首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The family of secreted aspartic proteinases (Sap) encoded by 10 SAP genes is an important virulence factor during Candida albicans (C. albicans) infections. Antagonists to Saps could be envisioned to help prevent or treat candidosis in immunocompromised patients. The knowledge of several Sap structures is crucial for inhibitor design; only the structure of Sap2 is known. We report the 1.9 and 2.2 A resolution X-ray crystal structures of Sap3 in a stable complex with pepstatin A and in the absence of an inhibitor, shedding further light on the enzyme inhibitor binding. Inhibitor binding causes active site closure by the movement of a flap segment. Comparison of the structures of Sap3 and Sap2 identifies elements responsible for the specificity of each isoenzyme.  相似文献   

2.
Collagenase from the gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently even than clostridial collagenase, the most widely used industrial collagenase. However, the structural determinants facilitating this efficiency are unclear. Here, we report the crystal structures of ligand-free and Gly-Pro-hydroxyproline (Hyp)-complexed Ghcol at 2.2 and 2.4 Å resolution, respectively. These structures revealed that the activator and peptidase domains in Ghcol form a saddle-shaped structure with one zinc ion and four calcium ions. In addition, the activator domain comprises two homologous subdomains, whereas zinc-bound water was observed in the ligand-free Ghcol. In the ligand-complexed Ghcol, we found two Gly-Pro-Hyp molecules, each bind at the active site and at two surfaces on the duplicate subdomains of the activator domain facing the active site, and the nucleophilic water is replaced by the carboxyl oxygen of Hyp at the P1 position. Furthermore, all Gly-Pro-Hyp molecules bound to Ghcol have almost the same conformation as Pro-Pro-Gly motif in model collagen (Pro-Pro-Gly)10, suggesting these three sites contribute to the unwinding of the collagen triple helix. A comparison of activities revealed that Ghcol exhibits broader substrate specificity than clostridial collagenase at the P2 and P2′ positions, which may be attributed to the larger space available for substrate binding at the S2 and S2′ sites in Ghcol. Analysis of variants of three active-site Tyr residues revealed that mutation of Tyr564 affected catalysis, whereas mutation of Tyr476 or Tyr555 affected substrate recognition. These results provide insights into the substrate specificity and mechanism of G. hollisae collagenase.  相似文献   

3.
2-Hydroxy-6-ketonona-2,4-diene-1,9-dioic acid 5,6-hydrolase (MhpC) is a 62 kDa homodimeric enzyme of the phenylpropionate degradation pathway of Escherichia coli. The 2.1 A resolution X-ray structure of the native enzyme determined from orthorhombic crystals confirms that it is a member of the alpha/beta hydrolase fold family, comprising eight beta-strands interconnected by loops and helices. The 2.8 A resolution structure of the enzyme co-crystallised with the non-hydrolysable substrate analogue 2,6-diketo-nona-1,9-dioic acid (DKNDA) confirms the location of the active site in a buried channel including Ser110, His263 and Asp235, postulated contributors to a serine protease-like catalytic triad in homologous enzymes. It appears that the ligand binds in two separate orientations. In the first, the C6 keto group of the inhibitor forms a hemi-ketal adduct with the Ser110 side-chain, the C9 carboxylate group interacts, via the intermediacy of a water molecule, with Arg188 at one end of the active site, while the C1 carboxylate group of the inhibitor comes close to His114 at the other end. In the second orientation, the C1 carboxylate group binds at the Arg188 end of the active site and the C9 carboxylate group at the His114 end. These arrangements implicated His114 or His263 as plausible contributors to catalysis of the initial enol/keto tautomerisation of the substrate but lack of conservation of His114 amongst related enzymes and mutagenesis results suggest that His263 is the residue involved. Variability in the quality of the electron density for the inhibitor amongst the eight molecules of the crystal asymmetric unit appears to correlate with alternative positions for the side-chain of His114. This might arise from half-site occupation of the dimeric enzyme and reflect the apparent dissociation of approximately 50% of the keto intermediate from the enzyme during the catalytic cycle.  相似文献   

4.
The Arabidopsis thaliana BON1 gene product is a member of the evolutionary conserved eukaryotic calcium‐dependent membrane‐binding protein family. The copine protein is composed of two C2 domains (C2A and C2B) followed by a vWA domain. The BON1 protein is localized on the plasma membrane, and is known to suppress the expression of immune receptor genes and to positively regulate stomatal closure. The first structure of this protein family has been determined to 2.5‐Å resolution and shows the structural features of the three conserved domains C2A, C2B and vWA. The structure reveals the third Ca2+‐binding region in C2A domain is longer than classical C2 domains and a novel Ca2+ binding site in the vWA domain. The structure of BON1 bound to Mn2+ is also presented. The binding of the C2 domains to phospholipid (PSF) has been modeled and provides an insight into the lipid‐binding mechanism of the copine proteins. Furthermore, the selectivity of the separate C2A and C2B domains and intact BON1 to bind to different phospholipids has been investigated, and we demonstrated that BON1 could mediate aggregation of liposomes in response to Ca2+. These studies have formed the basis of further investigations into the important role that the copine proteins play in vivo.  相似文献   

5.
The crystal structure of a cysteine protease ervatamin B, isolated from the medicinal plant Ervatamia coronaria, has been determined at 1.63 A. The unknown primary structure of the enzyme could also be traced from the high-quality electron density map. The final refined model, consisting of 215 amino acid residues, 208 water molecules, and a thiosulfate ligand molecule, has a crystallographic R-factor of 15.9% and a free R-factor of 18.2% for F > 2sigma(F). The protein belongs to the papain superfamily of cysteine proteases and has some unique properties compared to other members of the family. Though the overall fold of the structure, comprising two domains, is similar to the others, a few natural substitutions of conserved amino acid residues at the interdomain cleft of ervatamin B are expected to increase the stability of the protein. The substitution of a lysine residue by an arginine (residue 177) in this region of the protein may be important, because Lys --> Arg substitution is reported to increase the stability of proteins. Another substitution in this cleft region that helps to hold the domains together through hydrogen bonds is Ser36, replacing a conserved glycine residue in the others. There are also some substitutions in and around the active site cleft. Residues Tyr67, Pro68, Val157, and Ser205 in papain are replaced by Trp67, Met68, Gln156, and Leu208, respectively, in ervatamin B, which reduces the volume of the S2 subsite to almost one-fourth that of papain, and this in turn alters the substrate specificity of the enzyme.  相似文献   

6.
IscS is a widely distributed cysteine desulfurase that catalyzes the pyridoxal phosphate-dependent desulfuration of L-cysteine and plays a central role in the delivery of sulfur to a variety of metabolic pathways. We report the crystal structure of Escherichia coli IscS to a resolution of 2.1A. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell dimensions a=73.70A, b=101.97A, c=108.62A (alpha=beta=gamma=90 degrees ). Molecular replacement with the Thermotoga maritima NifS model was used to determine phasing, and the IscS model was refined to an R=20.6% (R(free)=23.6%) with two molecules per asymmetric unit. The structure of E.coli IscS is similar to that of T.maritima NifS with nearly identical secondary structure and an overall backbone r.m.s. difference of 1.4A. However, in contrast to NifS a peptide segment containing the catalytic cysteine residue (Cys328) is partially ordered in the IscS structure. This segment of IscS (residues 323-335) forms a surface loop directed away from the active site pocket. Cys328 is positioned greater than 17A from the pyridoxal phosphate cofactor, suggesting that a large conformational change must occur during catalysis in order for Cys328 to participate in nucleophilic attack of a pyridoxal phosphate-bound cysteine substrate. Modeling suggests that rotation of this loop may allow movement of Cys328 to within approximately 3A of the pyridoxal phosphate cofactor.  相似文献   

7.
Although the majority of sweet compounds are of low molecular mass, several proteins are known to elicit sweet taste responses in humans. The fruit of Curculigo latifolia contains a heterodimeric protein, neoculin, which has both sweetness and a taste-modifying activity that converts sourness to sweetness. Here, we report the crystal structure of neoculin at 2.76A resolution. This is the first well-defined tertiary structure of a taste-modifying protein of this kind. The overall structure is quite similar to those of monocot mannose-binding lectins. However, crucial topological differences are observed in the C-terminal regions of both subunits. In both subunits of neoculin, the C-terminal tails turn up to form loops fixed by inter-subunit disulfide bonds that are not observed in the lectins. Indeed, the corresponding regions of the lectins stretch straight over the surface of another subunit. Such a C-terminal structural feature as is observed in neoculin results in a decrease in subunit-subunit interactions. Moreover, distribution of electrostatic potential on the surface of neoculin is unique and significantly different from those of the lectins, particularly in the basic subunit (NBS). We have found that there is a large cluster composed of six basic residues on the surface of NBS, and speculate that it might be involved in the elicitation of sweetness and/or taste-modifying activity of neoculin. Molecular dynamics simulation based on the crystallography results suggests that neoculin may adopt a widely "open" conformation at acidic pH, while unprotonated neoculin at neutral pH is in a "closed" conformation. Based on these simulations and the generation of a docking model between neoculin and the sweet-taste receptor, T1R2-T1R3, we propose the hypothesis that neoculin is in dynamic equilibrium between open and closed states, and that the addition of an acid shifts the equilibrium to the open state, allowing ligand-receptor interaction.  相似文献   

8.
RIG-I detects cytosolic viral dsRNA with 5' triphosphates (5'-ppp-dsRNA), thereby initiating an antiviral innate immune response. Here we report the crystal structure of superfamily 2 (SF2) ATPase domain of RIG-I in complex with a nucleotide analogue. RIG-I SF2 comprises two RecA-like domains 1A and 2A and a helical insertion domain 2B, which together form a 'C'-shaped structure. Domains 1A and 2A are maintained in a 'signal-off' state with an inactive ATP hydrolysis site by an intriguing helical arm. By mutational analysis, we show surface motifs that are critical for dsRNA-stimulated ATPase activity, indicating that dsRNA induces a structural movement that brings domains 1A and 2A/B together to form an active ATPase site. The structure also indicates that the regulatory domain is close to the end of the helical arm, where it is well positioned to recruit 5'-ppp-dsRNA to the SF2 domain. Overall, our results indicate that the activation of RIG-I occurs through an RNA- and ATP-driven structural switch in the SF2 domain.  相似文献   

9.
Maleylacetate reductase plays a crucial role in catabolism of resorcinol by catalyzing the NAD(P)H‐dependent reduction of maleylacetate, at a carbon–carbon double bond, to 3‐oxoadipate. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP‐10005, GraC, has been elucidated by the X‐ray diffraction method at 1.5 Å resolution. GraC is a homodimer, and each subunit consists of two domains: an N‐terminal NADH‐binding domain adopting an α/β structure and a C‐terminal functional domain adopting an α‐helical structure. Such structural features show similarity to those of the two existing families of enzymes in dehydroquinate synthase‐like superfamily. However, GraC is distinct in dimer formation and activity expression mechanism from the families of enzymes. Two subunits in GraC have different structures from each other in the present crystal. One subunit has several ligands mimicking NADH and the substrate in the cleft and adopts a closed domain arrangement. In contrast, the other subunit does not contain any ligand causing structural changes and adopts an open domain arrangement. The structure of GraC reveals those of maleylacetate reductase both in the coenzyme, substrate‐binding state and in the ligand‐free state. The comparison of both subunit structures reveals a conformational change of the Tyr326 loop for interaction with His243 on ligand binding. Structures of related enzymes suggest that His243 is likely a catalytic residue of GraC. Mutational analyses of His243 and Tyr326 support the catalytic roles proposed from structural information. The crystal structure of GraC characterizes the maleylacetate reductase family as a third family in the dehydroquinate synthase‐like superfamily. Proteins 2016; 84:1029–1042. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
The three-dimensional crystal structure of human pepsin and that of its complex with pepstatin have been solved by X-ray crystallographic methods. The native pepsin structure has been refined with data collected to 2.2 A resolution to an R-factor of 19.7%. The pepsin:pepstatin structure has been refined with data to 2.0 A resolution to an R-factor of 18.5%. The hydrogen bonding interactions and the conformation adopted by pepstatin are very similar to those found in complexes of pepstatin with other aspartic proteinases. The enzyme undergoes a conformational change upon inhibitor binding to enclose the inhibitor more tightly. The analysis of the binding sites indicates that they form an extended tube without distinct binding pockets. By comparing the residues on the binding surface with those of the other human aspartic proteinases, it has been possible to rationalize some of the experimental data concerning the different specificities. At the S1 site, valine at position 120 in renin instead of isoleucine, as in the other enzymes, allows for binding of larger hydrophobic residues. The possibility of multiple conformations for the P2 residue makes the analysis of the S2 site difficult. However, it is possible to see that the specific interactions that renin makes with histidine at P2 would not be possible in the case of the other enzymes. At the S3 site, the smaller volume that is accessible in pepsin compared to the other enzymes is consistent with its preference for smaller residues at the P3 position.  相似文献   

11.
12.
The crystal structure of a chimera of Plasmodium falciparum (Pf) and human hypoxanthine guanine phosphoribosyltransferases (HGPRT), which consists of the core of the protein from the human enzyme and the hood region from the Pf enzyme, has been determined as a complex with the product guanosine monophosphate (GMP). The chimera can utilize hypoxanthine, guanine, and xanthine as substrates, similar to the Pf enzyme. It exists as a monomer-dimer mixture in solution, but shifts to a tetramer on addition of phosphoribosyl pyrophosphate (PRPP). The structural studies reveal that the asymmetric unit of the crystal consists of two monomers of the chimeric HGPRT. Surprisingly, the dimer interface of the chimera is the less extensive AC interface of the parent HGPRTs. An analysis of the crystal structures of the various human HGPRTs provides an explanation for the oligomeric characteristics of the chimera. Pro93 and Tyr197 form part of crucial interactions holding together the AB interface in the unliganded or GMP-bound forms of HGPRT, while Pro93 and His26 interact at the interface after binding of PRPP. Replacement of Tyr197 of human HGPRT by Ile207 in the chimera disrupts the interaction at the AB interface in the absence of PRPP. In the presence of PRPP, the interaction between Pro93 and His26 could restore the AB interface, shifting the chimeric enzyme to a tetrameric state. The structure provides valuable insights into the differences in the AB interface between Pf and human HGPRTs, which may be useful for designing selective inhibitors against the parasite enzyme.  相似文献   

13.
14.
The crystal structure of Irpex lacteus aspartic proteinase (ILAP) in complex with pepstatin (a six amino acid residue peptide-like inhibitor) was determined at 1.3A resolution. ILAP is a pepsin-like enzyme, widely distributed in nature, with high milk-clotting activity relative to proteolytic activity. The overall structure was in good topological agreement with pepsin and other aspartic proteases. The structure and interaction pattern around the catalytic site were conserved, in agreement with the other aspartic proteinase/inhibitor complex structures reported previously. The high-resolution data also supported the transition state model, as proposed previously for the catalytic mechanism of aspartic proteinase. Unlike the other aspartic proteinases, ILAP was found to require hydrophobic residues either in the P(1) or P(1') site, and also in the P(4) and/or P(3) site(s) for secondary interactions. The inhibitor complex structure also revealed the substrate binding mechanism of ILAP at the P(3) and P(4) site of the substrate, where the inserted loop built up the unique hydrophobic pocket at the P(4) site.  相似文献   

15.
Carbonic anhydrase isoform XIV (CA XIV) is the last member of the human (h) CA family discovered so far, being localized in brain, kidneys, colon, small intestine, urinary bladder, liver, and spinal cord. It has recently been described as a possible drug target for treatment of epilepsy, some retinopathies as well as some skin tumors. Human carbonic anhydrase (hCA) XIV is a membrane‐associated protein consisting of an N‐terminal extracellular domain, a putative transmembrane region, and a small cytoplasmic tail. In this article, we report the expression, purification, and the crystallographic structure of the entire extracellular domain of this enzyme. The analysis of the structure revealed the typical α‐CA fold, in which a 10‐stranded β‐sheet forms the core of the molecule, while the comparison with all the other membrane associated isoforms (hCAs IV, IX, and XII) allowed to identify the diverse oligomeric arrangement and the sequence and structural differences observed in the region 127–136 as the main factors to consider in the design of selective inhibitors for each one of the membrane associated α‐CAs. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 769–778, 2014.  相似文献   

16.
We determined the crystal structure of anhydrous chitosan at atomic resolution, using X‐ray fiber diffraction data extending to 1.17 Å resolution. The unit cell [a = 8.129(7) Å, b = 8.347(6) Å, c = 10.311(7) Å, space group P212121] of anhydrous chitosan contains two chains having one glucosamine residue in the asymmetric unit with the primary hydroxyl group in the gt conformation, that could be directly located in the Fourier omit map. The molecular arrangement of chitosan is very similar to the corner chains of cellulose II implying similar intermolecular hydrogen bonding between O6 and the amine nitrogen atom, and an intramolecular bifurcated hydrogen bond from O3 to O5 and O6. In addition to the classical hydrogen bonds, all the aliphatic hydrogens were involved in one or two weak hydrogen bonds, mostly helping to stabilize cohesion between antiparallel chains. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 361–368, 2016.  相似文献   

17.
A new triclinic crystal structure form of porcine pancreatic procarboxypeptidase B (PCPB) was obtained at higher resolution than the previously known tetragonal crystal structure. This new crystal polymorph has allowed for a corrected, accurate assignment of residues along the polypeptide chain based on the currently available gene sequence information and crystallographic data. The present structure shows unbound PCPB in a distinct molecular packing as compared to the previous benzamidine complexed form. Its catalytically important Tyr248 residue is oriented and hydrogen‐bonded to solvent water molecules, and locates the furthest away from the catalytic zinc ion as compared to previous structures. A relatively long stretch of residues flanking Tyr248 and guarding the access to the catalytic zinc ion was found to be sequentially unique to the M14 family of peptidases. Predictions from a normal mode analysis indicated that this stretch of residues belongs to a rigid subdomain in the protein structure. The specific presence of a tyrosyl residue at the most exposed position in this region would allow for a delicate balance between extreme hydrophobicity and hydrophilicity, and affect substrate binding and the kinetic efficiency of the enzyme. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 178–185, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

18.
Death receptor signaling is initiated by the assembly of the death-inducing signaling complex, which culminates in the activation of the initiator caspase, either caspase-8 or caspase-10. A family of viral and cellular proteins, known as FLIP, plays an essential role in the regulation of death receptor signaling. Viral FLIP (v-FLIP) and short cellular FLIP (c-FLIPS) inhibit apoptosis by interfering with death receptor signaling. The structure and mechanisms of v-FLIP and c-FLIPS remain largely unknown. Here we report a high resolution crystal structure of MC159, a v-FLIP derived from the molluscum contagiosum virus, which is a member of the human poxvirus family. Unexpectedly, the two tandem death effector domains (DEDs) of MC159 rigidly associate with each other through a hydrophobic interface. Structure-based sequence analysis suggests that this interface is conserved in the tandem DEDs from other v-FLIP, c-FLIPS, and caspase-8 and -10. Strikingly, the overall packing arrangement between the two DEDs of MC159 resembles that between the caspase recruitment domains of Apaf-1 and caspase-9. In addition, each DED of MC159 contains a highly conserved binding motif on the surface, to which loss-of-function mutations in MC159 map. These observations, in conjunction with published evidence, reveal significant insights into the function of v-FLIP and suggest a mechanism by which v-FLIP and c-FLIPS inhibit death receptor signaling.  相似文献   

19.
Metallo-beta-lactamases (mbetals) confer broad-spectrum resistance to beta-lactam antibiotics upon host bacteria and escape the action of existing beta-lactamase inhibitors. SPM-1 is a recently discovered mbetal that is distinguished from related enzymes by possession of a substantial central insertion and by sequence variation at positions that maintain active site structure. Biochemical data show SPM-1 to contain two Zn2+ sites of differing affinities, a phenomenon that is well documented amongst mbetals but for which a structural explanation has proved elusive. Here, we report the crystal structure of SPM-1 to 1.9 A resolution. The structure reveals SPM-1 to lack a mobile loop implicated in substrate binding by related mbetals and to accommodate the central insertion in an extended helical interdomain region. Deleting this had marginal effect upon binding and hydrolysis of a range of beta-lactams. These data suggest that the interactions of SPM-1 with substrates differ from those employed by other mbetals. SPM-1 as crystallised contains a single Zn2+. Both the active site hydrogen-bonding network and main-chain geometry at Asp120, a key component of the binding site for the second zinc ion, differ significantly from previous mbetal structures. We propose that variable interactions made by the Asp120 carbonyl group modulate affinity for a second Zn2+ equivalent in mbetals of the B1 subfamily. We further predict that SPM-1 possesses the capacity to evolve variants of enhanced catalytic activity by point mutations altering geometry and hydrogen bonding in the vicinity of the second Zn2+ site.  相似文献   

20.
A 31kDa cysteine protease, SPE31, was isolated from the seeds of a legume plant, Pachyrizhus erosus. The protein was purified, crystallized and the 3D structure solved using molecular replacement. The cDNA was obtained by RT PCR followed by amplification using mRNA isolated from the seeds of the legume plant as a template. Analysis of the cDNA sequence and the 3D structure indicated the protein to belong to the papain family. Detailed analysis of the structure revealed an unusual replacement of the conserved catalytic Cys with Gly. Replacement of another conserved residue Ala/Gly by a Phe sterically blocks the access of the substrate to the active site. A polyethyleneglycol molecule and a natural peptide fragment were bound to the surface of the active site. Asn159 was found to be glycosylated. The SPE31 cDNA sequence shares several features with P34, a protein found in soybeans, that is implicated in plant defense mechanisms as an elicitor receptor binding to syringolide. P34 has also been shown to interact with vegetative storage proteins and NADH-dependent hydroxypyruvate reductase. These roles suggest that SPE31 and P34 form a unique subfamily within the papain family. The crystal structure of SPE31 complexed with a natural peptide ligand reveals a unique active site architecture. In addition, the clear evidence of glycosylated Asn159 provides useful information towards understanding the functional mechanism of SPE31/P34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号