首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cao D  Lin Y  Cheng CL 《The Plant cell》2000,12(2):199-211
The chlorate-resistant mutant cr88 is defective in photomorphogenesis, as shown by the phenotypes of long hypocotyls in red light and yellow cotyledons under all light conditions. A subset of light-regulated genes is expressed at subnormal levels in cr88. To analyze further the role that CR88 plays in photomorphogenesis, we investigated the genetic interactions between cr88 and mutants of two other loci affecting photomorphogenesis, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and LONG HYPOCOTYL5 (HY5). COP1 represses the expression of light-regulated genes in the dark, and HY5 inhibits hypocotyl elongation in the light. Using morphological, cellular, and gene expression criteria for epistasis analyses to position CR88 in the genetic hierarchy of the photomorphogenesis pathway, we determined that CR88 acts downstream of COP1 but in a branch separate from HY5. In the course of our analysis, we discovered that light causes extensive destruction of plastids in dark-grown cop1 seedlings and that cr88 prevents this destruction.  相似文献   

2.
3.
L H Ang  X W Deng 《The Plant cell》1994,6(5):613-628
Previous studies suggested that the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) gene product represses photomorphogenic development in darkness and that light signals reverse this action. In this report, we used genetic analysis to investigate the regulatory hierarchical relationship of COP1 and the loci encoding the photoreceptors and other signaling components. Our results showed that cop1 mutations are epistatic to the long hypocotyl mutations hy1, hy2, hy3, and hy4, suggesting that COP1 acts downstream of the phytochromes and a blue light receptor. Although epistasis of a putative null cop1-5 mutation over a hy5 mutation implied that COP1 acts downstream of HY5, the same hy5 mutation can suppress the dark photomorphogenic phenotypes (including hypocotyl elongation and cotyledon cellular differentiation) of the weak cop1-6 mutation. This, and other allele-specific interactions between COP1 and HY5, may suggest direct physical contact of their gene products. In addition, the synthetic lethality of the weak deetiolated1 (det1) and cop1 mutations and the fact that the cop1-6 mutation is epistatic to the det1-1 mutation with respect to light control of seed germination and dark-adaptative gene expression suggested that DET1 and COP1 may act in the same pathway, with COP1 being downstream. These results, together with previous epistasis studies, support models in which light signals, once perceived by different photoreceptors, converge downstream and act through a common cascade(s) of regulatory steps, as defined by DET1, HY5, COP1, and likely others, to derepress photomorphogenic development.  相似文献   

4.
Wild-type Arabidopsis seedlings are capable of following two developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. Screening of Arabidopsis mutants for constitutive photomorphogenic development in darkness resulted in the identification of three new loci designated COP8, COP10, and COP11. Detailed examination of the temporal morphological and cellular differentiation patterns of wild-type and mutant seedlings revealed that in darkness, seedlings homozygous for recessive mutations in COP8, COP10, and COP11 failed to suppress the photomorphogenic developmental pathway and were unable to initiate skotomorphogenesis. As a consequence, the mutant seedlings grown in the dark had short hypocotyls and open and expanded cotyledons, with characteristic photomorphogenic cellular differentiation patterns and elevated levels of light-inducible gene expression. In addition, plastids of dark-grown mutants were defective in etioplast differentiation. Similar to cop1 and cop9, and in contrast to det1 (deetiolated), these new mutants lacked dark-adaptive change of light-regulated gene expression and retained normal phytochrome control of seed germination. Epistatic analyses with the long hypocotyl hy1, hy2, hy3, hy4, and hy5 mutations suggested that these three loci, similar to COP1 and COP9, act downstream of both phytochromes and a blue light receptor, and probably HY5 as well. Further, cop8-1, cop10-1, and cop11-1 mutants accumulated higher levels of COP1, a feature similar to the cop9-1 mutant. These results suggested that COP8, COP10, and COP11, together with COP1, COP9, and DET1, function to suppress the photomorphogenic developmental program and to promote skotomorphogenesis in darkness. The identical phenotypes resulting from mutations in COP8, COP9, COP10, and COP11 imply that their encoded products function in close proximity, possibly with some of them as a complex, in the same signal transduction pathway.  相似文献   

5.
6.
7.
8.
9.
T W McNellis  K U Torii    X W Deng 《The Plant cell》1996,8(9):1491-1503
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is an essential regulatory gene that plays a role in light control of seedling development in Arabidopsis. The COP1 protein possesses three recognizable structural domains: a RING finger zinc binding domain near the N terminus, followed by a coiled-coll domain and a domain with WD-40 repeats in the C-terminal half. To determine whether COP1 acts specifically as a light-inactivable repressor of photomorphogenic development and to elucidate the functional roles of the specific structural domains, mutant cDNAs encoding the N-terminal 282 amino acids (N282) of COP1 were expressed and analyzed in transgenic plants. High-level expression of the N282 fragment caused a dominant-negative phenotype similar to that of the loss-of-function cop1 mutants. The phenotypic characteristics include hypersensitivity of hypocotyl elongation to inhibition by white, blue, red, and far-red light stimuli. In the dark, N282 expression led to pleiotropic photomorphogenic cotyledon development, including cellular differentiation, plastid development, and gene expression, although it has no significant effect on the hypocotyl elongation. However, N282 expression had a minimal effect on the expression of stress- and pathogen-inducible genes. These observations support the hypothesis that COP1 is directly involved in the light control of seedling development and that it acts as a repressor of photomorphogenesis. Further, the results imply that the N282 COP1 fragment, which contains the zinc binding and colled-coil domains, is capable of interacting with either downstream targets or with the endogenous wild-type COP1, thus interfering with normal regulatory processes. The fact the N282 is able to interact with N282 and full-length COP1 in yeast provided evidence for the latter possibility.  相似文献   

10.
11.
UV-B-induced photomorphogenesis in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Relatively little is known about the types of photomorphogenic responses and signal transduction pathways that plants employ in response to ultraviolet-B (UV-B, 290–320 nm) radiation. In wild-type Arabidopsis seedlings, hypocotyl growth inhibition and cotyledon expansion were both reproducibly promoted by continuous UV-B. The fluence rate response of hypocotyl elongation was examined and showed a biphasic response. Whereas photomorphogenic responses were observed at low doses, higher fluences resulted in damage symptoms. In support of our theory that photomorphogenesis, but not damage, occurs at low doses of UV-B, photomorphogenic responses of UV-B sensitive mutants were indistinguishable from wild-type plants at the low dose. This allowed us to examine UV-B-induced photomorphogenesis in photoreceptor deficient plants and constitutive photomorphogenic mutants. The cry1 cryptochrome structural gene mutant, and phytochrome deficient hy1, phyA and phyB mutant seedlings resembled wild-type seedlings, while phyA/phyB double mutants were less sensitive to the photomorphogenic effects of UV-B. These results suggest that either phyA or phyB is required for UV-B-induced photomorphogenesis. The constitutive photomorphogenic mutants cop1 and det1 did not show significant inhibition of hypocotyl growth in response to UV-B, while det2 was strongly affected by UV-B irradiation. This suggests that COP1 and DET1 work downstream of the UV-B signaling pathway.  相似文献   

12.
Using a beta-glucuronidase (GUS) reporter-COP1 fusion transgene, it was shown previously that Arabidopsis COP1 acts within the nucleus as a repressor of seedling photomorphogenic development and that high inactivation of COP1 was accompanied by a reduction of COP1 nuclear abundance (A.G. von Arnim, X.-W. Deng [1994] Cell 79: 1035-1045). Here we report that the GUS-COP1 fusion transgene can completely rescue the defect of cop1 mutations and thus is fully functional during seedling development. The kinetics of GUS-COP1 relocalization in a cop1 null mutant background during dark/light transitions imply that the regulation of the functional nuclear COP1 level plays a role in stably maintaining a committed seedling's developmental fate rather than in causing such a commitment. Analysis of GUS-COP1 cellular localization in mutant hypocotyls of all pleiotropic COP/DET/FUS loci revealed that nuclear localization of GUS-COP1 was diminished under both dark and light conditions in all mutants tested, whereas nuclear localization was not affected in the less pleiotropic cop4 mutant. Using both the brassinosteroid-deficient mutant det2 and brassinosteroid treatment of wild-type seedlings, we have demonstrated that brassinosteroid does not control the hypocotyl cell elongation through regulation nuclear localization of COP1. The growth regulator cytokinin, which also dramatically reduced hypocotyl cell elongation in the absence of light, did not prevent GUS-COP1 nuclear localization in dark-grown seedlings. Our results suggest that all of the previously characterized pleiotropic COP/DET/FUS loci are required for the proper nuclear localization of the COP1 protein in the dark, whereas the less pleiotropic COP/DET loci or plant regulators tested are likely to act either downstream of COP1 or by independent pathways.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号