首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to compare the effects of chronic (0.1 mol/L ethanol exposure during 30 days) and acute (0.5 mol/L ethanol exposure during 24 h) ethanol treatment on the physical properties and the lipid composition of plasma membranes of the WRL-68 cells (fetal human hepatic cell line). Using fluorescence polarization we found that ethanol treatment reduced membrane anisotropy due to disorganization of acyl chains in plasma membranes and consequently increased fluidity, as measured with the diphenylhexatriene probe. Addition of ethanolin vitro reduced anisotropy in control plasma membranes, whereas chronically ethanol-treated plasma membranes were relatively tolerant to thein vitro addition of ethanol. Acutely ethanol-treated plasma membranes exhibited a smaller anisotropy parameter value than control plasma membranes. We found a decrease in total phospholipid content in acute ethanol WRL-68 plasma membranes. Cholesterol content was increased in both ethanol treatments, and we also found a significant decrease in phosphatidylinositol and phosphatidylcholine and an increase in phosphatidylethanolamine content in ethanol-treated plasma membranes. Our data showed that ethanol treatment decreased the anisotropy parameter consistently with increased fluidity, while increasing the cholesterol/phospholipid ratio of plasma membranes of WRL-68 cells, but only chronically ethanol-treated plasma membranes exhibited tolerance to thein vitro addition of ethanol. It is important to note that some changes that were interpreted as a result of chronic ethanol treatment were also present in short-period ethanol treatments.Abbreviations DPH diphenylhexatriene - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - SPH sphingomyelin  相似文献   

2.
Administration of high-dose ethinylestradiol to rats decreases bile flow, Na,K-ATPase specific activity, and liver plasma membrane fluidity. By use of highly purified sinusoidal and bile canalicular membrane fractions, the effect of ethinylestradiol administration on the protein and lipid composition and fluidity of plasma membrane fractions was examined. In sinusoidal fractions, ethinylestradiol (EE) administration decreased Na,K-ATPase activity (32%) and increased activities of alkaline phosphatase (254%), Mg2+-ATPase (155%), and a 160-kDa polypeptide (10-fold). Steady-state and dynamic fluorescence polarization was used to study membrane lipid structure. Steady-state polarization of diphenylhexatriene (DPH) was significantly higher in canalicular compared to sinusoidal membrane fractions. Ethinylestradiol (5 mg/kg per day for 5 days) selectively increased sinusoidal polarization values. Similar changes were demonstrated with the probes 2- and 12-anthroyloxystearate. Time-resolved fluorescence polarization measurements indicated that EE administration for 5 days did not change DPH lifetime but increased the order component (r infinity) and decreased the rotation rate (R). However, 1 and 3 days after EE administration and with low doses (10-100 micrograms/kg per day for 5 days) the Na,K-ATPase, bile flow, and order component were altered, but the rotation rate was unchanged. Vesicles prepared from total sinusoidal membrane lipids of EE-treated rats, as well as phospholipid vesicles, demonstrated increased DPH polarization, as did intact plasma membrane fractions. Liver plasma membrane fractions showed no change in free cholesterol or cholesterol/phospholipid molar ratio, while esterified cholesterol content was increased with high-dose but not low-dose ethinylestradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Highly purified plasma membranes of bovine thyroid were obtained by differential pelleting followed by discontinuous gradient centrifugation in a swing-out rotor. Subfractions of plasma membranes were prepared by affinity chromatography on Con A-Sepharose. The final membrane fractions were enriched 25-30-fold over homogenate in 5'-nucleotidase and alkaline phosphatase and displayed a protein to phospholipid ratio of 1.67 and a cholesterol to phospholipid molar ratio of 0.55. The phospholipid composition did not deviate appreciably from that of whole tissue except for the higher sphingomyelin level (22.5 vs. 14.0%). The predominant fatty acids were palmitic (16:0), oleic (18:1), stearic (18:0) and linoleic (18:2) acid. The physical state of the membrane was studied by (i) calculation of the lipid structural order parameter SDPH from steady-state fluorescence anisotropy determinations of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH); (ii) estimation of the lateral diffusion coefficient of pyrene following excimer formation. These parameters were determined in native thyroid plasma membranes and in reconstituted vesicles, obtained by detergent dialysis from octylglucoside solubilized membrane components. The presence of membrane protein or neutral lipids induced more restraint on the movements of the fluorophores. The lipid order parameter, SDPH was mainly determined by the neutral lipids. Subfractions of plasma membrane enriched in luminal membranes have a slightly lower fluidity (higher SDPH and lower Ddiff values) than subfractions enriched in basolateral membranes. This difference appears to be due to both differences in lipid as well as protein composition. Under physiological conditions, no significant alterations in probe dynamics could be observed upon addition of thyrotropin or cholera toxin, even at micromolar concentrations.  相似文献   

4.
Hepatic plasma membrane lipids of lean (+/?) and obese (ob/ob) mice have been investigated using 1,6-diphenylhexatriene (DPH). Arrhenius plots of DPH fluorescence polarization in membranes showed the breakpoint in obese mice was reduced from 21 to 15 degrees C, whereas the breakpoint of 5'-nucleotidase activity was raised from 23 to 32 degrees C. Arrhenius break temperatures of DPH polarization and 5'-nucleotidase activity responded differently to housing mice at 34 degrees C and triiodothyronine (T3) treatment. Studies of DPH polarization in liposomes and phospholipid fatty acid composition suggested that differences in sphingomyelin acyl composition determine Arrhenius characteristics of hepatic 5'-nucleotidase in lean and obese mice.  相似文献   

5.
The effect of chronic administration of lithium salts on the lipid composition and physical properties of the synaptosomal plasma membrane was examined in rat brain. The effect of lithium treatment has been studied on the fluorescence polarization of synaptosomal plasma membrane and artificial lipid vesicles and on the lipid composition of the membranes. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from lithium-treated animals. Altered DPH polarization was due to a decrease in the order parameter of the probe. The lithium-treatment also changed the fluorescence of 1-anilino-8-naphthalene sulfonate (ANS), a probe that binds to the polar head group of the phospholipids and to proteins on the membrane surface. Synaptic plasma membranes from treated rats presented no significant changes on the cholesterol-to-phospholipid ratio, although the phospholipid class distribution was altered and the membrane phospholipid unsaturation increased. In summary, the neural plasma membranes became disorder after chronic lithium administration at therapeutic levels. This structural change may be due to changes in plasma membrane phospholipid distribution and to the degree of unsaturation of phospholipid fatty acids.  相似文献   

6.
The effect(s) of bovine brain ganglioside-GM1 on the order of phosphatidylcholine-cholesterol membranes were studied using steady-state fluorescence polarization (FPZ) techniques with 1,6-diphenyl-1,3,5-hexatriene (DPH) as the membrane probe. In the absence of cholesterol, GM1 (30 mol%) increases both membrane order and the phase transition temperature of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) membranes. However, in the presence of cholesterol (0.3 or 0.5, cholesterol/phospholipid molar ratio), GM1 significantly decreases steady-state anisotropy (rs) at temperatures above the Tm for the particular phospholipid. This effect may, in part relate to a dilution of membrane cholesterol and is shared by bovine brain sphingomyelin (SM). GM1 (30 mol%) increases the order of 1-palmityl-2-oleyl-PC (POPC) membranes. However, in the presence of cholesterol (0.3 molar ratio) GM1 neither increases or decreases order. Thus, in cholesterol containing artificial membranes, the effect of GM1 depends on the phosphatidylcholine (PC) fatty acid composition and may not be evident from the effect of GM1 on pure PC membranes.  相似文献   

7.
Lipid composition of the isolated rat intestinal microvillus membrane   总被引:13,自引:4,他引:9  
1. Rat intestinal microvillus plasma membranes were prepared from previously isolated brush borders and the lipid composition was analysed. 2. The molar ratio of cholesterol to phospholipid was greatest in the membranes and closely resembled that reported for myelin. 3. Unesterified cholesterol was the major neutral lipid. However, 30% of the neutral lipid fraction was accounted for by glycerides and fatty acid. 4. Five phospholipid components were identified and measured, including phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, sphingomyelin and lysophosphatidylcholine. Though phosphatidylethanolamine was the chief phospholipid, no plasmalogen was detected. 5. In contrast with other plasma membranes in the rat, the polar lipids of the microvillus membrane were rich in glycolipid. The cholesterol:polar lipid (phospholipid+glycolipid) ratio was about 1:3 for the microvillus membrane. Published data suggest that this ratio resembles that of the liver plasma membrane more closely than myelin or the erythrocyte membrane. 6. The fatty acid composition of membrane lipids was altered markedly by a single feeding of safflower oil. Membrane polar lipids did not contain significantly more saturated fatty acids than cellular polar lipids. Differences in the proportion of some fatty acids in membrane and cellular glycerides were noted. These differences may reflect the presence of specific membrane glycerides.  相似文献   

8.
The role of membrane lipids and membrane fluidity in thermosensitivity of mammalian cells is not well understood. The limited experimental data in the literature have led to conflicting results. A detailed investigation of lipid composition and membrane fluidity of cellular membranes was undertaken to determine their relationship to cell survival after hyperthermia. Ehrlich ascites (EA) cells, mouse fibroblast LM cells, and HeLa S3 cells differed in thermosensitivity as expressed by a D0 of 3.1, 5.2, and 9.7 min, respectively, at 44 degrees C. No correlation with cellular thermosensitivity could be found with respect to the amount of cholesterol and to the cholesterol to phospholipid ratio in the particulate fraction of the cells. By growing the cells for some generations in different media, cholesterol and phospholipid content could be changed in the particulate fraction, but no difference in cell survival was observed. When mouse fibroblasts were grown for 24 hr in a serum-free medium supplemented with arachidonic acid (20:4), all subcellular membranes were about eight times richer in phospholipids containing polyunsaturated acyl (PUFA) chains and membrane fluidity was increased as measured by fluorescence polarization of diphenylhexatriene (DPH). The alterations resulted in a higher thermosensitivity. When mouse fibroblasts were made thermotolerant no change in cholesterol and phospholipid content could be found in the particulate fraction of the cells. The relative weights and the quality of the phospholipids as well as the fatty acid composition of the phospholipids appeared to be the same for normal and thermotolerant cells. Fluidity measurements in whole cells, isolated plasma membranes, and liposomes prepared from phospholipids extracted from the cells revealed no significant differences between normal and thermotolerant fibroblasts when assayed by fluorescence polarization (DPH) and electron spin resonance (5-nitroxystearate). It is concluded that the mechanism of thermal adaptation resulting in differences in lipid composition as reported in the literature differs from the mechanism of the acquisition of thermal tolerance. The lower heat sensitivity of thermotolerant cells, as initiated by a nonlethal triggering heat dose followed by an induction period at 37 degrees C, does not involve changes in lipid composition and membrane fluidity. However, a prompt and clear (also nonlethal) change in membrane fluidity by an increase in PUFA does result in an increased thermosensitivity, probably because of an indirect effect via the lipids in causing disfunctioning of proteins in the membrane and/or the cytoskeleton.  相似文献   

9.
D C Bode  P B Molinoff 《Biochemistry》1988,27(15):5700-5707
The effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane were examined with cultured S49 lymphoma cells. The beta-adrenergic receptor-coupled adenylate cyclase system was used as a probe of the functional properties of the plasma membrane. Steady-state fluorescence anisotropy of diphenylhexatriene and the lipid composition of the plasma membrane were used as probes of the physical properties of the membrane. Cells were grown under conditions such that the concentration of ethanol in the growth medium remained stable and oxidation of ethanol to acetaldehyde was not detected. Chronic exposure of S49 cells to 50 mM ethanol or growth of cells at elevated temperature resulted in a decrease in adenylate cyclase activity. There were no changes in the density of receptors or in the affinity of beta-adrenergic receptors for agonists or antagonists following chronic exposure to ethanol. The fluorescence anisotropy of diphenylhexatriene was lower in plasma membranes prepared from cells that had been treated with 50 mM ethanol than in membranes prepared from control cells. However, this change was not associated with changes in the fatty acid composition or the cholesterol to phospholipid ratio of the plasma membrane. There was a small but statistically significant decrease in the amount of phosphatidylserine and an increase in the amount of phosphatidylethanolamine. These changes cannot account for the decrease in anisotropy. In contrast to the effect of ethanol, a decrease in adenylate cyclase activity following growth of S49 cells at 40 degrees C was not associated with a change in anisotropy.  相似文献   

10.
Anthryl-labeled fluorescent probes closely mimicking phosphatidylcholine and sphingomyelin were applied to study the state of these phospholipids in the rabbit erythrocyte membrane. At normal cholesterol levels both probes exhibited higher fluorescence polarization values in the membranes than in phospholipid vesicles of similar lipid composition, indicating a decreased fluidity of the probe environment in erythrocyte ghosts. In ghosts prepared from normal erythrocytes no evidence of lateral separation of phosphatidylcholine and sphingomyelin was found. At higher cholesterol levels, however, these lipids appear to segregate. Probably the effect of cholesterol on the erythrocyte membrane lipids involves lipid-protein interactions. At physiological concentrations, prostaglandin E1 only weakly affects the state of phosphatidylcholine and sphingomyelin in erythrocyte membranes. Cholesterol enrichment amplifies the effect of prostaglandin E1. Although the prostaglandin E1-induced changes depended much upon whether the ghosts were enriched with cholesterol in vitro or in vivo, with both types of ghosts effects of prostaglandin E1 were seen at extremely low effector concentrations that may have presented a few molecules of prostaglandin per ghost. The structural and functional significance of these findings is discussed.  相似文献   

11.
The lipophilic fluorescent probe DPH, generally used to determine the microviscosity of membrane lipids, has been visualized in intact cells by fluorescence microscopy. All lipid material of the cells, including cytoplasmic lipid droplets, was found to be labelled with DPH. The fluorescent signal from inside the cells contributes to a large extent to the total cell fluorescence. The results indicate that fluorescence polarization data obtained from intact cells, using DPH as probe, give information on the total lipid material of the cells rather than exclusive information on microviscosity and fluidity of plasma membranes of these cells, as has been repeatedly suggested.  相似文献   

12.
The effects of membrane perturbants (ethanol, pentobarbital, chloroform, diethylether, phenytoin, cis-vaccenic acid methylester, and cis-vaccenoyl alcohol) on the lipid order of mouse brain synaptic plasma membranes (SPM) were tested by fluorescence polarization using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe of the membrane core and 1-[4-(trimethylammonium)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) as a probe of the membrane surface. The compounds decreased the fluorescence polarization of both probes, indicating that they disordered the membrane lipids. The decrease in polarization was, however, greater for DPH than for TMA-DPH, suggesting a greater effect on the membrane core than on the membrane surface. The voltage-dependent uptake of 24Na and 45Ca was studied in isolated mouse brain synaptosomes as a measure of membrane function. All of the compounds inhibited sodium influx, and their potencies for decreasing sodium uptake and fluorescence polarization of DPH were linearly correlated (r = 0.91). The relationship between changes in sodium influx and TMA-DPH polarization was less consistent (r = 0.66). Synaptosomal calcium uptake was inhibited by most, but not all, of the perturbants, but this inhibition was poorly correlated with changes in fluorescence polarization of DPH (r = 0.36) or TMA-DPH (r = 0.26). These results indicate that the function of synaptic sodium channels is correlated with lipid order in the hydrophobic core of the membrane and that the inhibitory effects of intoxicant-anesthetic drugs on neuronal sodium fluxes may be the result of their capacity to disorder these lipids. In contrast, the effects of drugs on voltage-dependent calcium channels were not clearly related to the capacity of these agents to disorder membrane lipids.  相似文献   

13.
Membrane fluidity of Toxoplasma gondii: a fluorescence polarization study   总被引:1,自引:0,他引:1  
Toxoplasma gondii membrane fluidity was investigated by fluorescence polarization. We used 1,6-diphenyl 1,3,5-hexatriene (DPH) as a fluorescent hydrophobic probe. Fluorescence anisotropy (r) and degree of order (s) showed high fluidity properties. Chemical analysis was performed on this parasite. We found a low cholesterol/phospholipid ratio, many unsaturated fatty acids chains, and high phosphatidylcholine and low sphingomyelin amounts. These results were in good agreement with the observed high fluidity. This may be related to the great adaptability of Toxoplasma gondii in infesting a wide variety of host cells.  相似文献   

14.
Fluorescence polarization measurements with the probe 1,6-diphenyl-1,3,5-hexatriene (DPH) were performed to detect changes in the fluidity of plasma membranes from T-lymphocytes stimulated with mitogens. When the cells were incubated with succinyl-concanavalin A an increase in fluorescence polarization was observed. This, however, could be shown to be due to the interaction of the mitogen with the label DPH and did not reflect changes in the plasma membrane. In purified plasma membranes a decrease rather than an increase of fluorescence polarization was observed.  相似文献   

15.
Murine neuroblastoma cells (clone N-2A) grown in suspension (spinner cells) or attached on a plastic surface (monolayer cells) were used in studies of the phospholipid and cholesterol composition of whole cells, primary plasma membranes, plasma membranes internalized during phagocytosis of polystyrene latex beads, mitochondria and microsomes. Monolayer cells contained higher concentrations of total phospholipid, phosphatidylserine and phosphatidylcholine, and lower concentration of phosphatidylethanolamine than spinner cells. The cholesterol levels and the relative proportions of the various phospholipids were similar in both cell types except phosphatidylethanolamine and sphingomyelin whose proportions were lower in monolayer cells. The primary plasma membranes of the two cell types differed significantly in the relative proportions of all phospholipids, except sphingomyelin, and the phospholipid to protein and the cholesterol to protein ratios were all higher in the membranes of spinner cells. In contrast to these results, all the phospholipid to protein and the cholesterol to protein ratios of the internalized plasma membranes were higher in monolayer than in spinner cells, and the proportions of all phospholipids, except phosphatidylethanolamine, were similar in both cell types. The membrane distributions of individual phospholipids and cholesterol were inferred from comparison of the phospholipid and cholesterol compositions of primary plasma membranes and plasma membranes internalized during phagocytosis of polystyrene beads. The results are consistent with a non-random distribution of most phospholipids in both spinner and monolayer cells, but the patterns of these distributions were different in the two cell types. With regard to cholesterol the results are compatible with a random or a heterogeneous distribution. All the phospholipid to protein ratios of the mitochondrial fraction of both cell types were lower than those of the plasma membranes. However, these ratios of the microsomal fraction were higher than those of the plasma membranes of monolayer cells, whereas they were comparable, with a few exceptions, to those of spinner cell membranes. The cholesterol to phospholipid molar ratios of plasma membranes were 6.4 and 4.3 fold greater than those of the mitochondrial and microsomal fractions, respectively.  相似文献   

16.
There are indications from freeze-fracture experiments that subclasses of rabbit thymocytes show different mobilities of plasma membrane components. Consequently, one would expect differences in the fluidity of the plasma membrane. For this reason, rabbit thymocytes were separated on a Ficoll/Metrizoate gradient yielding three subclasses representing various levels of cell differentiation. These thymocyte subclasses did not show any significant differences in the degree of fluorescence polarization using the probe 1,6-diphenyl-1,3,5-hexatriene. The fluorescence polarization of the plasma membrane may be overshadowed by the contribution of all cellular lipids due to penetration of the fluorescent probe into the cell. Therefore, plasma membranes were isolated from rabbit thymocytes using a cell-disrupting pump, differential centrifugation, and sucrose density gradient centrifugation. As shown by biochemical and electron microscopical analyses, plasma membranes with a high degree of purity were obtained. As expected the plasma membrane fractions showed a higher microviscosity than the other subcellular fractions. This was attributed to a higher cholesterol to phospholipid molar ratio and a higher degree of saturation of phospholipid fatty acid chains. Subsequently, the microviscosity was measured of plasma membrane preparations obtained from two main subclasses of thymocytes representing mature and immature lymphocytes. The immature thymocytes yielded two plasma membrane fractions with higher microviscosity than the mature cells. These finding is in line with earlier observed differences in the glycerol-induced clustering of intramembranous particles. Furthermore, the results of this study support the view that the fluorescence polarization technique applied to whole cells does not exclusively monitor the plasma membrane.  相似文献   

17.
Lipid Composition of Purified Vesicular Stomatitis Viruses   总被引:37,自引:31,他引:6       下载免费PDF全文
Methods are described for the production of vesicular stomatitis (VS) virus of sufficient purity for reliable chemical analysis. VS virions released from infected cells were concentrated and purified at least 150-fold by sequential steps of precipitation with polyethylene glycol, column chromatography, rate zonal centrifugation, and equilibrium centrifugation. The Indiana serotype (VS(Ind) virus) propagated in L-cells was found to contain 3% ribonucleic acid, 64% protein, 13% carbohydrate, and 20% lipid; the molar ratio of cholesterol to phospholipid was 0.6 or greater. Thin-layer chromatography revealed no unusual neutral lipids or phospholipids and gas-liquid chromatography revealed no unusual fatty acids incorporated into VS virions. The antigenically distinct New Jersey serotype (VS(NJ) virus) grown in L-cells showed a similar lipid profile except that the proportion of neutral lipids was larger than in VS(Ind) virus also grown in L-cells. This differences was less pronounced when the lipid composition of VS(Ind) and VS(NJ) viruses grown in chick embryo cells was compared, but VS(NJ) virus grown in either cell type always contained larger amounts of neutral lipids other than cholesterol than did VS(Ind) virus. The lipid composition of both VS(Ind) and VS(NJ) viruses grown in L-cells or chick embryo cells more closely resembled that of plasma membrane than of whole cells. A consistent finding was the relatively large amounts of phosphatidylethanolamine and sphingomyelin and the relatively small amounts of phosphatidylcholine in both VS viruses compared with uninfected whole L-cells and chick embryo cells or their plasma membranes. The methods available for isolation of plasma membranes were inadequate for conclusive comparison of the lipids of VS virions with the lipids of the plasma membranes of their host cells. Nevertheless, the data obtained are consistent with two hypotheses: (i) the lipid composition of VS viruses primarily reflects their membrane site of maturation, and (ii) the newly synthesized viral proteins inserted into cell membranes influence the proportions of phospholipids and neutral lipids selected for incorporation into the viral membrane.  相似文献   

18.
The literature suggests that cholesterol and sphingomyelin might be essentially confined to plasma membranes in mammalian cells; however, this premise has thus far escaped a direct test. We explored the issue in three ways. First, we fractionated whole homogenates of cultured human fibroblasts by equilibrium sucrose density gradient centrifugation. We found that the profiles of cholesterol and sphingomyelin were indistinguishable from those of two plasma membrane markers, 5' nucleotidase and [3H]galactose, which was conjugated to the surface of intact cells from an exogenous donor by galactosyltransferase. Second, we determined the relative surface areas of intact cells from their uptake of 1-(4-trimethyl-amino)phenyl-6-phenylhexa-1,3,5-triene, a cationic fluorescent dye which partitions into but does not cross plasma membranes. Relative to human red cell ghosts, the apparent surface area of the fibroblasts was 17,500 microns2/cell while for canine hepatocytes, the value was 11,500 microns2/cell. The relative ratios of cell cholesterol to dye binding (hence, surface area) were quite similar in ghosts, fibroblasts, and liver cells; namely 1.0, 1.12, and 0.67, respectively. Finally, we found that the specific ratios of both cholesterol and sphingomyelin to 5' nucleotidase were only 10% less in gradient-purified plasma membranes than in whole homogenates. Similar results were obtained using an entirely different method of purification: two-phase aqueous partition. The cholesterol and sphingomyelin in fractions rich in other membranes was closely proportional to their 5' nucleotidase content, suggesting that the presence of these lipids reflected contamination by plasma membrane fragments. The 5' nucleotidase/phospholipid ratio in the purified plasma membrane fraction was roughly twice that in whole cells. We conclude that the compartment marked by 5' nucleotidase in cultured human fibroblasts contains approximately 90% of the two named lipids and half the cell phospholipid phosphorus.  相似文献   

19.
There are indications from freeze-fracture experiments that subclasses of rabbit thymocytes show different mobilities of plasma membrane components. Consequently, one would expect differences in the fluidity of the plasma membrane. For this reason, rabbit thymocytes were separated on a Ficoll/Metrizoate gradient yielding three subclasses representing various levels of cell differentiation. These thymocyte subclasses did not show any significant differences in the degree of fluorescence polarization using the probe 1,6-diphenyl-1,3,5-hexatriene. The fluorescence polarization of the plasma membrane may be overshadowed by the contribution of all cellular lipids due to penetration of the fluorescent probe into the cell. Therefore, plasma membranes were isolated from rabbit thymocytes using a cell-disrupting pump, differential centrifugation, and sucrose density gradient centrifugation. As shown by biochemical and electron microscopical analyses, plasma membranes with a high degree of purity were obtained. As expected the plasma membrane fractions showed a higher microviscosity than the other subcellular fractions. This was attributed to a higher cholesterol to phospholipid molar ratio and a higher degree of saturation of phospholipid fatty acid chains.Subsequently, the microviscosity was measured of plasma membrane preparations obtained from two main subclasses of thymocytes representing mature and immature lymphocytes. The immature thymocytes yielded two plasma membrane fractions with higher microviscosity than the mature cells.  相似文献   

20.
GRSL lymphoma cells were isolated from various growth sites in the host. The relative membrane lipid fluidities of these cells and of normal lymphoid cells were estimated by fluorescence polarization, using the probe diphenylhexatriene and by measuring the (free) cholesterol/phospholipid molar ratio in whole cells. The results indicate that the membrane fluidity (reciprocal of the lipid structural order) of the lymphoma cells increases in the order of their location: peripheral blood less than spleen less than mesenterial lymph node less than ascites fluid. The membrane fluidities of normal lymphocytes from thymus, mesenterial lymph node and spleen were about the same, but higher than of peripheral blood lymphocytes, and between those of the lymphoma cells from lymph node and spleen. These results are confirmed by more extensive analysis on purified plasma membranes from the splenic and ascitic GRSL lymphoma cells and from normal splenocytes and thymocytes. The significantly higher lipid order parameter found in the GRSL plasma membrane isolated from the spleen as compared to those from the ascites cells could be fully explained by the differences measured in the major chemical determinants of the fluidity, i.e., the cholesterol/phospholipid ratio, the sphingomyelin content and the degree of saturation of the fatty acyl groups of the phospholipids. It was also found that the cholesterol/phospholipid ratio in erythrocyte membranes isolated from the peripheral blood of the tumor bearers was higher than in those from normal control mice. The observed differences in membrane fluidity between distinct subsets of tumor cells may be relevant to the sensitivity of these cells to immune attack or to drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号