首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foraminifera have one of the best known fossil records among the unicellular eukaryotes. However, the origin and phylogenetic relationships of the extant foraminiferal lineages are poorly understood. To test the current paleontological hypotheses on evolution of foraminifera, we sequenced about 1,000 base pairs from the 3' end of the small subunit rRNA gene (SSU rDNA) in 22 species representing all major taxonomic groups. Phylogenies were derived using neighbor- joining, maximum-parsimony, and maximum-likelihood methods. All analyses confirm the monophyletic origin of foraminifera. Evolutionary relationships within foraminifera inferred from rDNA sequences, however, depend on the method of tree building and on the choice of analyzed sites. In particular, the position of planktonic foraminifera shows important variations. We have shown that these changes result from the extremely high rate of rDNA evolution in this group. By comparing the number of substitutions with the divergence times inferred from the fossil record, we have estimated that the rate of rDNA evolution in planktonic foraminifera is 50 to 100 times faster than in some benthic foraminifera. The use of the maximum-likelihood method and limitation of analyzed sites to the most conserved parts of the SSU rRNA molecule render molecular and paleontological data generally congruent.   相似文献   

2.
Environmental SSU rDNA‐based surveys are contributing to the dramatic revision of eukaryotic high‐level diversity and phylogeny as the number of sequence data increases. This ongoing revolution gives the opportunity to test for the presence of some eukaryotic taxa in environments where they have not been found using classical microscopic observations. Here, we test whether the foraminifera, a group of single‐celled eukaryotes, considered generally as typical for the marine ecosystems are present in soil. We performed foraminiferal‐specific nested PCR on 20 soil DNA samples collected in contrasted environments. Unexpectedly, we found that the majority of the samples contain foraminiferal SSU rDNA sequences. In total, we obtained 49 sequences from 17 localities. Phylogenetic analysis clusters them in four groups branching among the radiation of early foraminiferal lineages. Three of these groups also include sequences originated from previous freshwater surveys, suggesting that there were up to four independent colonization events of terrestrial and/or freshwater ecosystems by ancestral foraminifera. As shown by our data, foraminifera are a widespread and diverse component of soil microbial communities. Yet, identification of terrestrial foraminiferal species and understanding of their ecological role represent an exciting challenge for future research.  相似文献   

3.
Macroevolutionary relations among main lineages of Foraminifera have traditionally been inferred from the small subunit ribosomal genes (SSU rDNA). However, important discrepancies in the rates of SSU rDNA evolution between major lineages led to difficulties in accurate interpretation of SSU-based phylogenetic reconstructions. Recently, actin and beta-tubulin sequences have been used as alternative markers of foraminiferal phylogeny and their analyses globally confirm results obtained with SSU rDNA. In order to test new protein markers, we sequenced a fragment of the largest subunit of the RNA polymerase II (RPB1), a nuclear encoded single copy gene, for 8 foraminiferal species representing major orders of Foraminifera. Analyses of our data robustly confirm previous SSU rDNA and actin phylogenies and show (i) the paraphyly and ancestral position of monothalamid Foraminifera; (ii) the independent origin of miliolids; (iii) the monophyly of rotaliids, including buliminids and globigerinids; and (iv) the polyphyly of planktonic families Globigerinidae and Candeinidae. Additionally, the RPB1 phylogeny suggests Allogromiidae as the most ancestral foraminiferal lineage. In the light of our study, RPB1 appears as a valuable phylogenetic marker, particularly useful for groups of protists showing extreme variations of evolutionary rates in ribosomal genes.  相似文献   

4.
The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa (), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.  相似文献   

5.
There is accumulating evidence that the general shape of the ribosomal DNA-based phylogeny of Eukaryotes is strongly biased by the long-branch attraction phenomenon, leading to an artifactual basal clustering of groups that are probably highly derived. Among these groups, Foraminifera are of particular interest, because their deep phylogenetic position in ribosomal trees contrasts with their Cambrian appearance in the fossil record. A recent actin-based phylogeny of Eukaryotes has proposed that Foraminifera might be closely related to Cercozoa and, thus, branch among the so-called crown of Eukaryotes. Here, we reanalyze the small-subunit ribosomal RNA gene (SSU rDNA) phylogeny by removing all long-branching lineages that could artifactually attract foraminiferan sequences to the base of the tree. Our analyses reveal that Foraminifera branch together with the marine testate filosean Gromia oviformis as a sister group to Cercozoa, in agreement with actin phylogeny. Our study confirms the utility of SSU rDNA as a phylogenetic marker of megaevolutionary history, provided that the artifacts due to the heterogeneity of substitution rates in ribosomal genes are circumvented.  相似文献   

6.
Ciliates are single‐cell eukaryotes playing important roles in various ecosystems. Phylogenetic relationships within Hypotricha, one of the most polymorphic and highly derived ciliate groups, remain uncertain. Previous studies suggested that low genetic divergence might be the reason for poorly supported SSU rDNA tree topologies, despite the high morphological diversity of this group. In this study, we substantially increase the number of available hypotrich LSU rDNA gene sequences by the addition of 857 environmental sequences, and we investigate whether a more divergent gene and dense taxon sampling could better resolve the phylogeny of Hypotricha and shed light on the patterns of ecological transitions in the evolutionary history of the group. Pairwise distances of LSU rDNA sequences are generally higher than those for SSU rDNA within each order of Hypotricha, and both concatenated rDNA and LSU rDNA trees provide more resolution for hypotrich phylogenetics. Three traditional (morphology based) hypotrich orders, Stichotrichida, Sporadotrichida and Urostylida, are polyphyletic, but a monophyletic core Urostylida are found in our trees. A brackish/marine environment is inferred as ancestral within Hypotricha, with subsequent ecological diversification into freshwater, soil environments before the origin of major clades and some transitions back to the marine. However, inferred ecological transitions in Hypotricha are influenced by genes, methods and taxa.  相似文献   

7.
Available sequence data on eukaryotic small-subunit ribosomal DNA (SSU rDNA) directly retrieved from various environments have increased recently, and the diversity of microbial eukaryotes (protists) has been shown to be much greater than previously expected. However, the molecular information accumulated to date does still not thoroughly reveal ecological distribution patterns of microbial eukaryotes. In the ongoing challenge to detect anaerobic or anoxic-tolerant lineages of eukaryotes, we directly extracted DNA from the anoxic sediment of a saline meromictic lake, constructed genetic libraries of PCR-amplified SSU rDNA, and performed phylogenetic analyses with the cloned SSU rDNA sequences. Although a few sequences could not be confidently assigned to any major eukaryotic groups in the analyses and are debatable regarding their taxonomic positions, most sequences obtained have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, Stramenopiles, and Opisthokonta). Among these sequences, some branched with lineages predominantly composed of uncultured environmental clones retrieved from other anoxic environments, while others were closely related to those of eukaryotic parasites (e.g. Phytomyxea of Cercozoa, Gregarinea of Alveolata, and Ichthyosporea of Opisthokonta).  相似文献   

8.
Resolution of the phylogenetic relationships among the major eukaryotic groups is one of the most important problems in evolutionary biology that is still only partially solved. This task was initially addressed using a single marker, the small-subunit ribosomal DNA (SSU rDNA), although in recent years it has been shown that it does not contain enough phylogenetic information to robustly resolve global eukaryotic phylogeny. This has prompted the use of multi-gene analyses, especially in the form of long concatenations of numerous conserved protein sequences. However, this approach is severely limited by the small number of taxa for which such a large number of protein sequences is available today. We have explored the alternative approach of using only two markers but a large taxonomic sampling, by analysing a combination of SSU and large-subunit (LSU) rDNA sequences. This strategy allows also the incorporation of sequences from non-cultivated protists, e.g., Radiozoa (=radiolaria minus Phaeodarea). We provide the first LSU rRNA sequences for Heliozoa, Apusozoa (both Apusomonadida and Ancyromonadida), Cercozoa and Radiozoa. Our Bayesian and maximum likelihood analyses for 91 eukaryotic combined SSU+LSU sequences yielded much stronger support than hitherto for the supergroup Rhizaria (Cercozoa plus Radiozoa plus Foraminifera) and several well-recognised groups and also for other problematic clades, such as the Retaria (Radiozoa plus Foraminifera) and, with more moderate support, the Excavata. Within opisthokonts, the combined tree strongly confirms that the filose amoebae Nuclearia are sisters to Fungi whereas other Choanozoa are sisters to animals. The position of some bikont taxa, notably Heliozoa and Apusozoa, remains unresolved. However, our combined trees suggest a more deeply diverging position for Ancyromonas, and perhaps also Apusomonas, than for other bikonts, suggesting that apusozoan zooflagellates may be central for understanding the early evolution of this huge eukaryotic group. Multiple protein sequences will be needed fully to resolve basal bikont phylogeny. Nonetheless, our results suggest that combined SSU+LSU rDNA phylogenies can help to resolve several ambiguous regions of the eukaryotic tree and identify key taxa for subsequent multi-gene analyses.  相似文献   

9.
Diplomonads, such as Giardia, and their close relatives retortamonads have been proposed as early-branching eukaryotes that diverged before the acquisition-retention of mitochondria, and they have become key organisms in attempts to understand the evolution of eukaryotic cells. In this phylogenetic study we focus on a series of eukaryotes suggested to be relatives of diplomonads on morphological grounds, the "excavate taxa". Phylogenies of small subunit ribosomal RNA (SSU rRNA) genes, alpha-tubulin, beta-tubulin, and combined alpha- + beta-tubulin all scatter the various excavate taxa across the diversity of eukaryotes. But all phylogenies place the excavate taxon Carpediemonas as the closest relative of diplomonads (and, where data are available, retortamonads). This novel relationship is recovered across phylogenetic methods and across various taxon-deletion experiments. Statistical support is strongest under maximum-likelihood (ML) (when among-site rate variation is modeled) and when the most divergent diplomonad sequences are excluded, suggesting a true relationship rather than an artifact of long-branch attraction. When all diplomonads are excluded, our ML SSU rRNA tree actually places retortamonads and Carpediemonas away from the base of the eukaryotes. The branches separating excavate taxa are mostly not well supported (especially in analyses of SSU rRNA data). Statistical tests of the SSU rRNA data, including an "expected likelihood weights" approach, do not reject trees where excavate taxa are constrained to be a clade (with or without parabasalids and Euglenozoa). Although diplomonads and retortamonads lack any mitochondria-like organelle, Carpediemonas contains double membrane-bounded structures physically resembling hydrogenosomes. The phylogenetic position of Carpediemonas suggests that it will be valuable in interpreting the evolutionary significance of many molecular and cellular peculiarities of diplomonads.  相似文献   

10.
Phylogenetic analyses based on partial sequences of the small subunit (SSU) ribosomal (r) RNA gene have shown that the planktic and benthic foraminifera form a distinct monophyletic group within the eukaryotes. In order to determine the evolutionary relationships between benthic and planktic foraminifers, representatives of spinose and non-spinose planktic genera have been placed within a molecular SSU rDNA phylogeny containing sequences of the benthic suborders available to date. Our phylogenetic analysis shows that the planktic foraminifers are polyphyletic in origin, not evolving solely from a single ‘globigerinid-like’ lineage in the Mid-Jurassic, but derived from at least two ancestral benthic lines. The benthic ancestor of Neogloboquadrina dutertrei may have entered the plankton later than the Mid-Jurassic, and further investigation of related extant species should provide an indication of the timing of this event. The evolutionary origin of the non-spinose species Globorotalia menardii remains unclear. The divergences of the planktic spinose species generally support recent phylogenies based on the fossil record, which infer a radiation from a globigerinid common ancestor in the Mid- to Late Oligocene. The branching pattern indicates that there are possibly four distinct groups within the main spinose clade, with large evolutionary distances being observed between them. Globigerinoides conglobatus clusters strongly with Globigerinoides ruber and are divergent from Globigerinella siphonifera, Orbulina universa and Globigerinoides sacculifer.Conserved regions of the SSU rRNA gene show sufficient variation to discriminate foraminifers at the species level. Large genetic differences have been observed between the pink and white forms of Gs. ruber and between Ge. siphonifera Type I and II. The two types of Ge. siphonifera cannot be discriminated by traditional palaeontological methods, which has considerable implications for tracing fossil lineages and for the estimation of molecular evolutionary rates based upon the fossil record. The conserved regions show a high degree of sequence identity within a species, providing signature sequences for species identification. The variable regions of the gene may prove informative for population level studies in some species although complete sequence identity was observed in G. sacculifer and O. universa between specimens collected from the Caribbean and Western Pacific.  相似文献   

11.
12.
Freshwater foraminiferans revealed by analysis of environmental DNA samples   总被引:4,自引:0,他引:4  
Sediment-dwelling protists are among the most abundant meiobenthic organisms, ubiquitous in all types of aquatic ecosystems. Yet, because their isolation and identification are difficult, their diversity remains largely unknown. In the present work, we applied molecular methods to examine the diversity of freshwater Foraminifera, a group of granuloreticulosan protists largely neglected until now. By using specific PCR primers, we detected the presence of Foraminifera in all sediment samples examined. Phylogenetic analysis of amplified SSU rDNA sequences revealed two distinct groups of freshwater foraminiferans. All obtained sequences branched within monothalamous (single-chambered), marine Foraminifera, suggesting a repeated colonization of freshwater environments. The results of our study challenge the traditional view of Foraminifera as essentially marine organisms, and provide a conceptual framework for charting the molecular diversity of freshwater granuloreticulosan protists.  相似文献   

13.
Recent culture-independent molecular analyses have shown the diversity and ecological importance of microbial eukaryotes (protists) in various marine environments. In the present study we directly extracted DNA from anoxic sediment near active fumaroles on a submarine caldera floor at a depth of 200 m and constructed genetic libraries of PCR-amplified eukaryotic small-subunit (SSU) rDNA. By sequencing cloned SSU rDNA of the libraries and their phylogenetic analyses, it was shown that most sequences have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, stramenopiles and Opisthokonta). In particular, some sequences were closely related to those of representatives of eukaryotic parasites, such as Phagomyxa and Cryothecomonas of Cercozoa, Pirsonia of stramenopiles and Ichthyosporea of Opisthokonta, although it is not clear whether the organisms occur in free-living or parasitic forms. In addition, other sequences did not seem to be related to any described eukaryotic lineages suggesting the existence of novel eukaryotes at a high-taxonomic level in the sediment. The community composition of microbial eukaryotes in the sediment we surveyed was different overall from those of other anoxic marine environments previously investigated.  相似文献   

14.
Ubiquitin is a 76 amino acid protein with a remarkable degree of evolutionary conservation. Ubiquitin plays an essential role in a large number of eukaryotic cellular processes by targeting proteins for proteasome-mediated degradation. Most ubiquitin genes are found as head-to-tail polymers whose products are posttranslationally processed to ubiquitin monomers. We have characterized polyubuiquitin genes from the photosynthetic amoeboflagellate Chlorarachnion sp. CCMP 621 (also known as Bigelowiella natans) and found that they deviate from the canonical polyubiquitin structure in having an amino acid insertion at the junction between each monomer, suggesting that polyubiquitin processing in this organism is unique among eukaryotes. The gene structure indicates that processing likely cleaves monomers at the amino terminus of the insertion. We examined the phylogenetic distribution of the insertion by sequencing polyubiquitin genes from several other eukaryotic groups and found it to be confined to Cercozoa (including Chlorarachnion, Lotharella, Cercomonas, and Euglypha) and Foraminifera (including Reticulomyxa and Haynesina). This character strongly suggests that Cercozoa and Foraminifera are close relatives and form a new "supergroup" of eukaryotes.  相似文献   

15.
Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates.  相似文献   

16.
ABSTRACT. Ribosomal DNA (rDNA) sequences have been shown to be very useful for identification of microbial eukaryotes. Usually, complete or long partial sequences of the rDNA genes are analysed. However, the development of new massive sequencing technologies producing a large amount of relatively short sequences raises the question about the minimum length of rDNA fragments necessary for species distinction in environmental sampling. To answer this question, we compared six variable regions of the small subunit (SSU) rDNA of foraminifera, known to have rapidly evolving ribosomal genes. For each region, we analysed (1) the sequence divergence between and within foraminiferal morphospecies, (2) the intraspecific polymorphism, and (3) the ability of each region to recognize the phylotypes inferred from analysis of a longer fragment. Our results show that although the variable regions differ considerably between taxonomic groups, most of them perform very well as species identifiers. Taking into account different analyses, the expansion segment of Helix 37 appears to be the best candidate for barcoding foraminifera. We propose that this relatively short region, averaging 50–60 nt in length, could be an ideal barcode for identification of foraminifera in environmental samples using massive sequencing approach.  相似文献   

17.
The abundance and biomass of benthic foraminifera are high in intertidal rocky‐shore habitats. However, the availability of food to support their high biomass has been poorly studied in these habitats compared to those at seafloor covered by sediments. Previous field and laboratory observations have suggested that there is diversity in the food preferences and modes of life among rocky‐shore benthic foraminifera. In this study, we used the stable nitrogen isotopic composition of amino acids to estimate the trophic position, trophic niche, and feeding strategy of individual foraminifera species. We also characterized the configuration and structure of the endobiotic microalgae in foraminifera using transmission electron microscopy, and we identified the origin of endobionts based on nucleotide sequences. Our results demonstrated a large variation in the trophic positions of different foraminifera from the same habitat, a reflection of endobiotic features and the different modes of life and food preferences of the foraminifera. Foraminifera did not rely solely on exogenous food sources. Some species effectively used organic matter derived from endobionts in the cell cytoplasm. The high biomass and species density of benthic foraminifera found in intertidal rocky‐shore habitats are thus probably maintained by the use of multiple nitrogen resources and by microhabitat segregation among species as a consequence.  相似文献   

18.
Testate lobose amoebae (order Arcellinida Kent, 1880) are common in all aquatic and terrestrial habitats, yet they are one of the last higher taxa of unicellular eukaryotes that has not found its place in the tree of life. The morphological approach did not allow to ascertain the evolutionary origin of the group or to prove its monophyly. To solve these challenging problems, we analyzed partial small-subunit ribosomal RNA (SSU rRNA) genes of seven testate lobose amoebae from two out of the three suborders and seven out of the 13 families belonging to the Arcellinida. Our data support the monophyly of the order and clearly establish its position among Amoebozoa, as a sister-group to the clade comprising families Amoebidae and Hartmannellidae. Complete SSU rRNA gene sequences from two species and a partial actin sequence from one species confirm this position. Our phylogenetic analyses including representatives of all sequenced lineages of lobose amoebae suggest that a rigid test appeared only once during the evolution of the Amoebozoa, and allow reinterpretation of some morphological characters used in the systematics of Arcellinida.  相似文献   

19.
Myrionecta rubra and Mesodinium pulex are among the most commonly encountered planktonic ciliates in coastal marine and estuarine regions throughout the world. Despite their widespread distribution, both ciliates have received little attention by taxonomists. In order to better understand the phylogenetic position of these ciliates, we determined the SSU rRNA gene sequence from cultures of M. rubra and M. pulex. Partial sequence data were also generated from isolated cells of M. rubra from Chesapeake Bay. The M. rubra and M. pulex sequences were very divergent from all other ciliates, but shared a branch with 100% bootstrap support. Both species had numerous deletions and substitutions in their SSU rRNA gene, resulting in a long branch for the clade. This made the sequences prone to spurious phylogenetic affiliations when using simple phylogenetic methods. Maximum likelihood analysis placed M. rubra and M. pulex on the basal ciliate branch, following removal of ambiguously aligned regions. Fluorescent in situ hybridization probes were used with confocal laser scanning microscopy to confirm that these divergent sequences were both expressed in the cytoplasm and nucleolus of M. ruisra and M. pulex. We found that our sequence data matched several recently discovered unidentified eukaryotes in Genbank from diverse marine habitats, all of which had apparently been misattributed to highly divergent amoeboid organisms.  相似文献   

20.
Planktonic foraminifera are marine protists, whose calcareous shells form oceanic sediments and are widely used for stratigraphic and paleoenvironmental analyses. The fossil record of planktonic foraminifera is compared here to their molecular phylogeny inferred from ribosomal DNA sequences. Eighteen partial SSU rDNA sequences from species representing all modern planktonic families (Globigerinidae, Hastigerinidae, Globorotaliidae, Candeinidae) were obtained and compared to seven sequences representing the major groups of benthic foraminifera. The phylogenetic analyses indicate a polyphyletic origin for the planktonic foraminifera. The Candeinidae, the Globorotaliidae, and the clade Globigerinidae + Hastigerinidae seem to have originated independently, at different epochs in the evolution of foraminifera. Inference of their relationships, however, is limited by substitution rates of heterogeneity. Rates of SSU rDNA evolution vary from 4.0 × 10−9 substitutions/site/year in the Globigerinidae to less than 1.0 × 10−9 substitutions/site/year in the Globorotaliidae. These variations may be related to different levels of adaptation to the planktonic mode of life. A clock-like evolution is observed among the Globigerinidae, for which molecular and paleontological data are congruent. Phylogeny of the Globorotaliidae is clearly biased by rapid rates of substitution in two species (G. truncatulinoides and G. menardii). Our study reveals differences in absolute rates of evolution at all taxonomic levels in planktonic foraminifera and demonstrates their effect on phylogenetic reconstructions. Received: 21 January 1997 / Accepted: 17 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号