共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis 总被引:3,自引:0,他引:3
Y Fujii J Hashimoto Y Monden T Ito K Nakahara Y Kawashima 《Journal of immunology (Baltimore, Md. : 1950)》1986,136(3):887-891
In 13 patients with myasthenia gravis, spontaneous in vitro production of antibody to acetylcholine receptor (AChR) by thymic cells was observed in seven patients, by bone marrow cells in nine, by peripheral blood cells (PBL) in six, and by lymph node cells in nine. The rate of anti-AChR production in culture closely correlated with the serum anti-AChR level. Specific activity of the immunoglobulin (Ig) G spontaneously produced (anti-AChR/total IgG) was about 10-fold higher in the thymus than in bone marrow, peripheral blood, or lymph node cultures. Pokeweed mitogen (PWM) enhanced anti-AChR production only by PBL. With neither thymus nor lymph node cells did PWM stimulate anti-AChR production, although it greatly enhanced total IgG production. In bone marrow, it depressed both, and it appeared that the anti-AChR was derived from long-lived plasma cells that may be responsible for delaying the fall of serum anti-AChR levels after thymectomy. The results suggest that AChR-specific cells are selectively activated in the thymus, and this may help to explain the benefits of thymectomy in myasthenia gravis. 相似文献
3.
4.
Chromosomal localization of seven neuronal nicotinic acetylcholine receptor subunit genes in humans. 总被引:3,自引:0,他引:3
We have determined the chromosomal location of seven human neuronal nicotinic acetylcholine receptor subunit genes by genomic Southern analysis of hamster/human somatic cell hybrid DNAs. The beta 2 subunit gene was localized to human chromosome 1, the alpha 2 and beta 3 subunit genes were localized to human chromosome 8, the alpha 3, alpha 5, and beta 4 subunit genes were localized to human chromosome 15, and the alpha 4 subunit gene was localized to human chromosome 20. Mapping of the beta 2 subunit gene to chromosome 1 establishes a syntenic group with the amylase gene locus on human chromosome 1 and mouse chromosome 3, while mapping of the alpha 3 subunit gene to chromosome 15 confirms the existence of a syntenic group with the mannose phosphate isomerase gene locus on human chromosome 15 and mouse chromosome 9. 相似文献
5.
Isolation and characterization of the beta and epsilon subunit genes of mouse muscle acetylcholine receptor 总被引:10,自引:0,他引:10
The genes coding for the beta and epsilon subunits of the mouse muscle nicotinic acetylcholine receptor (nAChR) were mapped by Southern blot analysis, and the entire loci for both genes cloned. The results indicate that they are single-copy genes. Both were sequenced to determine their size and structural organization. The beta subunit gene spans approximately 8 kilobases and is organized into 11 exons. A region containing cysteines, which are thought to form a disulfide bond and which are highly conserved, is encoded by one exon in all muscle acetylcholine receptor genes with the exception of the beta subunit gene, where it is split into two exons. The epsilon subunit gene spans 4.3 kilobases and contains 12 exons; it has the same structure as the gamma and delta nAChR genes. The intron-exon boundaries and exonic organization of the five known nAChR genes were compared. The analysis showed that the first 4 exons and the last exon of all muscle and brain nAChR subunit genes have the same boundaries, with the exception of a nAChR-related gene in Drosophila. 相似文献
6.
Experimental evidence has been published from isolated guinea pig muscle in vitro, and from direct ligand binding to receptors from T. californica, indicating that two agonist ions react with the nicotinic receptor by exchanging for one magnesium ion. It is the basis of the ion exchange receptor pair model, in which two acetylcholine ions exchange for one magnesium ion in contact with and between a pair of negatively charged receptor groups about 4 A apart. In the resting state the electrostatic attraction between the negatively charged receptor groups and the Mg2+ ion exerts a binding force. This binding force is opposed by the quantum mechanical repulsions of the electron clouds of the charged groups and ions in contact, together with the mutual repulsion of the pair of receptor oxyanions. When the Mg2+ ion is replaced by two acetylcholine ions the quaternary heads of the latter are positioned so that they form two mutually repelling ACh+ receptor group dipoles. As the Mg2+ ion leaves, its rehydration energy contributes to the sum of the electron cloud repulsions and the ACh+ receptor group dipole repulsions, causing the receptor groups to be forced apart activating the receptor macromolecule. The subsequent decrease in ACh+ concentration results in the reestablishment of the resting state. The coulombic electrostatic energy, the Born repulsion energy, the London attraction energy and the oxyanion ACh+ dipole repulsion energies have been calculated and shown to be consistent with the model. The displacement of the Mg2+ by two ACh+ ions makes several hundred kcals of energy available for receptor group separation and receptor activation. 相似文献
7.
Mittaud P Marangi PA Erb-Vögtli S Fuhrer C 《The Journal of biological chemistry》2001,276(17):14505-14513
During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing whether agrin activates Src family kinases bound to the AChR. In C2 myotubes, agrin induced tyrosine phosphorylation of these kinases, of AChR-bound MuSK, and of the AChR beta and delta subunits, as observed in phosphotyrosine immunoblotting experiments. Kinase assays revealed that the activity of AChR-associated Src kinases was increased by agrin, whereas phosphorylation of the total cellular kinase pool was unaffected. In both rapsyn-deficient myotubes and staurosporine-treated C2 myotubes, where AChRs are not clustered, agrin activated MuSK but did not cause either Src family or AChR phosphorylation. In S27 mutant myotubes, which fail to aggregate AChRs, no agrin-induced phosphorylation of AChR-bound Src kinases, MuSK, or AChRs was observed. These results demonstrate first that agrin leads to phosphorylation and activation of AChR-associated Src-related kinases, which requires rapsyn, occurs downstream of MuSK, and causes AChR phosphorylation. Second, this activation intimately correlates with AChR clustering, suggesting that these kinases may play a role in agrin-induced AChR aggregation by forming an AChR-bound signaling cascade. 相似文献
8.
Linkage disequilibrium study of RFLPs detected at the human muscle nicotinic acetylcholine receptor subunit genes. 总被引:4,自引:0,他引:4 下载免费PDF全文
E A Lobos C H Rudnick M S Watson K E Isenberg 《American journal of human genetics》1989,44(4):522-533
We screened DNA from unrelated individuals for RFLPs in the muscle nicotinic acetylcholine receptor (AcChoR) genes. These RFLP markers can be used for genetic linkage and association studies to test the hypothesis that receptor structure or regulation is involved in the development of myasthenia gravis (MG). The cDNAs from four subunits (alpha, beta, gamma, and delta) of the murine muscle AcChoR were used as probes to identify RFLPs in the homologous human genes. Digestion of DNA from 15 unrelated individuals with a set of 10 restriction enzymes revealed 11 RFLPs. At least one RFLP was found for each subunit gene. Eight RFLPs were found at the linked gamma and delta gene loci, six with minor allele frequencies greater than 15%, making that linkage group a very informative marker locus (PIC = .72). PIC values were calculated for the RFLPs from allele and haplotype frequency estimates obtained from a population sample of 53 individuals. The delta gene was assigned by in situ hybridization to region q31----q34 of chromosome 2. All pairs of RFLPs were analyzed for linkage disequilibrium. Of the 16 pairs of RFLPs from the same gene or from the linked gamma and delta genes, 13 pairs showed evidence of disequilibrium that was significant, with P less than .05. The implications of these results are discussed. 相似文献
9.
10.
A distinct contribution of the delta subunit to acetylcholine receptor channel activation revealed by mutations of the M2 segment. 总被引:1,自引:0,他引:1 下载免费PDF全文
Acetylcholine receptor (AChR) channels with proline (P) mutations in the putative pore-forming domain (at the 12' position of the M2 segment) were examined at the single-channel level. For all subunits (alpha, beta, epsilon, and delta), a 12'P mutation increased the open channel lifetime >5-fold. To facilitate the estimation of binding and gating rate constants, subunits with 12'P mutations were co-expressed with alpha subunits having a binding site mutation that slows channel opening (alphaD200N). In these AChRs, a 12'P mutation in epsilon or beta slowed the closing rate constant approximately 6-fold but had no effect on either the channel opening rate constant or the equilibrium dissociation constant for ACh (Kd). In contrast, a 12'P mutation in delta slowed the channel closing rate constant only approximately 2-fold and significantly increased both the channel opening rate constant and the Kd. Pairwise expression of 12'P subunits indicates that mutations in epsilon and beta act nearly independently, but one in delta reduces the effect of a homologous mutation in epsilon or beta. The results suggest that a 12'P mutation in epsilon and beta has mainly local effects, whereas one in delta has both local and distributed effects that influence both agonist binding and channel gating. 相似文献
11.
Efficiency of acetylcholine receptor subunit assembly and its regulation by cAMP 总被引:4,自引:3,他引:4 下载免费PDF全文
Assembly of nicotinic acetylcholine receptor (AChR) subunits was investigated using mouse fibroblast cell lines stably expressing either Torpedo (All-11) or mouse (AM-4) alpha, beta, gamma, and delta AChR subunits. Both cell lines produce fully functional cell surface AChRs. We find that two independent treatments, lower temperature and increased intracellular cAMP can increase AChR expression by increasing the efficiency of subunit assembly. Previously, we showed that the rate of degradation of individual subunits was decreased as the temperature was lowered and that Torpedo AChR expression was acutely temperature sensitive, requiring temperatures lower than 37 degrees C. We find that Torpedo AChR assembly efficiency increases 56-fold as the temperature is decreased from 37 to 20 degrees C. To determine how much of this is a temperature effect on degradation, mouse AChR assembly efficiencies were determined and found to be only approximately fourfold more efficient at 20 than at 37 degrees C. With reduced temperatures, we can achieve assembly efficiencies of Torpedo AChR in fibroblasts of 20-35%. Mouse AChR in muscle cells is also approximately 30% and we obtain approximately 30% assembly efficiency of mouse AChR in fibroblasts (with reduced temperatures, this value approaches 100%). Forskolin, an agent which increases intracellular cAMP levels, increased subunit assembly efficiencies twofold with a corresponding increase in cell surface AChR. Pulse-chase experiments and immunofluorescence microscopy indicate that oligomer assembly occurs in the ER and that AChR oligomers remain in the ER until released to the cell surface. Once released, AChRs move rapidly through the Golgi membrane to the plasma membrane. Forskolin does not alter the intracellular distribution of AChR. Our results indicate that cell surface expression of AChR can be regulated at the level of subunit assembly and suggest a mechanism for the cAMP-induced increase in AChR expression. 相似文献
12.
13.
Transmembrane topography of the nicotinic acetylcholine receptor delta subunit. 总被引:3,自引:0,他引:3 下载免费PDF全文
Current folding models for the nicotinic acetylcholine receptor (AChR) predict either four or five transmembrane segments per subunit. The N-terminus of each subunit is almost certainly extracellular. We have tested folding models by determining biochemically the cellular location of an intermolecular disulfide bridge thought to lie at the delta subunit C-terminus. Dimers of AChR linked through the delta-delta bridge were prepared from Torpedo marmorata and T.californica electric organ. The disulfide's accessibility to hydrophilic reductants was tested in a reconstituted vesicle system. In right-side-out vesicles (greater than 95% ACh binding sites outwards), the bridge was equally accessible whether or not vesicles had been disrupted by freeze--thawing or by detergents. Control experiments based on the rate of reduction of entrapped diphtheria toxin and measurements of radioactive reductant efflux demonstrated that the vesicles provide an adequate permeability barrier. In reconstituted vesicles containing AChR dimers in scrambled orientations, right-side-out dimers were reduced to monomers three times more rapidly than inside-out dimers, consistent with the measured rate of reductant permeation. These observations indicate that in reconstituted vesicles the delta-delta disulfide bridge lies in the same aqueous space as the ACh binding sites. They are most easily reconciled with folding models that propose an even number of transmembrane crossing per subunit. 相似文献
14.
Suberyldicholine, a bisquaternary compound, is a potent nicotinic acetylcholine receptor agonist. Previously, we suggested that at least some of the unusual binding properties of this ligand may be a consequence of its ability to cross-link two binding "subsites" within each of the high-affinity agonist binding domains [Dunn, S. M. J., and Raftery, M. A. (1997) Biochemistry 36, 3846-3853]. Tryptophan 86 of the alpha subunit has previously been implicated in the binding of agonist to this receptor. However, on the basis of the crystal structure of a homologous acetylcholine binding protein, this residue is predicted to lie 15-20 A from the high-affinity site, i.e., a distance that approximates the interonium distance of suberyldicholine. Tryptophan 86 was mutated to either an alanine or a phenylalanine, and the mutated subunit was coexpressed with wild-type beta, gamma, and delta subunits in Xenopus oocytes. Although the alanine mutation resulted in a loss of receptor expression, the alphaW86F mutant receptor was expressed on the oocyte surface, albeit with a much reduced efficiency. Acetylcholine-evoked currents of the alphaW86F receptor were not significantly different from those of the wild type with respect to the concentration dependence of channel activation, receptor desensitization, or d-tubocurarine inhibition. In contrast, the EC(50) for suberyldicholine-mediated activation of the alphaW86F receptor was increased by approximately 500-fold. Furthermore, suberyldicholine-evoked currents in the mutant receptor did not desensitize and were insensitive to block by d-tubocurarine. Thus, tryptophan 86 of the Torpedo receptor alpha subunit may be part of a subsite for recognition of suberyldicholine and other bisquaternary ligands. 相似文献
15.
Wang K Hackett JT Cox ME Van Hoek M Lindstrom JM Parsons SJ 《The Journal of biological chemistry》2004,279(10):8779-8786
Src family kinases (SFKs) are abundant in chromaffin cells that reside in the adrenal medulla and respond to cholinergic stimulation by secreting catecholamines. Our previous work indicated that SFKs regulate acetylcholine- or nicotine-induced secretion, but the site of modulatory action was unclear. Using whole cell recordings, we found that inhibition of SFK tyrosine kinase activity by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine) treatment or expression of a kinase-defective c-Src reduced the peak amplitude of nicotine-induced currents in chromaffin cells or in human embryonic kidney cells ectopically expressing functional neuronal alpha3beta4alpha5 acetylcholine receptors (AChRs). Conversely, the phosphotyrosine phosphatase inhibitor, sodium vanadate, or expression of mutationally activated c-Src resulted in enhanced current amplitudes. These results suggest that SFKs and putative phosphotyrosine phosphatases regulate the activity of AChRs by opposing actions. This proposed model was supported further by the findings that SFKs physically associate with the receptor and that the AChR is tyrosine-phosphorylated. 相似文献
16.
Nicotinic acetylcholine receptors on neurons are part of a gene family that includes nicotinic acetylcholine receptors on skeletal muscles and neuronal alpha bungarotoxin-binding proteins that in many species, unlike receptors, do not have an acetylcholine-regulated cation channel. This gene superfamily of ligand-gated receptors also includes receptors for glycine and gamma-aminobutyric acid. Rapid progress on neuronal nicotinic receptors has recently been possible using monoclonal antibodies as probes for receptor proteins and cDNAs as probes for receptor genes. These studies are the primary focus of this review, although other aspects of these receptors are also considered. In birds and mammals, there are subtypes of neuronal nicotinic receptors. All of these receptors differ from nicotinic receptors of muscle pharmacologically (none bind alpha bungarotoxin, and some have very high affinity for nicotine), structurally (having only two types of subunits rather than four), and, in some cases, in functional role (some are located presynaptically). However, there are amino acid sequence homologies between the subunits of these receptors that suggest the location of important functional domains. Sequence homologies also suggest that the subunits of the proteins of this family all evolved from a common ancestral protein subunit. The ligand-gated ion channel characteristic of this superfamily is formed from multiple copies of homologous subunits. Conserved domains responsible for strong stereospecific association of the subunits are probably a fundamental organizing principle of the superfamily. Whereas the structure of muscle-type nicotinic receptors appears to have been established by the time of elasmobranchs and has evolved quite conservatively since then, the evolution of neuronal-type nicotinic receptors appears to be in more rapid flux. Certainly, the studies of these receptors are in rapid flux, with the availability of monoclonal antibody probes for localizing, purifying, and characterizing the proteins, and cDNA probes for determining sequences, localizing mRNAs, expressing functional receptors, and studying genetic regulation. The role of nicotinic receptors in neuromuscular transmission is well understood, but the role of nicotinic receptors in brain function is not. The current deluge of data using antibodies and cDNAs is beginning to come together nicely to describe the structure of these receptors. Soon, these techniques may combine with others to better reveal the functional roles of neuronal nicotinic receptors. 相似文献
17.
Wu P Ma D Pierzchala M Wu J Yang LC Mai X Chang X Schmidt-Glenewinkel T 《The Journal of biological chemistry》2005,280(22):20987-20994
The central nervous system of Drosophila melanogaster contains an alpha-bungarotoxin-binding protein with the properties expected of a nicotinic acetylcholine receptor. This protein was purified 5800-fold from membranes prepared from Drosophila heads. The protein was solubilized with 1% Triton X-100 and 0.5 M sodium chloride and then purified using an alpha-cobratoxin column followed by a lentil lectin affinity column. The purified protein had a specific activity of 3.9 micromol of 125I-alpha-bungarotoxin binding sites/g of protein. The subunit composition of the purified receptor was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. This subunit profile was identical with that revealed by in situ labeling of the membrane-bound protein using the photolyzable methyl-4-azidobenzoimidate derivative of 125I-alpha-bungarotoxin. The purified receptor reveals two different protein bands with molecular masses of 42 and 57 kDa. From sedimentation analysis of the purified protein complex in H2O and D2O and gel filtration, a mass of 270 kDa was calculated. The receptor has a s(20,w) of 9.4 and a Stoke's radius of 7.4 nm. The frictional coefficient was calculated to be 1.7 indicating a highly asymmetric protein complex compatible with a transmembrane protein forming an ion channel. The sequence of a peptide obtained after tryptic digestion of the 42-kDa protein allowed the specific identification of the Drosophila D alpha5 subunit by sequence comparison. A peptide-specific antibody raised against the D alpha5 subunit provides further evidence that this subunit is a component of an alpha-bungarotoxin binding nicotinic acetylcholine receptor from the central nervous system of Drosophila. 相似文献
18.
19.
20.
Amino acids of the Torpedo marmorata acetylcholine receptor alpha subunit labeled by a photoaffinity ligand for the acetylcholine binding site 总被引:15,自引:0,他引:15
M Dennis J Giraudat F Kotzyba-Hibert M Goeldner C Hirth J Y Chang C Lazure M Chrétien J P Changeux 《Biochemistry》1988,27(7):2346-2357
The acetylcholine-binding sites on the native, membrane-bound acetylcholine receptor from Torpedo marmorata were covalently labeled with the photoaffinity reagent [3H]-p-(dimethylamino)-benzenediazonium fluoroborate (DDF) in the presence of phencyclidine by employing an energy-transfer photolysis procedure. The alpha-chains isolated from receptor-rich membranes photolabeled in the absence or presence of carbamoylcholine were cleaved with CNBr and the radiolabeled fragments purified by high-performance liquid chromatography. Amino acid and/or sequence analysis demonstrated that the alpha-chain residues Trp-149, Tyr-190, Cys-192, and Cys-193 and an unidentified residue(s) in the segment alpha 31-105 were all labeled by the photoaffinity reagent in an agonist-protectable manner. The labeled amino acids are located within three distinct regions of the large amino-terminal hydrophilic domain of the alpha-subunit primary structure and plausibly lie in proximity to one another at the level of the acetylcholine-binding sites in the native receptor. These findings are in accord with models proposed for the transmembrane topology of the alpha-chain that assign the amino-terminal segment alpha 1-210 to the synaptic cleft. Furthermore, the results suggest that the four identified [3H]DDF-labeled residues, which are conserved in muscle and neuronal alpha-chains but not in the other subunits, may be directly involved in agonist binding. 相似文献