首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red blood cells of several species are known to exhibit a ouabain-insensitive, anion-dependent K+ (Rb+) flux that is stimulated by cell swelling. We have used rabbit red cells to study the kinetics of activation and inactivation of the flux upon step changes in tonicity. Sudden hypotonic swelling (210 mosmol) activates the flux after a lag period of 10 min at 37 degrees C and 30-50 min at 25 degrees C. In cells that were preswollen to activate the transporter, sudden shrinkage (by addition of hypertonic NaCl) causes a rapid inactivation of the flux; the time lag for inactivation is less than 2 min at 37 degrees C. A minimal model of the volume-sensitive KCl transport system requires two states of the transporter. The activated (A) state catalyzes transport at some finite rate (turnover number unknown because the number of transporters is unknown). The resting (R) state has a much lower or possibly zero transport rate. The interconversion between the states is characterized by unimolecular rate constants R k12 in equilibrium with k21 A. The rate of relaxation to any new steady state is equal to the sum of the rate constants k12 + k21. Because the rate of transport activation in a hypotonic medium is lower than the rate of inactivation in an isotonic medium, we conclude that the volume-sensitive rate process is inactivation (the A to R transition); that is, cell swelling activates transport by lowering k21. Three phosphatase inhibitors (fluoride, orthovanadate, and inorganic phosphate) all inhibit the swelling-activated flux and also slow down the rate of approach to the swollen steady state. This finding suggests that a net dephosphorylation is necessary for activation of the flux and that the net dephosphorylation takes place as a result of swelling-induced inhibition of a kinase rather than stimulation of a phosphatase.  相似文献   

2.
The kinetics of activation and inactivation of K(+)/Cl(-) cotransport (KCC) have been measured in rabbit red blood cells for the purpose of determining the individual rate constants for the rate-limiting activation and inactivation events. Four different interventions (cell swelling, N-ethylmaleimide [NEM], low intracellular pH, and low intracellular Mg(2+)) all activate KCC with a single exponential time course; the kinetics are consistent with the idea that there is a single rate-limiting event in the activation of transport by all four interventions. In contrast to LK sheep red cells, the KCC flux in Mg(2+)-depleted rabbit red cells is not affected by cell volume. KCC activation kinetics were examined in cells pretreated with NEM at 0 degrees C, washed, and then incubated at higher temperatures. The forward rate constant for activation has a very high temperature dependence (E(a) approximately 32 kCal/mol), but is not affected measurably by cell volume. Inactivation kinetics were examined by swelling cells at 37 degrees C to activate KCC, and then resuspending at various osmolalities and temperatures to inactivate most of the transporters. The rate of transport inactivation increases steeply as cell volume decreases, even in a range of volumes where nearly all the transporters are inactive in the steady state. This finding indicates that the rate-limiting inactivation event is strongly affected by cell volume over the entire range of cell volumes studied, including normal cell volume. The rate-limiting inactivation event may be mediated by a protein kinase that is inhibited, either directly or indirectly, by cell swelling, low Mg(2+), acid pH, and NEM.  相似文献   

3.
The mechanism of activation of KCl cotransport has been examined in rabbit red blood cells. Previous work has provided evidence that a net dephosphorylation is required for activation of transport by cell swelling. In the present study okadaic acid, an inhibitor of protein phosphatases, was used to test this idea in more detail. We find that okadaic acid strongly inhibits swelling-stimulated KCl cotransport. The IC50 for okadaic acid is approximately 40 nM, consistent with the involvement of type 1 protein phosphatase in transport activation. N-Ethylmaleimide (NEM) is well known to activate KCl cotransport in cells of normal volume. Okadaic acid, added before NEM, inhibits the activation of transport by NEM, indicating that a dephosphorylation is necessary for the NEM effect. Okadaic acid added after NEM inhibits transport only very slightly. After a brief exposure to NEM and rapid removal of unreacted NEM, KCl cotransport activates with a time delay that is similar to that for swelling activation. Okadaic acid causes a slight increase in the delay time. These findings are all consistent with the idea that NEM activates transport not by a direct action on the transport protein but by altering a phosphorylation-dephosphorylation cycle. The simplest hypothesis that is consistent with the data is that both cell swelling and NEM cause inhibition of a protein kinase. Kinase inhibition causes net dephosphorylation of some key substrate (not necessarily the transport protein); dephosphorylation of this substrate, probably by type 1 protein phosphatase, causes transport activation.  相似文献   

4.
Summary The effects of osmotic cell swelling were studied on the kinetics of Cl-dependent K+ influx, K–Cl cotransport, in erythrocytes from sheep of the low K+ (LK) phenotype. Swelling 25% stimulated transport by increasing maximum velocity (J max) 1.5-fold and by increasing apparent affinity for external K (K o ) nearly twofold. Dithiothreitol (DTT) was shown to be a partial, reversible inhibitor of K–Cl cotransport. It inhibited in cells of normal volume by reducingJ max more than twofold: apparent affinity for K o was increased by DTT, suggesting that DTT stabilizes the transporter-K o complex. Cell swelling reduced the extent of inhibition by DTT:J max was inhibited by only about one-third in swollen cells, and apparent affinity was only slightly affected. This result suggested that DTT does not act directly on the transporter, but on a hypothetical regulator, an endogenous inhibitor. Swelling relieves inhibition by the regulator, and reduces the effect of DTT. Reducing intracellular Mg2+, Mg o , stimulated cotransport. Swelling of low-Mg2+ cells stimulated transport further, but only by raising apparent affinity for K o nearly threefold:J max was unaffected. Thus effects of swelling onJ max and apparent affinity are separable processes. The inhibitory effects of Mg o and DTT were shown to be additive, indicating separate modes of action. There appear to be two endogenous inhibitors: the hypothetical regulator, which holds affinity for K o , low; and Mg o , which affectsJ max perhaps by holding some transporters in an inactive form. Swelling stimulates transport by relieving both types of inhibition.  相似文献   

5.
Summary The effect of cell volume changes in human red cells on ouabain-insensitive net outward cation movements through 1) the Na–K and Li–K cotransport, 2) the Li–Na counter-transport system and 3) the furosemide-insensitive Na, K and Li pathway was studied. Cell volume was altered by changing a) the internal cation content (isosmotic method) or b) the external osmolarity of the medium (osmotic method). Na–K and Li–K cotransport were measured as the furosemide-sensitive Na or Li and K efflux into (Na, Li and K)-free (Mg-sucrose replacement) medium from cells loaded to contain approximately equal concentrations of Na and K, or a constant K/Li concentration ratio of 91, respectively. Li–Na countertransport was assayed as the Na-stimulated Li efflux from Li-loaded cells and net furosemide-insensitive outfluxes in (Na, Li and K)-free media containing 1mm furosemide. Swelling of cells by the isosmotic, but not by the osmotic method reduced furosemide-sensitive Na and Li but not K efflux by 80 and 86%, respectively. Changes in cell volume by both methods had no effect on Li–Na countertransport. The effects of cell volume changes were measured on the rate constants of ouabain- and furosemide-insensitive cation fluxes and were found to be complex. Isosmotic shrinkage more than doubled the rate constants of Na and Li efflux but did not affect that of K efflux. Osmotic shrinkage increased the K efflux rate constant by 50% only in cells loaded for countertransport. Isosmotic cell swelling specifically increased the K+ efflux rate constants both in cells loaded for cotransport and countertransport assays while no effect was observed in cells swollen by the osmotic method. Thus, the three transport pathways responded differently to changes in cell volume, and, furthermore, responses were different depending on the method of changing cell water content.  相似文献   

6.
Hypertonic shrinkage of dog red cells caused rapid activation of Na/H exchange and rapid deactivation of [K-Cl] cotransport. Hypotonic swelling caused delayed deactivation of Na/H exchange and delayed activation of [K-Cl] cotransport. Okadaic acid stimulated shrinkage-induced Na/H exchange and inhibited swelling-induced [K-Cl] cotransport. The data are compatible with the kinetic model of Jennings and Al-Rohil (1990. J. Gen. Physiol. 95:1021-1040) for volume regulation of [K-Cl] cotransport in rabbit red cells and suggest that in dog red cells Na/H exchange and [K-Cl] cotransport are controlled by a common regulatory system. The proposal of Jennings and Schulz (1991. J. Gen. Physiol. 96:799-817) that activation/deactivation of volume-sensitive transport involves phosphorylation/dephosphorylation of a regulatory protein is supported by these observations.  相似文献   

7.
1. When dog red blood cells are shrunken or swollen, transport pathways are activated that do not function discernibly when the cell is at normal volume. Swelling the cells turns on two pathways, a Ca-Na exchanger and a Cl-dependent K pathway. 2. Shrinking the cells activates a Na-H antiporter. 3. The passive net flow of ions through these transporters is in such a direction as to correct the perturbation of cell volume: when the cell water content has returned to normal, the transporters turn off. 4. Recently we have investigated agents that can lock or fix the volume-responsive transporters in the activated state. Na-H exchange, for example, can be fixed in the on position with either glutaraldehyde or N-phenylmaleimide. 5. Ca-Na exchange can be locked on by the sulfhydryl-oxidizing agent, diamide. We have used these effects to investigate the relationships between cell volume and the transport mechanisms. 6. It is possible, for instance, to distinguish whether certain inhibitors act on the transporters per se or on the apparatus that perceives cell volume and communicates with the transporters. 7. Furthermore, in the case of the Ca-Na exchanger some indication of the membrane polypeptides involved in volume regulation has been possible, using radioactive compounds that bind covalently to sulfhydryl groups.  相似文献   

8.
Red blood cells (RBC) of subjects homozygous for hemoglobin A (AA), C (CC) and S (SS) exhibit different cell volumes which might be related to differences in cell volume regulation. We have investigated how rapidly K:Cl cotransport is activated and deactivated to regulate the cell volume in these cells. We measured the time course of net K+ efflux after step changes in cell volume and determined two delay times: one for activation by cell swelling and a second for deactivation by cell shrinkage. Cell swelling induced by 220 mOsm media activated K+ efflux to high values (10–20 mmol/ liter cell x hr) in CC and SS; normal AA had a threefold lower activity. The delay time for activation was very short in blood with a high percentage of reticulocytes (retics): (SS, 10% retics, 1.7±0.3 min delay, n=8; AA, 10% retics, 4±1.5 min, n=3; CC, 11.6% retics, 4±0.3, n=3) and long in cells with a smaller percentage of reticulocytes: (AA, 1.5% retics, 10±1.4 min, n=8; CC whole blood 6% retics, 10±2.0 min, n=10, P<0.02 vs. SS). The delay times for deactivation by cell shrinking were very short in SS (3.6±0.4 min, n=8, P<0.02) and AA cells with high retics (2.7±1 min, n=3) and normal retics (2.8±1 min, n=3), but 8–15-fold longer in CC cells (29±2.8 min, n=9).Density fractionation of CC cells (n=3) resulted in coenrichment of the top fraction in reticulocytes and in swelling-activated cotransport (fourfold) with short delay time for activation (4±0.3 min) and long delay for deactivation (14±4 min). The delay time for activation, but not for deactivation, increased markedly with increasing cell density. These findings indicate that all CC cells do not promptly shut off cotransport with cell shrinkage and high rates of cellular K+ loss persist after return to isotonic conditions.In summary, (i) K:Cl cotransport is not only very active in young cells but it is also very rapidly activated and deactivated in young AA and SS cells by changes in cell volume. (ii) Delay times for cotransport activation markedly increased with RBC age and in mature cells with low cotransport rates, long delay times for activation were observed. (iii) The long delay time for deactivation exhibited even by young CC cells induces a persistent loss of K+ after cell shrinkage which may contribute in vivo to the uniformly low cell volume, low K+ and water content of CC cells.This research was supported by National Institutes of Health grants Shannon Award HL-35664, HL-42120, Sickle Cell Center grant HL-38655, and a Grant-in-Aid of the New York Branch of the American Heart Association. The technical help of Sandra M. Suzuka, M.S. is gratefully acknowledged.  相似文献   

9.
The bumetanide-sensitive (K+ + Na+ + 2Cl-)-cotransport system in turkey erythrocytes is activated by either of two treatments: addition of epinephrine or an increase in osmolarity. At elevated (20 mM) K+ concentration, cotransport activity induced by epinephrine slowly (within 90 min) declines to background level again. This time-dependent inactivation has been linked to bumetanide-sensitive cell swelling. We have compared both the initial rate of cotransport activity and its time dependence after induction by either epinephrine, increased osmolarity or a combination of the two treatments. As a measure of cotransport activity we took the bumetanide-sensitive fraction of 86Rb+ influx. Immediately after activation, several kinetic characteristics of this flux (Vmax; Km towards K+; Ki towards bumetanide; pH profile) were identical in cells activated by either treatment. By contrast, cotransport activated by hypertonicity was significantly more resistant towards subsequent inactivation. We show this to be due to the increase in intracellular ion concentrations brought about by hypertonic cell shrinkage. This tended to reverse the driving force for cotransport, and thereby prevented the bumetanide-sensitive swelling associated with inactivation. Our data support the notion that cell volume plays a key role both in the activation and in the time-dependent inactivation of bumetanide-sensitive transport.  相似文献   

10.
The role of the Na+/K+/Cl- cotransporter in the regulation of the volume of C6 astrocytoma cells was analyzed using isotopic fluxes and cell cytometry measurements of the cell volume. The system was inhibited by 'loop diuretics' with the following order of potency: benzmetanide greater than bumetanide greater than piretanide greater than furosemide. Under physiological conditions of osmolarity of the incubation media, equal rates of bumetanide-sensitive inward and outward K+ fluxes were observed. Blockade of the Na+/K+/Cl- cotransporter with bumetanide did not lead to a modification in the mean cell volume. When C6 cells were incubated in an hyperosmotic solution, a cell shrinkage was observed. It was accompanied by a twofold increase in the activity of the Na+/K+/Cl- cotransport, which then catalyzed the net influx of K+. In spite of this increased activity, no cell swelling could be measured. Incubation of the cells in an iso-osmotic medium deprived of either Na+, K+ or Cl- also produced cell shrinkage. Large activations (up to tenfold) of the Na+/K+/Cl- cotransport together with a cell swelling back to the normal volume were observed upon returning ion-deprived C6 cells to a physiological solution. This cell swelling was completely prevented in the presence of bumetanide. It is concluded that the Na+/K+/Cl- cotransport system is one of the transport systems involved in volume regulation of glial cells. The system can either be physiologically quiescent or active depending on the conditions used. A distinct volume regulating mechanism is the Na+/H+ exchange system.  相似文献   

11.
To identify protein kinases (PK) and phosphatases (PP) involvedin regulation of theNa+-K+-2Clcotransporter in Ehrlich cells, the effect of various PK and PPinhibitors was examined. The PP-1, PP-2A, and PP-3 inhibitor calyculinA (Cal-A) was a potent activator ofNa+-K+-2Clcotransport (EC50 = 35 nM).Activation by Cal-A was rapid (<1 min) but transient. Inactivation isprobably due to a 10% cell swelling and/or the concurrentincrease in intracellularCl concentration. Cellshrinkage also activates theNa+-K+-2Clcotransport system. Combining cell shrinkage with Cal-A treatment prolonged the cotransport activation compared with stimulation withCal-A alone, suggesting PK stimulation by cell shrinkage. Shrinkage-induced cotransport activation was pH andCa2+/calmodulin dependent.Inhibition of myosin light chain kinase by ML-7 and ML-9 or of PKA byH-89 and KT-5720 inhibited cotransport activity induced by Cal-A and bycell shrinkage, with IC50 values similar to reported inhibition constants of the respective kinases invitro. Cell shrinkage increased the ML-7-sensitive cotransport activity, whereas the H-89-sensitive activity was unchanged, suggesting that myosin light chain kinase is a modulator of theNa+-K+-2Clcotransport activity during regulatory volume increase.

  相似文献   

12.
K-Cl cotransport, KCC, is activated by swelling in many cells types, and promotes volume regulation by a KCl efflux osmotically coupled to water efflux. KCC is probably activated by swelling-inhibition of a kinase, permitting dephosphorylation, and activation of the cotransporter by a phosphatase. The myosin light chain kinase (MLCK) inhibitor ML-7 inhibits transporters activated by shrinkage. In red blood cells from three mammalian species, ML-7 stimulated KCC in a volume-dependent manner. Relative stimulation was greatest in more shrunken cells. Stimulation was reduced by moderate cell swelling and abolished by further swelling. The half-maximal stimulation is at ∼20 μm ML-7, 50-fold greater than the IC50 for inhibition of MLCK in vitro. Stimulation of KCC by ML-7 did not require cell Ca, while MLCK does. Therefore the target of ML-7 in stimulating KCC in red cells is probably not MLCK. The evidence favors stimulation of KCC by ML-7 by inhibiting the volume-sensitive kinase. Qualitatively similar effects of ML-7 on KCC in red cells from three mammalian species suggest a general mechanism. Received: 17 March 2000/Revised: 28 July 2000  相似文献   

13.
K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.  相似文献   

14.
Volume-sensitive K-Cl cotransport occurs in red blood cells of many species. In intact cells, activation of K-Cl cotransport by swelling requires dephosphorylation of some cell protein, but maximal activity requires the presence of intracellular ATP. We have examined the relation between K-Cl cotransport activity and ATP in ghosts prepared from human red blood cells. K-Cl cotransport activity in swollen ghosts increased by ATP, and the increase requires Mg so that it almost certainly results from the phosphorylation of some membrane component. However, even in ATP-free ghosts residual volume-sensitive K-Cl cotransport can be demonstrated. This residual cotransport in ATP-free ghosts is greater in the presence of vanadate, a tyrosyl phosphatase inhibitor, and in ghosts that contain ATP cotransport is reduced by genistein, a tyrosyl kinase inhibitor. Okadaic acid, an inhibitor of serine and threonine phosphatases, inhibits K-Cl cotransport in ghosts as it does in intact cells. Experiments in which ghosts were preexposed to okadaic acid showed that the protein dephosphorylation that permits K-Cl cotransport can proceed to completion before the ghosts are swollen and K transport measured and therefore dephosphorylation is not a response to ghost swelling. In experiments with ATP-free ghosts we found that phosphorylation is not necessary to increase the cotransport rate when shrunken ghosts are swollen, nor is rephosphorylation necessary to decrease the cotransport rate when swollen ghosts are shrunken. Cotransport is greater in swollen than in shrunken ghosts even when the swollen and shrunken ghosts have the same concentration of cytoplasmic solutes. We conclude that, although phosphorylation and dephosphorylation modify the activity of the cotransporter in swollen and in shrunken ghosts, neither of these processes nor any other known messenger is involved in signal transduction between the cell volume sensor and the cotransporter as originally proposed by Jennings and Al- Rohil (Jennings, M. L., and N. Al-Rohil. 1990. Journal of General Physiology. 95: 1021-1040).  相似文献   

15.
The ultrastructural transformations of mitochondria in isolated crayfish neurons were studied after incubation of the cells in saline media containing different Ca2+ and Mg2+ concentrations. Incubation in a 5-fold higher Ca concentration resulted in the swelling of mitochondria that was prevented by the addition of the calcium channel blocker, verapamil. Exposure of the cells to Mg2+-depleted medium induced swelling of all the mitochondria, followed by substantial shrinkage of most of them. The absence of Ca as well as the presence of verapamil in Mg2+-free medium led to the inhibition of mitochondrial swelling and to a strong contraction of the mitochondria after 1 h incubation. The omission of Ca2+ from the saline medium or the addition of Ca2+-ionophore A23187 in the presence of Ca2+ resulted in strong mitochondrial shrinkage. These structural alterations of mitochondria are interpreted as an osmotic response of the inner mitochondrial membranes to changes in their potassium transport, induced by a disturbance in the cellular and mitochondrial Ca2+-Mg2+ homeostasis.  相似文献   

16.
Members of class II of the HKT transporters, which have thus far only been isolated from grasses, were found to mediate Na(+)-K(+) cotransport and at high Na(+) concentrations preferred Na(+)-selective transport, depending on the ionic conditions. But the physiological functions of this K(+)-transporting class II of HKT transporters remain unknown in plants, with the exception of the unique class II Na(+) transporter OsHKT2;1. The genetically tractable rice (Oryza sativa; background Nipponbare) possesses two predicted K(+)-transporting class II HKT transporter genes, OsHKT2;3 and OsHKT2;4. In this study, we have characterized the ion selectivity of the class II rice HKT transporter OsHKT2;4 in yeast and Xenopus laevis oocytes. OsHKT2;4 rescued the growth defect of a K(+) uptake-deficient yeast mutant. Green fluorescent protein-OsHKT2;4 is targeted to the plasma membrane in transgenic plant cells. OsHKT2;4-expressing oocytes exhibited strong K(+) permeability. Interestingly, however, K(+) influx in OsHKT2;4-expressing oocytes did not require stimulation by extracellular Na(+), in contrast to other class II HKT transporters. Furthermore, OsHKT2;4-mediated currents exhibited permeabilities to both Mg(2+) and Ca(2+) in the absence of competing K(+) ions. Comparative analyses of Ca(2+) and Mg(2+) permeabilities in several HKT transporters, including Arabidopsis thaliana HKT1;1 (AtHKT1;1), Triticum aestivum HKT2;1 (TaHKT2;1), OsHKT2;1, OsHKT2;2, and OsHKT2;4, revealed that only OsHKT2;4 and to a lesser degree TaHKT2;1 mediate Mg(2+) transport. Interestingly, cation competition analyses demonstrate that the selectivity of both of these class II HKT transporters for K(+) is dominant over divalent cations, suggesting that Mg(2+) and Ca(2+) transport via OsHKT2;4 may be small and would depend on competing K(+) concentrations in plants.  相似文献   

17.
Activation of ion transport pathways by changes in cell volume.   总被引:9,自引:0,他引:9  
Swelling-activated K+ and Cl- channels, which mediate RVD, are found in most cell types. Prominent exceptions to this rule include red cells, which together with some types of epithelia, utilize electroneutral [K(+)-Cl-] cotransport for down-regulation of volume. Shrinkage-activated Na+/H+ exchange and [Na(+)-K(+)-2 Cl-] cotransport mediate RVI in many cell types, although the activation of these systems may require special conditions, such as previous RVD. Swelling-activated K+/H+ exchange and Ca2+/Na+ exchange seem to be restricted to certain species of red cells. Swelling-activated calcium channels, although not carrying sufficient ion flux to contribute to volume changes may play an important role in the activation of transport pathways. In this review of volume-activated ion transport pathways we have concentrated on regulatory phenomena. We have listed known secondary messenger pathways that modulate volume-activated transporters, although the evidence that volume signals are transduced via these systems is preliminary. We have focused on several mechanisms that might function as volume sensors. In our view, the most important candidates for this role are the structures which detect deformation or stretching of the membrane and the skeletal filaments attached to it, and the extraordinary effects that small changes in concentration of cytoplasmic macromolecules may exert on the activities of cytoplasmic and membrane enzymes (macromolecular crowding). It is noteworthy that volume-activated ion transporters are intercalated into the cellular signaling network as receptors, messengers and effectors. Stretch-activated ion channels may serve as receptors for cell volume itself. Cell swelling or shrinkage may serve a messenger function in the communication between opposing surfaces of epithelia, or in the regulation of metabolic pathways in the liver. Finally, these transporters may act as effector systems when they perform regulatory volume increase or decrease. This review discusses several examples in which relatively simple methods of examining volume regulation led to the discovery of transporters ultimately found to play key roles in the transmission of information within the cell. So, why volume? Because it's functionally important, it's relatively cheap (if you happened to have everything else, you only need some distilled water or concentrated salt solution), and since it involves many disciplines of experimental biology, it's fun to do.  相似文献   

18.
Historically, water transport across biological membranes has always been considered a passive process, i.e., the net water transport is proportional to the gradients of hydrostatic and osmotic pressure. More recently, this dogma was challenged by the suggestion that secondary active transporters such as the Na/glucose cotransporter (SGLT1) could perform secondary active water transport with a fixed stoichiometry. In the case of SGLT1, the stoichiometry would consist of one glucose molecule to two Na+ ions to 220-400 water molecules. In the present minireview, we summarize and criticize the evidence supporting and opposing this water cotransport hypothesis. Published and unpublished observations from our own laboratory are also presented in support of the idea that transport-dependent osmotic gradients begin to build up immediately after cotransport commences and are fully responsible for the cell swelling observed.  相似文献   

19.
Summary Na+-K+-2Cl cotransport in aortic endothelial cells is activated by cell shrinkage, inhibited by cell swelling, and is responsible for recovery of cell volume. The role of protein phosphorylation in the regulation of cotransport was examined with two inhibitors of protein phosphatases, okadaic acid and calyculin, and a protein kinase inhibitor, K252a. Both phosphatase inhibitors stimulated cotransport in isotonic medium, with calyculin, a more potent inhibitor of protein phosphatase I, being 50-fold more potent. Neither agent stimulated cotransport in hypertonic medium. Stimulation by calyculin was immediate and was complete by 5 min, with no change in cell Na + K content, indicating that the stimulation of cotransport was not secondary to cell shrinkage. The time required for calyculin to activate cotransport was longer in swollen cells than in normal cells, indicating that the phosphorylation step is affected by cell volume. Activation of cotransport when cells in isotonic medium were placed in hypertonic medium was more rapid than the inactivation of cotransport when cells in hypertonic medium were placed in isotonic medium, which is consistent with a shrinkage-activated kinase rather than a shrinkage-inhibited phosphatase. K252a, a nonspecific protein kinase inhibitor, reduced cotransport in both isotonic and hypertonic media. The rate of inactivation was the same in either medium, indicating that dephosphorylation is not regulated by cell volume. These results demonstrate that Na+-K+-2Cl cotransport is activated by protein phosphorylation and is inactivated by a Type I protein phosphatase. The regulation of cotransport by cell volume is due to changes in the rate of phosphorylation rather than dephosphorylation, suggesting the existence of a volume-sensitive protein kinase. Both the kinase and the phosphatase are constitutively active, perhaps to allow for rapid changes in cotransport activity.This work was supported by a Clinical Investigator Award DK01643 (to W.C.O) and a Grant-in-Aid from the American Heart Association of Georgia.  相似文献   

20.
Huang S  Vandenberg RJ 《Biochemistry》2007,46(34):9685-9692
L-Glutamate is the predominant excitatory neurotransmitter in the brain, and its extracellular concentration is tightly controlled by the excitatory amino acid transporters (EAATs). The transport of 1 glutamate molecule is coupled to the cotransport of 3 Na+ and 1 H+ and the countertransport of 1 K+. In addition to substrate transport, the binding of glutamate and Na+ activates an anion current which is thermodynamically uncoupled from the transport process. We have identified three amino acid residues in EAAT1 (D272 in TM5, K384 and R385 in TM7) that influence the amplitude of the anion channel current relative to the transport current. Transporters containing the mutations R268A, D272A, D272K, K384A, K384D, R385A, and R385D were expressed in Xenopus laevis oocytes and their transport and anion channel functions measured using the two-electrode voltage clamp techniques. The D272, K384, and R385 mutant transporters showed no change in transport properties but have increased levels of anion channel activity compared to wild-type transporters. These results identify additional residues of the EAAT1 transporter that may contribute to the gating mechanism of the anion channel of glutamate transporters and also provide hints as to how substrate binding leads to channel activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号