首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The size structure transition matrices ofPicea jezoensis, Picea glehnii andAbies sachalinensis of a sub-boreal forest in Hokkaido, northern Japan were constructed based on the demography of each species (Picea jezoensis andPicea glehnii were dealt with together asPicea) during a 4-year period. Two types of matrices, density-independent and density-dependent population dynamics models, were investigated for evaluating the ‘waiting pattern’ betweenPicea spp. andA. sachalinensis. For the density-dependent model, it was assumed that the demographic traits of understory trees, the recruitment rate, the understory mortality rate and the transition probability from the understory to canopy stages, were regulated by the one-sided competitive effect of canopy trees. The observed size structure ofPicea was almost consistent with the stationary size structure obtained in both the density-independent and the density-dependent models, whereas the observed size structure ofA. sachalinensis was not realized in the two models. The effects of both the transition probability from the understory to canopy stages and the recruitment rate on the dynamics of canopy trees were investigated. ForPicea, two parameters—recruitment rate (e i ) and transition probability from the understory to canopy stages-exponentially affected the dynamics of canopy trees. In contrast, forAbies sachalinensis, the two parameters affected linearly the dynamics of canopy trees. In conclusion, the population dynamics ofPicea andA. sachalinensis was determined by the parameters of the recruitment rate and the transition probability from the understory to canopy stages, relating to waiting patterns of understory trees for future gap formation. InPicea, the demographic parameters of understory trees intensively regulated the dynamics of canopy trees if compared withA. sachalinensis, suggesting that the performance of understory trees plays a key role in the population dynamics ofPicea. This reflects the growth pattern of understory trees in the regeneration of the two species.  相似文献   

2.
The crown shape and the mode of competition between saplings(<2m in height) of the two conifers,Picea jezoensis andAbiessachalinensis, of a sub-boreal forest, northern Japan, wereinvestigated based on the diffusion model. A model for individualsapling growth considering both inter- and intraspecific competitionwas developed. The effect of species-specific crown shape onthe sapling growth and competition of the two species were examined.PiceajezoensisandAbies sachalinensissaplings had deep conic and shallowflat crowns, respectively.Picea jezoensishad more foliage massthanAbies sachalinensisof the same sapling mass. It was suggestedthat thePicea jezoensissapling has a high cost for assimilation–respirationbalance under dark conditions of closed canopies, whereas theAbiessachalinensissapling maintains effective assimilation even undersuppressed conditions. Widely spaced saplings, such as gap successors,ofPicea jezoensishad a greater relative growth rate (a0) thanwidely spacedAbies sachalinensis. The crown shape of saplingsof the two species shows different adaptations for efficientpersistence in the sub-boreal forest. Saplings ofPicea jezoensisandAbies sachalinensiswere not uniformlydistributed, but aggregated in different sites as the saplingsgrew, indicating habitat segregation between the two speciesat the sapling stage. Intraspecific sapling competition wasone-sided in each of the two conifers. Interspecific saplingcompetition was one-sided in the direction only fromAbies sachalinensistoPiceajezoensis. Therefore, asymmetric competition prevailed at thesapling stage of the two species. These results contrast withweak symmetric competition or the almost absence of competitionbetween trees (2m in height) of the two species (Kubota andHara,Annals of Botany76: 503–512, 1995). The mode of competitionchanged with the life-history stage from the sapling (intenseand asymmetric) to the tree (weak and symmetric or almost absent). In conclusion (1) asymmetric and intense competition betweensaplings brought about habitat segregation between the dominantspecies,Picea jezoensisandAbies sachalinensis, in the earlystage of life-history; (2) therefore, the coexistence ofPiceajezoensisandAbies sachalinensisof the sub-boreal forest wasdetermined by the boundary conditions for the growth dynamicsof the trees, as segregation of establishment sites resultingfrom asymmetric and intense competition between saplings; (3)then the species composition of the forest was maintained byweak symmetric competition or the almost absence of competitionbetween trees. Crown shape; growth dynamics; species coexistence; habitat segregation; diffusion model  相似文献   

3.
Stand development and regeneration were studied during a 33-year period (1965-1998) in a 1-ha plot in a seral Picea glehnii forest in northern Japan. P. glehnii was mono-dominant in the upper canopy layer, but its understory trees were rarely found in 1965. Other species were scarcely observed in 1965. Many recruited saplings of Abies sachalinensis which had grown to > 5 cm diameter at breast height (DBH) by 1998 had become dominant in the understory layer. Mortality of P. glehnii canopy trees was low. Therefore, the stand basal area increased during the census period due to the growth of surviving canopy trees. Stand development brought about intense competition among trees by increasing local crowding for each tree, and promoted dominance of larger trees and suppression of smaller trees. Although growth rates of understory trees of the two conifers decreased with the increase in local crowding, the growth rate of A. sachalinensis was consistently higher than that of P. glehnii at all extents of local crowding. The recruitment rate (growing to 5 cm DBH) of the two conifers was less affected by local crowding. However, the number of recruits of P. glehnii was only about a quarter of that of A. sachalinensis during the census period because the regeneration of P. glehnii was largely restricted to fallen logs and within 1 m of the base of any live tree > 20 cm DBH. Therefore, our long-term study suggests that A. sachalinensis will dominate over P. glehnii in the seral forest because of higher recruitment and growth rates of the former than the latter in the understory.An erratum to this article can be found at  相似文献   

4.
The regeneration process of a subalpine coniferous forest, a mixed forest ofTsuga diversifolia (dominant species),Abies veitchii, Abies mariessi, andPicea jezoensis var.hondoensis, was studied on the basis of annual ring data. The age class distribution was discontinuous and four age groups occurred in the study plot (30m×30m). The canopy layer was a mosaic of patches (83.8–133.7 m2 patch area), which had different mean ages. The recruitment of canopy trees was carried out only by advance regeneration in the plot. The diameter growth ofAbies andPicea exceeded diameter growth ofTsuga in the gap.Abies lived for 200–300 years and their trunks were susceptible to heart rot.Picea lived for 300–400 years andTsuga for more than 400 years. The regeneration process derived from the analysis of the plot consisted of three phases leading to the development of a even-aged patch; (1) the establishment of saplings before a gap opening, (2) the opening of a gap in the canopy and repair of the canopy by advance regenerated saplings dominated by rapid growth species,Abies andPicea, and (3) the dying off of canopy trees as each species reached the end of its life-span, resulting in pure patches of long-livedTsuga.  相似文献   

5.
Forest communities dominated byPicea jezoensis (Yezo spruce) are described from across their entire distributional range in eastern Asia, including the territories of the Russian Far East and Japan. A total of 476 relevés are used representing the following dominant types of spruce forests: pureP. jezoensis, mixedP. jezoensis andAbies sachalinensis, mixedP. jezoensis andAbies nephrolepis, and purePicea glehnii communities. The vegetation is classified into 11 associations, 2 community types, 6 subassociations, 25 variants and 8 subvariants. Nine associations, including theAsaro heterotropoidis-Abietetum sachalinensis, Weigelo middendorffianae-Piceetum jezoensis, Lysichito-Piceetum glehnii, Swido albae-Piceetum obovatae, Oplopanaco elati-Piceetum jezoensis, Philadelpho tenuifolii-Piceetum jezoensis, Vaccinio-Piceetum jezoensis, Rhododendro aurei-Piceetum jezoensis, andMoneseto uniflorae-Piceetum jezoensis, are described for the first time. The ecology and structure of all communities are described and their syntaxonomy discussed. The communities are placed in three alliances,Piceion jezoensis, Abieti nephrolepidis-Piceion jezoensis andPino pumilae-Piceion jezoensis, all. nov. All of the communities described are considered to belong to the orderAbieti-Piceetalia of the classVaccinio-Piceetea.  相似文献   

6.
To evaluate the effects of canopy gaps and forest floor microsites (soil, fallen logs, root-mounds, buttresses and stumps) on regeneration of subalpine forests, the gap regeneration and seedling occurrence of conifers (Abies mariesii, Abies veitchii, Picea jezoensis var. hondoensis and Tsuga diversifolia) were studied in two stands of a subalpine old-growth forest, central Japan. The percentage of gap area to total surveyed area was 11.2–11.3% in the stands. Gap regeneration was not common for P. jezoensis var. hondoensis and T. diversifolia. In contrast, gap regeneration by advanced regeneration was relatively common for Abies. Seedling occurrence of P. jezoensis var. hondoensis and T. diversifolia was restricted on elevated surfaces such as stumps and root-mounds, while Abies seedlings could occur on soil as well as on elevated surfaces. Rotten stumps were the most favorable microsites for conifer seedling occurrence, which covered small area in the forest floor. Although canopy gaps were not always favorable for seedling occurrence, all conifer seedlings were larger under canopy gaps than under closed canopy. Canopy gaps and forest floor microsites clearly affected seedling occurrence and growth of conifers. This suggests that regeneration of conifers is related to the difference of growth advantage under canopy gaps and favorable microsites for seedling occurrence.  相似文献   

7.
Regeneration of natural forests was studied in the Nakagawa Experiment Forest of Hokkaido University using age distribution surveys made by the clear felling method. In Plot 1 (30 m × 65 m),Abies sachalinensis dominated the canopy layer but there were also a fewBetula ermanii trees.Sasa senanensis densely covered the forest floor. Most of the canopy trees were from 122 to 195 years old. Seedlings younger than 50 years old ofA. sachalinensis were found on fallen logs and root bases. There were, however, few trees from 50 to 120 years old. The present canopy trees seemed to have regenerated after competitive pressure from old canopy andSasa disappeared 180 years ago. Plot 2 (50 m × 100 m) on serpentinite soil was dominated byPicea glehnii. Sasa kulirensis covered the floor but not as densely asS. senanensis in Plot 1. The ages ofP. glehnii ranged from 1 to 586 years old, and the age distribution ofA. sachalinensis was L-shaped. A small gap in the canopy formed about 290 years ago, and it gradually extended. Conifers regenerated continuously in the extending gap butB. ermanii did not. One hundred thirty years ago, part of Plot 2 was again destroyed andA. sachalinensis andB. ermanii regenerated. Thus, two types of regeneration were found. One regenerated both conifers andBetula after a sudden disturbance of canopy layer or death ofSasa, and the other, under an extending gap, regenerated only conifers.  相似文献   

8.
Stand structure and spatial distribution of Picea jezoensis (Siebold et Zucc.) Carrière on Mt. Gyebang, Korea was investigated to provide information on the structural characteristics and the maintenance of P. jezoensis population in northern temperate mixed coniferous forests. Height and diameter at breast height (DBH) distribution, age, growth, and spatial distribution patterns of P. jezoensis were examined in thirty nine 100-400 m2 quadrats or circular plots. The overall stand structure attributes in the study sites are stem density of 709 trees ha−1, a mean DBH of 12.8 cm, and a mean height of 5.6 m, with reverse J shapes of DBH and height distributions. The stem density of P. jezoensis population was 81 trees ha−1, a mean DBH of 20.7 cm, and a mean height of 9.1 m, showing bimodal-like shapes in age and DBH distributions. Several growth release periods implied that P. jezoensis stands experienced small disturbances. The radius of patches of similar-sized P. jezoensis in the variogram was equivalent with the height of the tallest trees, indicating that patches were established following the fall of trees in the upper canopy layer. Small windthrows in this region contributed to the maintenance of the P. jezoensis stand by releasing sapling growth and providing nursing logs and space for seedlings.  相似文献   

9.
Every other week over their second growing season, stem height, collar diameter, shoot and root dry masses, number of lateral roots and length of the tap root were measured on nursery grown seedlings ofAbies balsamea L. Mill.,Pinus banksiana Lamb.,Pinus resinosa Ait.,Picea mariana Mill. BSP andPicea glauca Moench Voss. Root elongation, branching and mycorrhizal development were also recorded.Given species showed distinct seasonal growth patterns. The rate and timing of maximum root growth (mg/dry weight/week) differed markedly between species.Except for the increase in height ofPinus banksiana, root and shoot growth were not negatively correlated.The results are discussed in relation to the performance of tree seedlings in the nursery.  相似文献   

10.
We studied the initial regenerative processes ofDistylium racemosum andPersea thunbergii, major canopy species, in an old-growth evergreen broad-leaved forest, Kagoshima, southwestern Japan. Although the two species coexisted, the patterns of seed production, seedling emergence, and sapling survival were different between them. During the observation (1989–1991),P. thunbergii produced large numbers of seeds in alternate years, whileD. racemosum had no mast year. The density of established seedlings was high and increased with mass seed production forP. thunbergii, but was fairly low forD. racemosum. The mortality of seedlings and saplings ofP. thunbergii was higher than that ofD. racemosum. In a closed stand, the sapling bank was maintained by dense seedling supply forP. thunbergii, and by extremely low mortality of individuals germinated before the beginning of observation forD. racemosum. Since saplings ofD. racemosum showed continuous height growth beneath the closed canopy, the possibility of recruitment into the upper layer seems to be high. The strategy ofP. thunbergii might be to wait for suitable conditions favoring sapling growth on various site by means of frequent and large seed productivity and wide dispersal of seeds. Thus both species might be able to coexist through environmental heterogeneity.  相似文献   

11.
The long-term changes in the frequencies ofPythium iwayamai andP. paddicum in upland- and flooded paddy-field soils were compared. The frequencies of both species fell in both soils within the first 6 months after they had been buried. After 36 and 48 months,P. iwayamai showed higher frequency thanP. Paddicum in upland-field soil, whileP. paddicum showed higher frequency thanP. iwayamai in paddy-field soil. These findings indicate respectively higher colonization ability to organic matters ofP. iwayamai in upland-field soil andP. paddicum in paddy-field soil.This study was partly supported by a Grant-in-Aid (no. 63560048) from the Ministry of Education, Science and Culture, Japan.  相似文献   

12.
The progress of growth of a subalpine youngAbies veitchii andA. mariesii forest during 25 years was analyzed on the basis of measurements of the processes of height growth of about 230 trees in a quadrat where the old canopy had been completely destroyed by a typhoon in 1959. The original forest floor sapling population had consisted of trees shorter than 2 m. Saplings grew faster after the breakage of the canopy than before,A. veitchii growing faster thanA. mariesii. During the 25 years of growth, a few well developed trees exceeded 6 m in height, while others remained around only 1 m or less. Some small trees, mostlyA. veitchii died at sites of high density. A bimodality in the distribution of tree height had developed with a trough at about 2.5 m, differentiating the trees into canopy and suppressed populations. Canopy trees grew with wide variation of rates, while most of the suppressed trees showed little recent growth. No difference was found in recent growth rates between the two canopyAbies species. Differences in height growth rates among individual canopy trees were analyzed on the basis of their horizontal crown overlapping. Competition models evaluating the difference in height between trees with overlapping crowns were shown to be effective. The height growth rate of a canopy tree appeared to be controlled by both the closely grown taller trees and the local density of trees including those shorter than the subject tree.  相似文献   

13.
In a mature mixed subalpine stand ofTsuga mertensiana andAbies amabilis, significantly higher Al levels were found in foliage, branch and root tissues ofT. mertensiana.Tsuga mertensiana had significant increases in Al, Ca and Mn levels with increasing foliage age. In current foliage,T. mertensiana had lower levels of Ca, similar levels of Mg and P, and higher levels of Mn thanA. amabilis. Both tree species had Cu and Fe present at higher levels in branch than foliage tissues. Fine roots had the highest concentrations of Al, Fe and Cu but the lowest Ca and Mn concentrations of all tissues analyzed. In the roots of both species, phloem tissues always had significantly higher Al levels than xylem. Fine roots (< 1 and 1–2 mm) ofT. mertensiana had higher Al levels than were found inA. amabilis. Roots greater than 2 mm in diameter exhibited no significant differences in Al levels in phloem or xylem tissue betweenA. amabilis andT. mertensiana. The two species show a clear difference in their ability to accumulate specific elements from the soil.  相似文献   

14.
The stand structure and disturbance history in a sub-boreal coniferous forest dominated byPicea jezoensis, Picea glehnii andAbies sachalinensis were investigated in four study plots set up in Taisetsuzan National Park, Japan. The effect of stand characteristics on the growth and mortality rates of understory trees was examined. Although all the stands showed inverse J-shape d.b.h. (diameter at breast height) distributions, the age structure and disturbance history differed amongst the stands. The stands with wide d.b.h. distribution (i.e. large CV and skewness) were more uneven-aged than those with narrow d.b.h. distribution (i.e. small CV and skewness). The disturbance-return interval based on the model of Hett and Loucks was 31 to 65 years. The gap ratio in the canopy was also different among the stands. These suggest that the variations in stand structure represent different occurrences of natural disturbances. Furthermore, the structural features such as size structure, canopy gap ratio and density of canopy trees also affected the growth dynamics of understory trees (≥2 m in height and <10 cm in diameter at breast height). The growth and mortality rates of understory trees changed with the canopy gap ratio and canopy tree density. The understory trees of stands with wide canopy d.b.h. distribution had higher growth and canopy recruitment rates than those of stands with narrow canopy d.b.h. distribution, contributing to the maintenance of continuous stand stratification. The understory trees of stands with narrow canopy d.b.h. distribution showed lower growth and higher mortality rates than those of stands with narrow canopy d.b.h. distribution, leading to the formation of a single-canopy structure. It is suggested that natural disturbance governs the regeneration process in the future by affecting the growth and mortality patterns of understory trees through the stand structure (size and age structure, canopy tree density, canopy gap ratio).  相似文献   

15.
Stand structure and regeneration pattern were examined inAbies sachalinensis coastal forest in northern Hokkaido. In the forest a similar phenomenon to the wave regeneration in subalpine forests has been found. Wave regeneration has been reported for montaneAbies forests in central Japan and North America. Differences and similarities between wave-type stands in this coastal forest and wave-regenerated montane forests were clarified. The shift of dead tree zone, stand structure and regeneration pattern in wave-type stands are the same as in subalpine wave-regenerated forests. High density of individuals is considered to be an internal factor which causes stand-level dieback and also enables the stands to persist in the severe environment in both forests. A difference between wave-regenerated forests andA. sachalinensis wave-type stands is the number of dead tree zones, which is only one in wave-type stands. Changes of regeneration patterns ofAbies sachalinensis with environmental gradient from seaward to inland were related to this difference.  相似文献   

16.
J. S. Song 《Plant Ecology》1992,98(2):175-186
Previous classification systems of the subalpine coniferous forests, belonging to the class Vaccinio-Piceetea Br.-Bl. 1939, in northeastern Asia were reviewed based on phytosociological data of Korea and Japan. A new order, the Abieti nephrolepidis-Piceetalia jezoensis was proposed for the subalpine coniferous forests in the continental part of northeastern Asia. Its distribution range and subordinate vegetation units are as follows:Order Abieti nephrolepidis-Piceetalia jezoensis ordo nov.In Korea:Alliance Abieti nephrolepidis-Piceion jezoensis Song 1991Association Taxo-Pinetum pumilae Song et Nakanishi 1985Association Thujo-Abietetum nephrolepidis Song 1991Association Abieti koreanae-Piceetum jezoensis Song 1991Alliance Abietion koreanae Song 1991Association Saso-Abietetum koreanae Song et Nakanishi 1985Association Betulo saitoanae-Abietetum koreanae (Song et Nakanishi 1985) em. Song 1991In northeast China and Maritime Province of Siberia, U.S.S.R.: (one separate alliance level or the same alliance as Abieti nephrolepidis-Piceion jezoensis)Formation Abies nephrolepis form. (Wu 1980)Formation Picea jezoensis-Abies nephrolepis form. (Wu 1980)Generally the Abieti nephrolepidis-Piceetalia jezoensis develops under the dry and cool continental climate and on the monophylogenic Dark Brown Conifer Soil Group derived mostly from granite and granitic gneiss. The subalpine or subarctic coniferous forests in Hokkaido, Sakhalin and Southern Kuriles may also belong to the Abieti nephrolepidis-Piceetalia jezoensis because of their floristic composition and the historical relevance of plant geography. The subordinate vegetation units are as follows:Alliance Piceion jezoensis Suz.-Tok. ex Jinno et Suzuki 1973Association Piceo-Abietetum sachalinensis Ohba 1967Association Piceetum glehnii Suz.-Tok. ex Miyawaki 1988The Abieti veitchii-Piceetalia jezoensis hondoensis Miyawaki et al. 1968 seems to fit only to the subalpine coniferous forests of Honshu and Shikoku of the Japanese Archipelago.  相似文献   

17.
NineArmillaria isolates obtained from the roots ofGaleola septentrionalis in Hokkaido were identified asA. jezoensis by means of mating tests. Cultures of these isolates were similar in colony morphology, mycelial growth and rhizomorph formation on each of malt extract-dextrose agar (MDA), potato-dextrose agar (PDA), andG. septentrionalis root extractdextrose agar (GDA) media, showing better mycelial growth and rhizomorph formation on GDA medium.  相似文献   

18.
We examined the effects of different life history strategies and tree competition on species coexistence in a northern coniferous forest. We investigated the growth and demography of trees with stems ≥1 cm dbh in a 2-ha study plot in the Taisetsu Mountains of northern Japan. Three species, Abies sachalinensis, Picea jezoensis, and Picea glehnii, were found to be dominant in the forest. A. sachalinensis was the most dominant species in the understory, while the two Picea spp. were more abundant in the larger dbh size classes. The turnover rate of A. sachalinensis was about twice that of the Picea spp. The relative growth rate of understory trees in each species did not differ between different canopy conditions (closed canopy or canopy gap). The competitive advantage between A. sachalinensis and P. glehnii switched as they grew from understory (A. sachalinensis superior competitor) to canopy trees (P. glehnii superior competitor). Meanwhile, A. sachalinensis and P. jezoensis exhibited different environmental preferences. We propose that reversal in competitive superiority between different growth stages and trade-off between longevity and turnover are more important factors to promote their coexistence than regeneration niche differentiation related to canopy gaps in this sub-boreal coniferous forest.  相似文献   

19.
Abstract. We focused on community boundaries in a sub‐alpine forest landscape in the Shiretoko Peninsula, northern Japan. Gradient‐directed transects were conducted on the northwestern slope (ranging 500–600 m a.s.l.) of Mount On'nebetsu (1331 m), where complex topography was formed by past landslides. Pioneer Picea glehnii made up a mosaic of pure stands related to landslides. Structural and compositional changes from P. glehnii pure stands to P. glehnii and Abies sachalinensis mixed stands were characterized by ca. 20 m transitional zones over the landscape. Stand density of the species changed across boundaries. A. sachalinensis preferred less undulated slopes with deep soil and P. glehnii preferred undulated rocky sites. Positive spatial associations between overstorey‐understorey P. glehnii were found at undulated core parts of P. glehnii pure stands. Short‐lived A. sachalinensis grew faster to the smaller maximum size than long‐lived P. glehnii. Undulated topography controlled the increase of A. sachalinensis and provided regeneration sites for P. glehnii, which prevented the general trend of canopy replacement from P. glehnii to late‐successional A. sachalinensis. However, the locations of current boundaries were not accordant with the topographic changes in the meso‐scale landscape. Initial P. glehnii pure stands would extend to larger areas if current patterns reflect vegetation recovery since the last landslide. P. glehnii pure stands with accurate boundaries were not maintained by topographic complexity, but were dynamically arranged by the one‐sided canopy replacements from P. glehnii to A. sachalinensis at less undulated slopes in the sub‐alpine forest landscape.  相似文献   

20.
Thallium sulphate inhibited microbial growth, withBacillus megaterium KM, more sensitive to the metal thanSaccharomyces cerevisiae andEscherichia coli. Inhibition ofB. megaterium KM andS. cerevisiae, but not ofE. coli, was alleviated by increasing the potassium concentration of the medium; inhibition of respiration ofS. cerevisiae, but not ofE. coli, was similarly alleviated. Thallium was rapidly bound, presumably to cell surfaces, byS. cerevisiae andE. coli, and was progressively accumulated by energy-dependent transport systems (probably concerned primarily with potassium uptake) with both organisms. Thallium uptake kinetics suggested more than one transport system operated in yeast, possibly reflecting a multiplicity of potassium transport systems. ApparentK m andK i values for competitive inhibition of thallium uptake by potassium indicatedS. cerevisiae to have a higher affinity for thallium uptake than for potassium, whileE. coli had a transport system with a higher affinity for potassium than for thallium. The likely systems for thallium transport are discussed. A mutant ofE. coli with tenfold decreased sensitivity to thallium was isolated and apparently effected surface binding of thallium in amounts equivalent to the wild type organism, but showed no subsequent uptake and accumulation of the metal from buffer, even though it was able to accumulate potassium to normal intracellular concentrations during growth. Abbreviations: Metal are referred to by their recognised atomic symbols (e.g. TI = Thallium; K = potassium; Co = cobalt)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号