首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of oxidative phosphorylation in Pseudomonas oxalaticus during growth on oxalate and formate was estimated by two methods. In the first method the amount of ATP required to synthesize cell material of standard composition was calculated during growth of the organism on either of the two substrates. The [Y ATP max ] theor. values thus obtained were 12.5 and 6.5 for oxalate and formate respectively, if the assumption were made that no energy is required for transport of oxalate or carbon dioxide. When active transport of oxalate requiring an energy input equivalent to 1 mole of ATP per mole of oxalate was taken into account, [Y ATP max ]theor. for oxalate was 9.4. True Y ATP max values were derived from these data on the assumption that the energy produced in the catabolism of Pseudomonas oxalaticus is used with approximately the same efficiency as in a range of other chemoorganotrophs. P/O ratios were calculated using the equation P/O=Y O/Y ATP. The data for Y O and m e required for these calculations were obtained from cultures of Pseudomonas oxalaticus growing on oxalate or formate in carbon-limited continuous cultures. The P/O ratios calculated by this method were, for oxalate, 1.3 (or 1.0 if active transport were ignored), and for formate, 1.7.In the second method the stoicheiometries of the respiration-linked proton translocations with oxalate and formate were measured in washed suspensions of cells grown on the two substrates. The H+/O ratios obtained were 4.3 with oxalate and 3.9 with formate. These data indicate the presence of two functional phosphorylation sites in the electron transport chain of Pseudomonas oxalaticus during growth on both substrates. A comparison of the P/O ratio on oxalate obtained with the two methods indicated that the energy requirement for active transport of oxalate has a major effect on the energy budget of the cell; about 50% of the potentially available energy in oxalate is required for its active transport across the cell membrane. Translocation of formate requires approximately 25% of the energy potentially available in the substrate. These results offer an explanation for the fact that molar growth yields of Pseudomonas oxalaticus on oxalate and formate are not very different.Abbreviations PMS phenazinemethosulphate - DCPIP 2,6-dichlorophenolindophenol - TMPD N,N,N,N-tetramethyl-1,4-phenylene-diamine dihydrochloride - SD standard deviation - PEP Phosphoenol-pyruvate  相似文献   

2.
1. The metabolism of oxalate by the pink-pigmented organisms, Pseudomonas AM1, Pseudomonas AM2, Protaminobacter ruber and Pseudomonas extorquens has been compared with that of the non-pigmented Pseudomonas oxalaticus. 2. During growth on oxalate, all the organisms contain oxalyl-CoA decarboxylase, formate dehydrogenase and oxalyl-CoA reductase. This is consistent with oxidation of oxalate to carbon dioxide taking place via oxalyl-CoA, formyl-CoA and formate as intermediates, and also reduction of oxalate to glyoxylate taking place via oxalyl-CoA. 3. The pink-pigmented organisms, when grown on oxalate, contain l-serine–glyoxylate aminotransferase and hydroxypyruvate reductase but do not contain glyoxylate carboligase. The converse of this obtains in oxalate-grown Ps. oxalaticus. This indicates that, in contrast with Ps. oxalaticus, synthesis of C3 compounds from oxalate by the pink-pigmented organisms occurs by a variant of the `serine pathway' used by Pseudomonas AM1 during growth on C1 compounds. 4. Evidence in favour of this scheme is provided by the finding that a mutant of Pseudomonas AM1 that lacks hydroxypyruvate reductase is not able to grow on oxalate.  相似文献   

3.
The metabolic pathway by which L-[14C1]phenylalanine, L-[14C1]tyrosine, L-[14C1]tryptophan, and L-[14C1]ascorbic acid are converted to [14C]oxalate have been investigated in the male rate. Only [14C]oxalate was detected in the urine of rats injected with L-[14C1]ascorbic acid, but [14C]-labeled oxalate, glycolate, glyoxylate, glycolaldehyde, glycine, and serine were recovered from the [14C1]-labeled aromatic amino acids. DL-Phenyllactate, an inhibitor of glycolic acid oxidase and glycolic acid dehydrogenase, reduced the amount of [14C]oxalate recovered in the urine of rats given the [14C1]-labeled aromatic amino acids, but increased the amount of [14C]glycolate formed from L-[14C1]-phenylalanine and L-[14C1]tyrosine and the amount of [14C]glycolate produced from [14C1]tryptophan. Based on the [14C]labeled intermediates identified and the relative distribution of the radioactivity, it is postulated that phenylalanine and tyrosine are converted to oxalate via glycolate which is oxidized directly to oxalate by glycolic acid dehydrogenase. Tryptophan is metabolized via glyxylate which is oxidized directly to oxalate by glycolic acid oxidase. Neither glycolate, glyoxylate, glycolic acid oxidase or glycolic acid dehydrogenase are involved in the formation of oxalate from ascorbic acid.  相似文献   

4.
The acetogenic bacterium Clostridium thermoaceticum ATCC 39073 grew at the expense of the two-carbon substrates oxalate and glyoxylate. Other two-carbon substrates (acetaldehyde, acetate, ethanol, ethylene glycol, glycolaldehyde, glycolate, and glyoxal) were not growth supportive. Growth increased linearly with increasing substrate concentrations up to 45 mM oxalate and glyoxylate, and supplemental CO2 was not required for growth. Oxalate and glyoxylate yielded 4.9 and 9.4 g, respectively, of cell biomass (dry weight) per mol of substrate utilized. Acetate was the major reduced end product recovered from oxalate and glyoxylate cultures. 14C labeling studies showed that oxalate was subject to decarboxylation, and product analysis indicated that oxalate was utilized by the following reaction: 4-OOC-COO- + 5H2O → CH3COO- + 6HCO3- + OH-. Oxalate- and glyoxylate-dependent growth produced lower acetate concentrations per unit of cell biomass synthesized than did H2-, CO-, methanol-, formate-, O-methyl-, or glucose-dependent growth. Protein profiles of oxalate-grown cells were dissimilar from protein profiles of glyoxylate-, CO-, or formate-grown cells, suggesting induction of new proteins for the utilization of oxalate. C. thermoaceticum DSM 2955 and Clostridium thermoautotrophicum JW 701/3 also grew at the expense of oxalate and glyoxylate. However, oxalate and glyoxylate did not support the growth of C. thermoaceticum OMD (a nonautotrophic strain) or six other species of acetogenic bacteria tested.  相似文献   

5.
Hydroxypyruvate and glycolate inhibited the oxidation of [U-14C]glyoxylate to [14C]oxalate in isolated perfused rat liver, but stimulated total oxalate and glycolate synthesis. [14C]Oxalate synthesis from [14C]glycine similarly inhibited by hydroxypyruvate, but conversion of [14C1]glycolate to [4C]oxalate was increased three-fold. Pyruvate had no effect on the synthesis of [14C]oxalate or total oxalate. The inhibition studies suggest that hydroxypyruvate is a precursor of glycolate and oxalate and that the conversion of glycolate to oxalate does not involve free glyoxylate as an intermediate. [14C3]Hydroxypyruvate, but not [14C1]hydroxypyruvate, was oxidized to [14C]oxalate in isolated perfused rat liver. Isotope dilution studies indicate the major pathway involves the decarboxylation of hydroxypyruvate forming glycolaldehyde which is subsequently oxidized to oxalate via glycolate. The oxidation of serine to oxalate appears to proceed predominantly via hydroxypyruvate rather than glycine or ethanolamine. The hyperoxaluria of L-glyceric aciduria, primary hyperoxaluria type II, is induced by the oxidation of the hydroxypyruvate, which accumulates because of the deficiency of D-glyceric dehydrogenase, to oxalate.  相似文献   

6.
Oxalate metabolism by tobacco leaf discs   总被引:1,自引:0,他引:1       下载免费PDF全文
Havir EA 《Plant physiology》1984,75(2):505-507
The turnover rate of oxalate in leaf discs of Nicotiana tabacum, var Havana Seed, during photosynthesis was estimated to be 1 to 2 micromoles per gram fresh weight per hour. Radioactivity from the enzymic oxidation of [14C]oxalate rapidly appeared in neutral sugars (mainly sucrose), organic acids (mainly malate), and amino acids. Only 5% of the radioactivity was released to the atmosphere as 14CO2, and no formate or formaldehyde could be detected. The metabolism of oxalate was not increased by raising the O2 concentration from 1% to 21% to 60%, nor was the formation of [14C]oxalate from [2-14C]glyoxylate changed under the same conditions as was previously observed in vitro (Havir 1983 Plant Physiol 71: 874-878). While oxalate is not an inert end product of the glycolate pathway, it contributes little to the formation of photorespiratory CO2.  相似文献   

7.
Desulfovibrio baarsii is a sulfate reducing bacterium, which can grown on formate plus sulfate as sole energy source and formate and CO2 as sole carbon sources. It is shown by 14C labelling studies that more than 60% of the cell carbon is derived from CO2 and the rest from formate. The cells thus grow autotrophically. Labelling studies with [14C]acetate, 14CO and [14C]formate indicate that CO2 fixation does not proceed via the Calvin cycle. The labelling patterns of alanine, aspartate, glutamate, and glucosamine indicate that acetate (or activated acetic acid) is an early intermediate in formate and CO2 assimilation; the methyl group of acetate is derived from formate, and the carboxyl group from CO2 via CO; pyruvate is formed from acetyl-CoA by reductive carboxylation. The capacity to synthesize an acetate unit from two C1-compounds obviously distinguishes D. baarsii from those Desulfovibrio species, which require acetate as a carbon source in addition to CO2.  相似文献   

8.
Oxalate and glyoxylate supported growth and acetate synthesis by Moorella thermoacetica in the presence of nitrate under basal (without yeast extract) culture conditions. In oxalate cultures, acetate formation occurred concomitant with growth and nitrate was reduced in the stationary phase. Growth in the presence of [(14)C]bicarbonate or [(14)C]oxalate showed that CO(2) reduction to acetate and biomass or oxalate oxidation to CO(2) was not affected by nitrate. However, cells engaged in oxalate-dependent acetogenesis in the presence of nitrate lacked a membranous b-type cytochrome, which was present in cells grown in the absence of nitrate. In glyoxylate cultures, growth was coupled to nitrate reduction and acetate was formed in the stationary phase after nitrate was totally consumed. In the absence of nitrate, glyoxylate-grown cells incorporated less CO(2) into biomass than oxalate-grown cells. CO(2) conversion to biomass by glyoxylate-grown cells decreased when cells were grown in the presence of nitrate. These results suggest that: (1) oxalate-grown cells prefer CO(2) as an electron sink and bypass the nitrate block on the acetyl-CoA pathway at the level of reductant flow and (2) glyoxylate-grown cells prefer nitrate as an electron sink and bypass the nitrate block of the acetyl-CoA pathway by assimilating carbon via an unknown process that supplements or replaces the acetyl-CoA pathway. In this regard, enzymes of known pathways for the assimilation of two-carbon compounds were not detected in glyoxylate- or oxalate-grown cells.  相似文献   

9.
Metabolic control associated with diauxic growth of Pseudomonas oxalaticus in batch cultures on mixtures of formate and oxalate was investigated by measuring intracellular enzyme and coenzyme concentrations and Q O 2values during transition experiments from oxalate to formate and vice versa. In transition from oxalate to formate oxalyl-CoA reductase concentration declined after the exhaustion of oxalate and ribulose-1,5-diphosphate carboxylase and 14CO2 fixation appeared upon addition of formate. In the reciprocal transition, ribulose-1,5-diphosphate carboxylase and 14CO2 fixation rate declined sharply after formate exhaustion, and oxalyl-CoA reductase appeared only after addition of oxalate. The intracellular NAD and NADP concentrations measured in the same experiments are reported. At substrate exhaustion the proportion of NAD in the reduced form fell from 15–20% to 2%. On addition of formate to an oxalate-starved culture there was an immediate increase in the proportion of NADH to 50%; such an increase was not observed in the reverse experiment.Abbreviations RuDP ribulose-1,5-diphosphate - HEPES 2-(N-2 hydroxyethylpiperazin-N-yl) ethane sulphonic acid  相似文献   

10.
1. A study has been made of the incorporation of carbon from [14C]formaldehyde and [14C]formate by cultures of Pseudomonas methanica growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compounds for periods of up to 1min., has been analysed by chromatography and radioautography. 3. Radioactivity was fixed from [14C]formaldehyde mainly into the phosphates of the sugars, glucose, fructose, sedoheptulose and allulose. 4. Very little radioactivity was fixed from [14C]formate; after 1min. the only products identified were serine and malate. 5. The distribution of radioactivity within the carbon skeleton of glucose, obtained from short-term incubations with [14C]methanol of Pseudomonas methanica growing on methane, has been investigated. At the earliest time of sampling over 70% of the radioactivity was located in C-1; as the time increased the radioactivity spread throughout the molecule. 6. The results have been interpreted in terms of a variant of the pentose phosphate cycle, involving the condensation of formaldehyde with C-1 of ribose 5-phosphate to give allulose phosphate.  相似文献   

11.
The biosyntheses of sescandelin (1) and sescandelin B (2) were studied by feeding of [13C]labelled precursors to Sesquicilium candelabrum. The labelling pattern of those compounds enriched from the [1-13C], [2-13C], and [l,2-13C]acetates, and from the [13C]formate showed that both compounds were derived from a pentaketide chain and a C1 unit. The isocoumarin skeleton of 1 and 2 is considered to have been formed by the cyclization of a pentaketide chain and a C1 unit, and of a pentaketide, respectively.  相似文献   

12.
In the present investigation, a hCG sensitive glycosyl-phosphatidylinositol (GPI) was isolated from cultured rat granulosa cells obtained from the ovaries of diethylstilbestrol (DES) implanted immature rats. The inositol-phosphoglycan (IPG) moiety of the GPI-lipid contains galactose, glucosamine, and myoinositol as demonstrated by metabolic labelling of granulosa cells for different time periods (5–96 h) with [3H]galactose, [3H]glucosamine, or [3H]myoinositol and treatment of the purified [3H]GPI with phosphatidylinositol-specific phospholipase C. Labelling equilibrium of the GPI-lipid was achieved after 24 h ([3H]galactose and [3H]myoinositol) or 72 h ([3H]glucosamine) incubation, whereas incorporation of other labelled carbohydrates tested ([3H]galactosamine, [3H]mannose, and [3H]sorbitol) was negligible throughout the time period studied. The glucosamine C-1 appears to be linked through a glycosidic bond to the myoinositol molecule of the IPG moiety as revealed by the generation of phosphatidylinositol (PtdIns) after nitrous acid deamination of dual labelled ([3H]glucosamine/[14C]palmitate or [3H]glucosamine/[14C]myristate) glycosyl-phosphatidylinositol. To investigate the fatty acid composition of the diacylglycerol (DAG) backbone of the GPI, granulosa cells were also labelled (5–72 hr) with [14C]linoleate, [3H]myristate, [3H]-oleate, [3H]palmitate, or [3H]stearate and the radioactivity associated with the purified glycosyl-phosphatidylinositol determined. Incorporation of [3H]palmitate and [3H]myristate into the GPI-lipid peaked after 8 h and 24 h of labelling, respectively, and both fatty acids were partially released after PLA2 treatment of the dual labelled ([3H]glucosamine/[14C]palmitate or [3H]glucosamine/[14C]myristate) GPI. In parallel experiments no significant incorporation of labelled stearate, oleate, or linoleic acid into the DAG backbone of the glycosylphosphatidylinositol could be detected. Granulosa cells were also labelled with [3H]glucosamine in the presence of FSH (30 ng/ml), cholera toxin (1 μg/ml), or the membrane permeable cAMP analog (but)2 cAMP (1 mM). Time related increases in GPI-labelling were apparent after 48 h and reached a maximum level (3-, 5-, and 7-fold for FSH, CT, and (but)2 cAMP, respectively) after 72 h in culture. In another set of experiments, granulosa cells were labelled for 72 h with [3H]glucosamine in the presence of (but)2cAMP (1 mM), TPA (10?7 M), or combination thereof. The effect of treatment with the membrane permeable cAMP analog on GPI labelling was prevented in the presence of TPA, whereas no differences in [3H]GPI content could be observed in untreated granulosa cells or cells cultured in the presence of the protein kinase C-activating phorbol ester alone. In cells differentiated with FSH (30 ng/ml for 3 days) to induce LH receptors, treatment with hCG (100 ng/ml) induced a rapid (60 sec) and transient (5 min) decrease in the GPI content, whereas no efect of the hormone on undifferentiated granulosa cells could be observed. The rapid effect elicited by hCG on GPI content and turnover may be an early transduction mechanism involved in the biological effects of LH/hCG in differentiated granulosa cells. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Diauxic growth was observed in batch cultures of Pseudomonas oxalaticus when cells were pregrown on acetate and then transferred to mixtures of acetate and oxalate. In the first phase of growth only acetate was utilized. After the exhaustion of acetate from the medium enzymes involved in the metabolism of oxalate were synthesized during a lag phase of 2 h, followed by a second growth phase on oxalate. When the organism was pregrown on oxalate, oxalate utilization from the mixture with acetate completely ceased after a few hours during which acetate became the preferred substrate. Similar observations were made with formate/oxalate mixtures in which formate was the preferred substrate. Until formate was exhausted, it completely suppressed oxalate metabolism, again resulting in diauxic growth. However, when the organism was pregrown on oxalate and then transferred to mixtures of oxalate and formate, both substrates were utilized simultaneously although the initial rate of oxalate utilization from the mixture was strongly reduced as compared to growth on oxalate alone.Since both preferred substrates cross the cytoplasmic membrane by diffusion, whereas oxalate is accumulated by an inducible, active transport system, the effect of acetate and formate on oxalate transport was studied at different external pH values. At pH 5.5 both substrates completely inhibited oxalate transport. However, at pH 7.5, the pH at which the diauxic growth experiments were performed, formate and acetate did not affect oxalate transport. Growth patterns and enzymes profiles suggest that, at higher pH values, formate and acetate possibly affect oxalate utilization via an effect on the internal pool of oxalyl-CoA, the first product of oxalate metabolism.Abbreviations PMS phenazine methosulphate - RuBPCase ribulosebisphosphate carboxylase - DCPIP 2,6-dichlorophenolindophenol - FDH formate dehydrogenase - p.m.f. protonmotive force  相似文献   

14.
An isotope dilution procedure for oxalate based upon [1,2-13C2]oxalic acid is described. For routine determinations of urinary concentration, a known quantity of sodium [1,2-13C]oxalate is admixed with the sample, total oxalate precipitated as the calcium salt, and converted by BF3 catalysis to di-n-propyl esters for mass-spectrometric analysis. Selective ion monitoring provides 12C:13C ratios directly, thus precluding the necessity for quantitative recovery at any step of the rapid, single-tube assay. Following a bolus injection of sodium [1,2-13C]oxalate, whole body oxalate pools and their turnover rates can be determined by sequential sampling of urine. Biosynthetic rates calculated from the product of pool size and turnover are in excellent agreement with urinary excretion rates, confirming directly that urinary oxalate is a quantitative index of biosynthesis.  相似文献   

15.
Glycolate oxidase was isolated and partially purified from human and rat liver. The enzyme preparation readily catalyzed the oxidation of glycolate, glyoxylate, lactate, hydroxyisocaproate and α-hydroxybutyrate. The oxidation of glycolate and glyoxylate by glycolate oxidase was completely inhibited by 0.02 m dl-phenyllactate or n-heptanoate. The oxidation of glyoxylate by lactic dehydrogenase or xanthine oxidase was not inhibited by 0.067 m dl-phenyllactate or n-heptanoate. The conversion of [U-14C] glyoxylate to [14C] oxalate by isolated perfused rat liver was completely inhibited by dl-phenyllactate and n-heptanoate confirming the major contribution of glycolate oxidase in oxalate synthesis. Since the inhibition of oxalate was 100%, lactic dehydrogenase and xanthine oxidase do not contribute to oxalate biosynthesis in isolated perfused rat liver. dl-Phenyllactate also inhibited [14C] oxalate synthesis from [1-14C] glycolate, [U-14C] ethylene glycol, [U-14C] glycine, [3-14C] serine, and [U-14C] ethanolamine in isolated perfused rat liver. Oxalate synthesis from ethylene glycol was inhibited by dl-phenyllactate in the intact male rat confirming the role of glycolate oxidase in oxalate synthesis in vivo and indicating the feasibility of regulating oxalate metabolism in primary hyperoxaluria, ethylene glycol poisoning, and kidney stone formation by enzyme inhibitors.  相似文献   

16.
The coupling pattern of trichothecin biosynthesized from acetate-[1,2-13C2] is in accord with previous enrichment studies. Multiple labelling was observed. Exogenous acetate has been shown to inhibit the utilization of glucose and the incorporation of radioactivity from pyruvate-[2-14C] and citrate-[1,5-14C] into the metabolites. Two pairs of 13C NMR assignments are interchanged.  相似文献   

17.
Syntrophococcus sucromutans is the predominant species capable of O demethylation of methoxylated lignin monoaromatic derivatives in the rumen. The enzymatic characterization of this acetogen indicated that it uses the acetyl coenzyme A (Wood) pathway. Cell extracts possess all the enzymes of the tetrahydrofolate pathway, as well as carbon monoxide dehydrogenase, at levels similar to those of other acetogens using this pathway. However, formate dehydrogenase could not be detected in cell extracts, whether formate or a methoxyaromatic was used as electron acceptor for growth of the cells on cellobiose. Labeled bicarbonate, formate, [1-14C] pyruvate, and chemically synthesized O-[methyl-14C]vanillate were used to further investigate the catabolism of one-carbon (C1) compounds by using washed-cell preparations. The results were consistent with little or no contribution of formate dehydrogenase and pointed out some unique features. Conversion of formate to CO2 was detected, but labeled formate predominantly labeled the methyl group of acetate. Labeled CO2 readily exchanged with the carboxyl group of pyruvate but not with formate, and both labeled CO2 and pyruvate predominantly labeled the carboxyl group of acetate. No CO2 was formed from O demethylation of vanillate, and the acetate produced was position labeled in the methyl group. The fermentation pattern and specific activities of products indicated a complete synthesis of acetate from pyruvate and the methoxyl group of vanillate.  相似文献   

18.
Chang CC  Huang AH 《Plant physiology》1981,67(5):1003-1006
The flow of glyoxylate derived from glycolate into various metabolic routes in the peroxisomes during photorespiration was assessed. Isolated spinach leaf peroxisomes were fed [14C] glycolate in the absence or presence of exogenous glutamate, and the formation of radioactive glyoxylate, CO2, glycine, oxalate, and formate was monitored at time intervals. In the absence of glutamate, 80% of the glycolate was consumed within 2 hours and concomitantly glyoxylate accumulated; CO2, oxalate, and formate each accounted for less than 5% of the consumed glycolate. In the presence of equal concentration of glutamate, glycolate was metabolized at a similar rate, and glycine together with some glyoxylate accumulated; CO2, oxalate, and formate each accounted for an even lesser percentage of the consumed glycolate. CO2 and oxalate were not produced in significant amounts even in the absence of glutamate, unless glycolate had been consumed completely and glyoxylate had accumulated for a prolonged period. These in vitro findings are discussed in relation to the extent of CO2 and oxalate generated in leaf peroxisomes during photorespiration.  相似文献   

19.
When glycolate was metabolized in peroxisomes isolated from leaves of spinach beet (Beta vulgaris L., var. vulgaris) formate was produced. Although the reaction mixture contained glutamate to facilitate conversion of glycolate to glycine, the rate at which H2O2 became “available” during the oxidation of [1-14C]glycolate was sufficient to account for the breakdown of the intermediate [1-14C]glyoxylate to formate (C1 unit) and 14CO2. Under aerobic conditions formate production closely paralleled 14CO2 release from [1-14C]glycolate which was optimal between pH 8.0 and pH 9.0 and was increased 3-fold when the temperature was raised from 25 to 35 C, or when the rate of H2O2 production was increased artificially by addition of an active preparation of fungal glucose oxidase.  相似文献   

20.
1. The pathway of photosynthesis in sugar-cane, which gives most of the radio-activity fixed during short periods in 14CO2 in C-4 of oxaloacetate, malate and aspartate, was examined under varied conditions. 2. The pattern of labelling was essentially the same with leaves of different ages and with leaves equilibrated at carbon dioxide concentrations in the range 0–3·8% (v/v) and light-intensities in the range 1400–9000ft.-candles before adding 14CO2. 3. Radioactive products were examined after exposing leaves of 33 different plant species to 14CO2 for 4sec. under standard conditions. 4. A labelling pattern typical of sugar-cane was found in several species of Gramineae but not in others. Of 16 species from other Families only a species of Cyperaceae contained a large proportion of the fixed radioactivity in oxaloacetate, malate and aspartate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号