unambiguous phylogenetic information, whether analyzed cladistically by itself or when mapped onto phylogenetic trees based upon molecular sequence data.  相似文献   

10.
Lee MS  Worthy TH 《Biology letters》2012,8(2):299-303
The widespread view that Archaeopteryx was a primitive (basal) bird has been recently challenged by a comprehensive phylogenetic analysis that placed Archaeopteryx with deinonychosaurian theropods. The new phylogeny suggested that typical bird flight (powered by the front limbs only) either evolved at least twice, or was lost/modified in some deinonychosaurs. However, this parsimony-based result was acknowledged to be weakly supported. Maximum-likelihood and related Bayesian methods applied to the same dataset yield a different and more orthodox result: Archaeopteryx is restored as a basal bird with bootstrap frequency of 73 per cent and posterior probability of 1. These results are consistent with a single origin of typical (forelimb-powered) bird flight. The Archaeopteryx-deinonychosaur clade retrieved by parsimony is supported by more characters (which are on average more homoplasious), whereas the Archaeopteryx-bird clade retrieved by likelihood-based methods is supported by fewer characters (but on average less homoplasious). Both positions for Archaeopteryx remain plausible, highlighting the hazy boundary between birds and advanced theropods. These results also suggest that likelihood-based methods (in addition to parsimony) can be useful in morphological phylogenetics.  相似文献   

11.
Deschampsia antarctica E. Desv. is the only monocot in the Antarctic floristic zone. We evaluated the phylogenetic relationships of Deschampsia antarctica to other grasses using parsimony as the optimality criterion. Five different sets of gap, transversion and transitions costs were explored to analyze the effect of parameter choice on the phylogenetic results. Both internal transcribed spacers (ITS1 and ITS2) and the 5.8S subunit of nuclear ribosomal DNA were included in the analysis. A total of 43 species were analyzed including seven species of Deschampsia. Deschampsia antarctica forms a well supported group with five species of Deschampsia. Deschampsia does not appear monophyletic as D. flexuosa (L.) Trin. is not included in this clade. The clade to which D. antarctica belongs is sister to some Aveneae in all analyses. This study is the first contribution that evaluates the phylogenetic position of D. antarctica in relation to other species of Deschampsia.  相似文献   

12.
Phylogenetic studies based on different types and treatment of data provide substantially conflicting hypotheses of relationships among seed plants. We conducted phylogenetic analyses of sequences of two highly conserved chloroplast genes, psaA and psbB, for a comprehensive taxonomic sample of seed plants and land plants. Parsimony analyses of two different codon position partitions resulted in well-supported, but significantly conflicting, phylogenetic trees. First and second codon positions place angiosperms and gymnosperms as sister clades and Gnetales as sister to Pinaceae. Third positions place Gnetales as sister to all other seed plants. Maximum likelihood trees for the two partitions are also in conflict. Relationships among the main seed plant clades according to first and second positions are similar to those found in parsimony analysis for the same data, but the third position maximum likelihood tree is substantially different from the corresponding parsimony tree, although it agrees partially with the first and second position trees in placing Gnetales as the sister group of Pinaceae. Our results document high rate heterogeneity among lineages, which, together with the greater average rate of substitution for third positions, may reduce phylogenetic signal due to long-branch attraction in parsimony reconstructions. Whereas resolution of relationships among major seed plant clades remains pending, this study provides increased support for relationships within major seed plant clades.  相似文献   

13.
Relationships among the five groups of extant seed plants (cycads, Ginkgo, conifers, Gnetales, and angiosperms) remain uncertain. To explore relationships among groups of extant seed plants further and to attempt to explain the conflict among molecular data sets, we assembled a data set of four plastid (cpDNA) genes (rbcL, atpB, psaA, and psbB), three mitochondrial (mtDNA) genes (mtSSU, coxI, and atpA), and one nuclear gene (18S rDNA) for 19 exemplars representing the five groups of living seed plants. Analyses of the combined eight-gene data set (15?772 base pairs/taxon) with maximum parsimony (MP), maximum likelihood (ML), and Bayesian approaches reveal a gymnosperm clade that is sister to angiosperms. Within the gymnosperms, a conifer clade includes Gnetales as sister to Pinaceae. Cycads and Ginkgo are either successive sisters to this conifer clade (including Gnetales) or a clade that is sister to conifers and Gnetales. All analyses of the mtDNA partition and ML analyses of the nuclear partition yield very similar topologies. However, MP analyses of the combined cpDNA genes place Gnetales as sister to all other seed plants with strong bootstrap support, whereas ML and Bayesian analyses of the cpDNA data set place Gnetales as sister to Pinaceae. Maximum parsimony and ML analyses of first and second codon positions of the cpDNA partiation also place Gnetales as sister to Pinaceae. In contrast, MP analyses of third codon positions place Gnetales as sister to other seed plants, although ML analyses of third codon positions place Gnetales with Pinaceae. Thus, most of the discrepancies in seed plant topologies involve third codon positions of cpDNA genes. The likelihood ratio (LR) and Shimodaira-Hasegasa (SH) tests were applied to the cpDNA data. The preferred topology based on the LR test is that Gnetales are sister to Pseudotsuga. The SH test based on first and second codon and all three codon positions indicated that there is no significant difference between the best topology (Gnetales sister to Pseudotsuga) and Gnetales sister to a conifer clade. However, there is a significant difference between the best topology and topologies in which Gnetales are sister to the rest of the seed plants or Gnetales sister to angiosperms.  相似文献   

14.
The monophyly and phylogeny of the adaptive radiation of Hawaiian finches (Fringillidae: Drepanidini; honeycreepers, auct.) were studied using parsimony analysis of comparative osteology, combined with Templeton (Wilcoxon signed‐ranks) tests of alternative phylogenetic hypotheses. Eighty‐four osteological characters were scored in 59 terminal taxa of drepanidines, including 24 fossil forms, and in 30 outgroup species. The optimal phylogenetic trees show considerable agreement, and some conflict, with independently derived ideas about drepanidine evolution. The monophyly of a large Hawaiian radiation was upheld, although one fossil taxon from Maui fell outside the drepanidine clade. The finch‐billed species were placed as basal drepanidine taxa, and continental cardueline finches (Carduelini) were identified as the radiation's closest outgroups. The study found anatomical as well as phylogenetic evidence that the radiation had a finch‐billed ancestor. The optimal trees identify the red‐and‐black plumage group as a clade, and suggest that the tubular tongue evolved only once in the radiation. Because comparative osteology provides too few characters to strongly support all the nodes of the tree, it was helpful to evaluate statistical support for alternative hypotheses about drepanidine relationships using the Templeton test. Among the alternatives that received significant statistical support are a relationship of the drepanidines with cardueline finches rather than with the Neotropical honeycreepers (Thraupini), classification of the controversial genera Paroreomyza and Melamprosops as drepanidines, and a secondary loss of the tubular tongue in Loxops mana. The hypothesis of monophyly for all the Hawaiian taxa in the study was not rejected statistically. The study provides a framework for incorporating morphological and palaeontological information in evolutionary studies of the Drepanidini. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 141 , 207–255.  相似文献   

15.
Sorhannus U  Fox MG 《Protist》2012,163(2):252-262
A Bayesian analysis of a seven gene data set was conducted to reconstruct phylogenetic relationships among a sample of centric and pennate diatoms and to test alternative hypotheses about the closest living relative of Bacillariophyceae. A lineage, composed of two Attheya species, was inferred to share the most recent common ancestor with Bacillariophyceae--a relationship that was also corroborated by the combined parsimony analysis. All competing hypotheses about the closest living relative of Bacillariophyceae were rejected because 100% of the trees in the post-burn-in sample in the Bayesian analysis supported the Attheya-Bacillariophyceae clade. According to a partitioned Bremer support analysis, the majority of the genes in the combined data matrix supported the Attheya--Bacillariophyceae relationship. The global topology of the phylogenetic tree indicated that a monophyletic group consisting of Thalassiosirales and Toxarium undulatum formed the deepest branch followed by a node uniting a clade composed of Bacillariophyceae/Attheya species and a lineage made up of Eucampia zoodiacus, Chaetocerotales, Lithodesmiales, Triceratiales, Biddulphiales and Cymatosirales. Except for the phylogenetic positions of Lithodesmiales, Thalassiosira sp and Skeletonema costatum, the optimal tree obtained from the combined parsimony analysis showed the same branching order of taxa as those seen in the consensus tree inferred from three independent Markov chain Monte Carlo analyses. Noteworthy findings are that Toxarium undulatum shares a strongly supported node with Thalassiosirales and that the genus Attheya is not a member of the Chaetocerotales lineage.  相似文献   

16.
Many molecule-based phylogenetic analyses find that the mammalian order Artiodactyla (even-toed ungulates) is paraphyletic unless cetaceans (whales, dolphins, and porpoises) are nested within it, a hypothesis that runs contrary to traditional morphology-based ideas. Here I present a total evidence analysis of this question based on 10 extant and 27 extinct taxa, using two character data partitions: (i) skeletal data and (ii) neontological data (soft morphology, retroposons, and DNA sequences [γ-fibrinogen, β-casein, and κ-casein and mt cytochrome b ]). A sensitivity analysis varying gap cost and transversion/transition ratio over nine parameters was implemented in the sequence alignment and in the parsimony analysis. The two data partitions are significantly incongruent, and the neontological data partition includes over six times as many characters as the osteological data partition. The osteological data partition, however, samples almost three times more taxa, taxa that cannot be sampled for neontological data because they are extinct. Osteological data resulted in artiodactyl monophyly, and neontological data resulted in artiodactyl paraphyly over all nine parameters. In the total evidence analysis the parameter most congruent with the overall character data is unresolved as to the sister taxon of Cetacea; however, the Adams consensus tree favors the neontological result. Extinction of almost 90% of the clade and particularly poor knowledge of stem taxa at the base of Artiodactyla make resolution of conflicting molecule- and morphology-based phylogenetic signals particularly difficult.  相似文献   

17.
To infer the monophyletic origin and phylogenetic relationships of the order Desmoscolecida, a unique and puzzling group of mainly free-living marine nematodes, we newly determined nearly complete 18S rDNA sequences for six marine desmoscolecid nematodes belonging to four genera (Desmoscolex, Greeffiella, Tricoma and Paratricoma). Based on the present data and those of 72 nematode species previously reported, the first molecular phylogenetic analysis focusing on Desmoscolecida was done by using neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods. All four resultant trees consistently and strongly supported that the family Desmoscolecidae forms a monophyletic group with very high node confidence values. The monophyletic clade of desmocolecid nematodes was placed as a sister group of the clade including some members of Monhysterida and Araeolaimida, Cyartonema elegans (Cyartonematidae) and Terschellingia longicaudata (Linhomoeidae) in all the analyses. However, the present phylogenetic trees do not show any direct attraction between the families Desmoscolecidae and Cyartonematidae. Within the monophyletic clade of the family Desmoscolecidae in all of the present phylogenetic trees, there were consistently observed two distinct sub-groups which correspond to the subfamilies Desmoscolecinae [Greeffiella sp. + Desmoscolex sp.] and Tricominae [Paratricoma sp. + Tricoma sp].  相似文献   

18.
基于核基因c-mos的鸫亚科部分鸟类系统发生关系   总被引:1,自引:1,他引:0  
采用分子系统学方法对鸫亚科Turdinae 11属21种鸟类的核基因c-mos进行了系统发生分析.所测序列经对位排列后共572个位点,其中核苷酸变异位点111个,简约信息位点71个.以太平鸟Bombycilla garrulus作外群,采用邻接法、最大简约法和最大似然法分别构建其系统发生树.重建的系统发生树显示:所研究鸫亚科21种鸟类分成2个支系,第1个支系包括鸫属Turdus和地鸫属Zoothera.第2个支系包括红尾鸲属Phoenicurus、矶鸫属Monticola、水鸲属Rhyacornis、鸲属Tarsiger、溪鸲属Chainarrornis、石即鸟属Saxicola、燕尾属Enivurus、歌鸲属Luscinia和鹊鸲属Copsychus.红尾鸲属为并系类群,水鸲属和溪鸲属聚到这一支系;歌鸲属与燕尾属互为姐妹群,再与鸲属聚合构成另一支系;宝兴歌鸫Turdus mupinensis独立于鸫属及地鸫属之外,形成单独一个分支.  相似文献   

19.
A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mitochondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocytozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relationships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi, is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis. Explicit hypothesis testing supported these conclusions.  相似文献   

20.
Kriukov AP  Odati S 《Genetika》2000,36(9):1262-1268
To establish phylogenetic relationships within the corvine birds at the interspecific and intergeneric levels, the sequence of the mitochondrial DNA cytochrome b gene was analyzed. The NJ, UPGMA, and MP trees showed similar clustering. Relationships between the jungle crow, on the one hand, and the rook and Australian raven, on the other hand, were closer than between the jungle crow and the hooded and carrion crows. Mitochondrial genome of Australian raven displayed the closest similarity to the ancestral genome of the genus Corvus. Populations inhabiting the eastern part of the carrion crow C. corone orientations area were statistically significantly subdivided into three lineages. These data also confirmed the hypothesis on the location of the carrion crow ancestral lineage in the southeastern part of the area. In general, the transition and transversion substitution levels, their relationships, and distribution over codon positions were similar to that already reported for birds. Synonymous transitions in the third codon position were the prevailing substitution type. Using standard calibration scales, the time of divergence between species and genera within the corvine family was estimated to be 3.1-4 and 3.8-8.8 Myr, respectively. The divergence time between the examined corvine birds and birds of paradise constituted from 8 to 10 Myr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号