共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu X Zuo S Chen Z Zhang Y Zhu J Ma N Tang J Chu C Pan X 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,122(5):915-923
The indica rice cultivar, Teqing, shows a high level of resistance to rice stripe virus (RSV). It is believed that this resistance
is controlled by the gene, qSTV11
TQ
. For positional cloning of the resistance gene, a set of chromosome single segment substitution lines (CSSSLs) was constructed,
all of which had the genetic background of the susceptible japonica cultivar, Lemont, with different single substituted segments
of Teqing on chromosome 11. By identifying the resistance of the CSSSLs-2006 in a field within a heavily diseased area, the
resistance gene qSTV11
TQ
was mapped between the markers Indel7 and RM229. Furthermore, in that region, six new markers were developed and 52 subregion
CSSSLs (CSSSLs-2007) were constructed. The natural infection experiment was conducted again at different sites, with two replicates
used in each site in order to identify the resistance phenotypes of the CSSSLs-2007 and resistant/susceptible controls in
2007. Through the results of 2007, qSTV11
TQ
was localized in a region defined by the markers, CAPs1 and Indel4. In order to further confirm the position of qSTV11
TQ
, another set of subregion CSSSLs (CSSSLs-2009) was constructed. Finally, qSTV11
TQ
was localized to a 55.7 kb region containing nine annotated genes according to the genome sequence of japonica Nipponbare. The relationship between qSTV11
TQ
and Stvb-i (Hayano-Saito et al. in Theor Appl Genet 101:59–63, 2000) and the reliability of the markers used on both sides of qSTV11
TQ
for marker-assisted breeding of resistance to rice stripe disease are discussed. 相似文献
2.
Kwon T Lee JH Park SK Hwang UH Cho JH Kwak DY Youn YN Yeo US Song YC Nam J Kang HW Nam MH Park DS 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2012,125(5):1033-1046
Rice stripe disease, caused by rice stripe virus (RSV) is a serious constraint to rice production in subtropical regions of East Asia. We performed fine mapping of a RSV resistance QTL on chromosome 11, qSTV11 ( SG ), using near-isogenic lines (NILs, BC(6)F(4)) derived from a cross between the highly resistant variety, Shingwang, and the highly susceptible variety, Ilpum, using 11 insertion and deletion (InDel) markers. qSTV11 ( SG ) was localized to a 150-kb region between InDel 11 (17.86 Mbp) and InDel 5 (18.01?Mbp). Among the two markers in this region, InDel 7 is diagnostic of RSV resistance in 55 Korean japonica and indica rice varieties. InDel 7 could also distinguish the allele type of Nagdong, Shingwang, Mudgo, and Pe-bi-hun from Zenith harboring the Stv-b ( i ) allele. As a result, qSTV11 ( SG ) is likely to be the Stv-b ( i ) allele. There were 21 genes in the 150-kb region harboring the qSTV11 ( SG ) locus. Three of these genes, LOC_Os11g31430, LOC_Os11g31450, and LOC_Os11g31470, were exclusively expressed in the susceptible variety. These expression profiles were consistent with the quantitative nature along with incomplete dominance of RSV resistance. Sequencing of these genes showed that there were several amino acid substitutions between susceptible and resistant varieties. Putative functions of these candidate genes for qSTV11 ( SG ) are discussed. 相似文献
3.
Wu X Li X Xu C Wang S 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2008,118(1):185-191
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating plant bacterial disease worldwide. Different bacterial blight resistance (R) genes confer race-specific resistance to different strains of Xoo. We fine mapped a fully recessive gene, xa24, for bacterial blight resistance to a 71-kb DNA fragment in the long arm of rice chromosome 2 using polymerase chain reaction-based
molecular markers. The xa24 gene confers disease resistance at the seedling and adult stages. It mediates resistance to at least the Philippine Xoo races 4, 6 and 10 and Chinese Xoo strains Zhe173, JL691 and KS-1-21. Sequence analysis of the DNA fragment harboring the dominant (susceptible) allele of xa24 suggests that this gene should encode a novel protein that is not homologous to any known R proteins. These results will
greatly facilitate the isolation and characterization of xa24. The markers will be convenient tools for marker-assisted selection of xa24 in breeding programs.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
4.
D. F. Ma Z. W. Fang J. L. Yin K. X. Chao J. X. Jing Q. Li B. T. Wang 《Molecular breeding : new strategies in plant improvement》2016,36(6):64
Wheat stripe rust is a destructive disease that affects most wheat-growing areas worldwide. Resistance genes from related species and genera add to the genetic diversity available to wheat breeding programs. The stripe rust-resistant introgression line H9020-17-25-6-4 was developed from a cross of resistant Psathyrostachys huashanica with the susceptible wheat cultivar 7182. H9020-17-25-6-4 is resistant to all existing Chinese stripe rust races, including the three most widely virulent races, CYR32, CYR33, and V26. We attempted to characterize this new line by genomic in situ hybridization (GISH) and genetic analysis. GISH using P. huashanica genomic DNA as a probe indicated that the translocated segment was too small to be detected. Genetic analysis involving F1, F2, and F2:3 materials derived from a cross of Mingxian 169 and H9020-17-25-6-4 indicated that a single dominant gene from H9020-17-25-6-4, temporarily designated YrHu, conferred resistance to CYR29 and CYR33. A genetic map consisting of four simple sequence repeat, two sequence-tagged site (STS), and two sequence-related amplified polymorphism markers was constructed. YrHu was located on the short arm of chromosome 3A and was about 0.7 and 1.5 cM proximal to EST-STS markers BG604577 and BE489244, respectively. Both the gene and the closely linked markers could be used in marker-assisted selection. 相似文献
5.
Jilong Li Yinghua Pan Haifeng Guo Lei Zhou Shuming Yang Zhanying Zhang Jiazhen Yang Hongliang Zhang Jinjie Li Yawen Zeng Zichao Li 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(1):157-166
Key message
The QTL qCTB10 - 2 controlling cold tolerance at the booting stage in rice was delimited to a 132.5 kb region containing 17 candidate genes and 4 genes were cold-inducible.Abstract
Low temperature at the booting stage is a major abiotic stress-limiting rice production. Although some QTL for cold tolerance in rice have been reported, fine mapping of those QTL effective at the booting stage is few. Here, the near-isogenic line ZL31-2, selected from a BC7F2 population derived from a cross between cold-tolerant variety Kunmingxiaobaigu (KMXBG) and the cold-sensitive variety Towada, was used to map a QTL on chromosome 10 for cold tolerance at the booting stage. Using BC7F3 and BC7F4 populations, we firstly confirmed qCTB10-2 and gained confidence that it could be fine mapped. QTL qCTB10-2 explained 13.9 and 15.9% of the phenotypic variances in those two generations, respectively. Using homozygous recombinants screened from larger BC7F4 and BC7F5 populations, qCTB10-2 was delimited to a 132.5 kb region between markers RM25121 and MM0568. 17 putative predicted genes were located in the region and only 5 were predicted to encode expressed proteins. Expression patterns of these five genes demonstrated that, except for constant expression of LOC_Os10g11820, LOC_Os10g11730, LOC_Os10g11770, and LOC_Os10g11810 were highly induced by cold stress in ZL31-2 compared to Towada, while LOC_Os10g11750 showed little difference. Our results provide a basis for identifying the genes underlying qCTB10-2 and indicate that markers linked to the qCTB10-2 locus can be used to improve the cold tolerance of rice at the booting stage by marker-assisted selection.6.
Weijun Ye Shikai Hu Liwen Wu Changwei Ge Yongtao Cui Ping Chen Jing Xu Guojun Dong Longbiao Guo Qian Qian 《Plant Growth Regulation》2017,81(1):81-90
Chlorophyll (Chl) content is an important agronomic trait directly affecting the photosynthetic rate. Using a high-density genetic map of 132 recombinant inbred lines (RILs) derived from the cross between 93-11 and PA64s, we detected the quantitative trait loci (QTLs) for Chl content of the top three leaves under two nitrogen (N) conditions at two developmental stages. A total of 32 main-effect QTLs located on chromosomes 1, 4, 5, 6, 7, 8, and 12 were identified, and these QTLs individually accounted for 6.0–20.8?% of the total phenotypic variation. A major QTL qFCC7 L affecting the Chl content under low N condition was identified, and its positive allele came from PA64s. This QTL might be associated with the ability to tolerate low-N stress in rice. The chromosomal segment substitution line (CSSL) with the corresponding segment from PA64s had a higher SPAD value and photosynthetic rate than 93-11 and showed a lower specific leaf area (SLA). We performed a fine-mapping using a BC4F2 population via marker-assisted backcross and finally mapped this QTL to a 124.5 kb interval on the long arm of chromosome 7. Candidate gene analysis showed that there were sequence variations and expression differences in the predicted candidate gene between the two parents. These results suggest that the QTL qFCC7 L may be useful for breeding the rice varieties with higher photosynthetic rate and grain yield. 相似文献
7.
Babu R Jiang CJ Xu X Kottapalli KR Takatsuji H Miyao A Hirochika H Kawasaki S 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,122(4):831-854
We evaluated a large collection of Tos17 mutant panel lines for their reaction to three different races of Magnaporthe oryzae and identified a lesion mimic mutant, NF4050-8, that showed lesions similar to naturally occurring spl5 mutant and enhanced
resistance to all the three blast races tested. Nested modified-AFLP using Tos17-specific primers and southern hybridization experiments of segregating individuals indicated that the lesion mimic phenotype
in NF4050-8 is most likely due to a nucleotide change acquired during the culturing process and not due to Tos17 insertion per se. Inheritance and genetic analyses in two japonica × indica populations identified an overlapping genomic
region of 13 cM on short arm of chromosome 7 that was linked with the lesion mimic phenotype. High-resolution genetic mapping
using 950 F3 and 3,821 F4 plants of NF4050-8 × CO39 delimited a 35 kb region flanked by NBARC1 (5.262 Mb) and RM8262 (5.297 Mb), which contained 6
ORFs; 3 of them were ‘resistance gene related’ with typical NBS–LRR signatures. One of them harbored a NB–ARC domain, which
had been previously demonstrated to be associated with cell death in animals. Microarray analysis of NF4050-8 revealed significant
up-regulation of numerous defense/pathogenesis-related genes and down-regulation of heme peroxidase genes. Real-time PCR analysis
of WRKY45 and PR1b genes suggested possible constitutive activation of a defense signaling pathway downstream of salicylic
acid but independent of NH1 in these mutant lines of rice. 相似文献
8.
An early flowering mutant plant of Eucalyptus grandis with normal vegetative growth was found in a nursery in northern Brazil. This mutant plant flowers at approximately 90 days
from germination. A cross between a wild-type (normal flowering) tree and the mutant was carried out, generating a progeny
of 88 individuals where early flowering segregated in an approximate 1:1 ratio. A genome scan with 100 microsatellite markers
distributed across the genome was carried out using bulk segregant analysis (BSA) on two contrasting bulks of 15 plants each.
Linkages (LOD>3.0) with a major effect early flowering quantitative trait locus (QTL) were detected and confirmed by a full
scale cosegregation analysis for markers EMBRA27, EMBRA60, EMBRA164, EMBRA158, EMBRA91, and EMBRA65. A localized linkage map
involving the six loci and the early flowering QTL named Eucalyptus early flowering 1 (Eef1) was constructed belonging to linkage group #2 in the existing microsatellite reference map. The Eef1 locus was mapped between markers EMBRA27 and EMBRA164, with distances of 21.8 and 6.4 cM, respectively. In introgression
experiments, these two markers could be successfully used with an expected precision of 98% to select plants carrying the
Eef1 mutant allele, assuming no recombination interference in the genomic segment. Early flowering could be a very useful trait
both in breeding as well as experimental genetics of Eucalyptus. 相似文献
9.
Micic Z Hahn V Bauer E Schön CC Knapp SJ Tang S Melchinger AE 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,109(7):1474-1484
In many sunflower-growing regions of the world, Sclerotinia sclerotiorum (Lib.) de Bary is the major disease of sunflower (Helianthus annuus L.). In this study, we mapped and characterized quantitative trait loci (QTL) involved in resistance to S. sclerotiorum midstalk rot and two morphological traits. A total of 351 F3 families developed from a cross between a resistant inbred line from the germplasm pool NDBLOS and the susceptible line CM625 were assayed for their parental F2 genotype at 117 codominant simple sequence repeat markers. Disease resistance of the F3 families was screened under artificial infection in field experiments across two sowing times in 1999. For the three resistance traits (leaf lesion, stem lesion, and speed of fungal growth) and the two morphological traits, genotypic variances were highly significant. Heritabilities were moderate to high (h2=0.55–0.89). Genotypic correlations between resistance traits were highly significant (P<0.01) but moderate. QTL were detected for all three resistance traits, but estimated effects at most QTL were small. Simultaneously, they explained between 24.4% and 33.7% of the genotypic variance for resistance against S. sclerotiorum. Five of the 15 genomic regions carrying a QTL for either of the three resistance traits also carried a QTL for one of the two morphological traits. The prospects of marker-assisted selection (MAS) for resistance to S. sclerotiorum are limited due to the complex genetic architecture of the trait. MAS can be superior to classical phenotypic selection only with low marker costs and fast selection cycles. 相似文献
10.
Hélène Pidon Alain Ghesquière Sophie Chéron Souley Issaka Eugénie Hébrard François Sabot Olufisayo Kolade Drissa Silué Laurence Albar 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(4):807-818
Key message
A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene.Abstract
Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.11.
Carla Cristina Gonçalves Rosado Lúcio Mauro da Silva Guimarães Danielle Assis Faria Marcos Deon Vilela de Resende Cosme Damião Cruz Dario Grattapaglia Acelino Couto Alfenas 《Tree Genetics & Genomes》2016,12(4):72
Ceratocystis wilt caused by the fungus Ceratocystis fimbriata, is currently one of the major diseases in commercial plantations of Eucalyptus trees in Brazil. Deployment of resistant genotypes has been the main strategy for effective disease management. The present study aimed at identifying genomic regions underlying the genetic control of resistance to Ceratocystis wilt in Eucalyptus by quantitative trait loci (QTL) mapping in an outbred hybrid progeny derived from a cross between (Eucalyptus dunnii × Eucalyptus grandis) × (Eucalyptus urophylla × Eucalyptus globulus). A segregating population of 127 individuals was phenotyped for resistance to Ceratocystis wilt using controlled inoculation under a completely randomized design with five clonal replicates per individual plant. The phenotypic resistance response followed a continuous variation, enabling us to analyze the trait in a quantitative manner. The population was genotyped with 114 microsatellite markers and 110 were mapped with an average interval of 12.3 cM. Using a sib-pair interval-mapping approach five QTLs were identified for disease resistance, located on linkage groups 1, 3, 5, 8, and 10, and their estimated individual heritability ranged from 0.096 to 0.342. The QTL on linkage group 3 overlaps with other fungal disease-resistance QTLs mapped earlier and is consistent with the annotation of several disease-resistance genes on this chromosome in the E. grandis genome. This is the first study to identify and attempt to quantify the effects of QTLs associated with resistance to Ceratocystis wilt in Eucalyptus. 相似文献
12.
Voorrips RE Finkers R Sanjaya L Groenwold R 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2004,109(6):1275-1282
Anthracnose fruit rot is an economically important disease that affects pepper production in Indonesia. Strong resistance to two causal pathogens, Colletotrichum gloeosporioides and C. capsici, was found in an accession of Capsicum chinense. The inheritance of this resistance was studied in an F2 population derived from a cross of this accession with an Indonesian hot pepper variety (Capsicum annuum) using a quantitative trait locus (QTL) mapping approach. In laboratory tests where ripe fruits were artificially inoculated with either C. gloeosporioides or C. capsici, three resistance-related traits were scored: the infection frequency, the true lesion diameter (averaged over all lesions that actually developed), and the overall lesion diameter (averaged over all inoculation points, including those that did not develop lesions). One main QTL was identified with highly significant and large effects on all three traits after inoculation with C. gloeosporioides and on true lesion diameter after inoculation with C. capsici. Three other QTL with smaller effects were found for overall lesion diameter and true lesion diameter after inoculation with C. gloeosporioides, two of which also had an effect on infection frequency. Interestingly, the resistant parent carried a susceptible allele for a QTL for all three traits that was closely linked to the main QTL. The results with C. capsici were based on less observations and therefore less informative. Although the main QTL was shown to have an effect on true lesion diameter after inoculation with C. capsici, no significant QTL were identified for overall lesion diameter or infection frequency. 相似文献
13.
14.
Fine mapping of a male sterility gene <Emphasis Type="Italic">MS-cd1</Emphasis> in <Emphasis Type="Italic">Brassica oleracea</Emphasis> 总被引:1,自引:0,他引:1
Zhang X Wu J Zhang H Ma Y Guo A Wang X 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,123(2):231-238
A dominant male sterility (DGMS) line 79-399-3, developed from a spontaneous mutation in Brassica oleracea var. capitata, has been widely used in production of hybrid cultivars in China. In this line, male sterility is controlled by a dominant
gene Ms-cd1. In the present study, fine mapping of Ms-cd1 was conducted by screening a segregating population Ms79-07 with 2,028 individuals developed by four times backcrossing using
a male sterile Brassica oleracea var. italica line harboring Ms-cd1 as donor and Brassica oleracea var. alboglabra as the recipient. Bulked segregation analysis (BSA) was performed for the BC4 population Ms79-07 using 26,417 SRAP primer SRAPs and 1,300 SSRs regarding of male sterility and fertility. A high-resolution
map surrounding Ms-cd1 was constructed with 14 SRAPs and one SSR. The SSR marker 8C0909 was closely linked to the MS-cd1 gene with a distance of 2.06 cM. Fourteen SRAPs closely linked to the target gene were identified; the closest ones on each
side were 0.18 cM and 2.16 cM from Ms-cd1. Three of these SRAPs were successfully converted to dominant SCAR markers with a distance to the Ms-cd1 gene of 0.18, 0.39 and 4.23 cM, respectively. BLAST analysis with these SCAR marker sequences identified a collinear genomic
region about 600 kb in scaffold 000010 on chromosomeA10 in B. rapa and on chromosome 5 in A. thaliana. These results provide additional information for map-based cloning of the Ms-cd1 gene and will be helpful for marker-assisted selection (MAS). 相似文献
15.
Borovsky Y Paran I 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,123(4):657-665
We previously identified fs10.1 as a major QTL controlling fruit shape (index of length to width) in an interspecific F2 cross of Capsicum annuum (round fruit) × C. chinense (elongated fruit) in pepper. To more precisely map and characterize the QTL, we constructed near-isogenic lines for fs10.1 and mapped it in a BC4F2 population. In this population, fs10.1 segregated as a Mendelian locus and mapped 0.3 cM away from the closest molecular marker. We further verified the effect
of fs10.1 in an F2 population from an independent cross between elongated- and conical-fruited parents. To identify additional allelic variation
at fruit shape loci, we screened an EMS-mutagenized population of the blocky-fruited cv. Maor and identified the mutant E-1654
with elongated fruit. This fruit shape mutation was mapped to the fs10.1 region and was determined to be allelic to the QTL. By measuring fruit shape of near-isogenic lines for fs10.1 during fruit development, we found that the shape of the fruit is determined primarily in the first 2 weeks after anthesis.
Histological measurements of cell size and cell shape in pericarp sections of fruits of the isogenic lines throughout fruit
development indicated that the shape of the fruit is determined primarily by cell shape and that the development of fruit
shape is correlated with cell shape. 相似文献
16.
Daniel Mancero-Castillo Thomas G. Beckman Philip F. Harmon José X. Chaparro 《Tree Genetics & Genomes》2018,14(2):26
Species in the fungal family Botryosphaeriaceae are significant pathogens of peach. The climatic conditions in the Southeastern USA are conducive to the development of peach fungal gummosis (PFG) with an estimated yield reduction of up to 40% in severe cases. Genotypes with resistance to this PFG were identified in interspecific crosses and segregating backcross populations generated using Kansu peach (Prunus kansuensis Rehder), almond [Prunus dulcis (Mill.) D.A. Webb], and peach [Prunus persica (L.) Batsch]. Hybrids were evaluated for four consecutive years in field conditions. Data generated was validated in different environments using clonal replicates of the hybrids. The F1 and BC1F1 segregation population data suggest a dominant allele for PFG resistance originating from almond. Segregation and mapping analysis located the PFG resistance locus on a chimeric linkage groups 6–8 near the leaf color locus. The molecular markers identified will facilitate marker-assisted selection (MAS) and introgression of this resistance trait into commercial peach germplasm. 相似文献
17.
18.
Xu Liu Xu Sun Wenying Wang Hanfeng Ding Wei Liu Guangxian Li Mingsong Jiang Changxiang Zhu Fangyin Yao 《Journal of Plant Biology》2012,55(3):218-225
Purple apiculus is one of the important agronomic traits of rice. Single-segment substitution line (SSSL) W23-07-6-02-14 in the genetic background of an elite rice variety Huajingxian74 (HJX74) with the substituted interval of RM225-RM217-RM253 on the chromosome 6 was found to have purple apiculus (Pa). To map the gene governing Pa, W23-07-6-02-14 was crossed with the recipient HJX74 to develop an F2 secondary segregation population. The ratio of purple apiculus to green apiculus showed a good fit to 3:1 ratio, indicating that Pa was controlled by a major dominant gene. The gene locus for Pa was tentatively designated as Pa-6. Using 430 individuals from the F2 segregation population, the Pa-6 locus was mapped between two SSR markers RM19556 and RM19561 with genetic distances of 0.2 and 0.3 cM, respectively. For fine mapping of the Pa-6 gene, a large F2:3 segregation population of 3890 individuals was developed from F2 heterzygous plants in the RM19556-RM19561 region. Recombinant analyses further mapped the Pa-6 gene locus to an interval of 41.7-kb bounded L02 and RM19561. Sequence analysis of this 41.7-kb region revealed that it contains eleven open reading frames (ORFs), of which, ORF5 is classified as the one that is associated with the C (chromogen for anthocyanin) gene, it was presumed to be the candidate gene for Pa. This result provided a foundation of map-based cloning and function analysis of the Pa-6 gene. 相似文献
19.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
20.
Kang H Weng Y Yang Y Zhang Z Zhang S Mao Z Cheng G Gu X Huang S Xie B 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2011,122(4):795-803
Scab, caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F9 recombinant inbred lines (RILs) and 1,944 F2 plants derived from the resistant cucumber inbred line 9110Gt and the susceptible line 9930, whose draft genome sequence
is now available. A framework linkage map was first constructed with simple sequence repeat markers placing Ccu into the terminal 670 kb region of cucumber Chromosome 2. The 9110Gt genome was sequenced at 5× genome coverage with the
Solexa next-generation sequencing technology. Sequence analysis of the assembled 9110Gt contigs and the Ccu region of the 9930 genome identified three insertion/deletion (Indel) markers, Indel01, Indel02, and Indel03 that were closely
linked with the Ccu locus. On the high-resolution map developed with the F2 population, the two closest flanking markers, Indel01 and Indel02, were 0.14 and 0.15 cM away from the target gene Ccu, respectively, and the physical distance between the two markers was approximately 140 kb. Detailed annotation of the 180 kb
region harboring the Ccu locus identified a cluster of six resistance gene analogs (RGAs) that belong to the nucleotide binding site (NBS) type R
genes. Four RGAs were in the region delimited by markers Indel01 and Indel02, and thus were possible candidates of Ccu. Comparative DNA analysis of this cucumber Ccu gene region with a melon (C. melo) bacterial artificial chromosome (BAC) clone revealed a high degree of micro-synteny and conservation of the RGA tandem repeats
in this region. 相似文献