首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA methyltransferase enzyme (DNA MTase) catalyzes DNA methylation at cytosines in CpG dinucleotides. 5-Methylcytosine modification of DNA is important in gene regulation, DNA replication, chromatin organization and disease. Increased levels of DNA MTase have been associated with the initiation and promotion of cancer. This study was conducted to assess whether cigarette smoking and other factors, such as age and gender, influence DNA MTase expression in nontumorous tissue. DNA MTase was significantly (p<0.05) higher in samples from cigarette smokers; the mean level of DNA MTase mRNA was almost 2-fold higher in these samples than in those from nonsmokers. Levels of DNA MTase mRNA were higher in samples from females than in those from males, but the difference was not statistically significant. Age was not associated with DNA MTase levels. Increased levels of DNA MTase in individuals who smoke may indicate a greater susceptibility to the risk of cancer since increased levels of this enzyme are found in cancer cell lines and human tumors. The results of this study suggest that further investigations of increased expression of this enzyme as a predisposing factor for cancer susceptibility are needed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The occurrence of many diseases is closely related to the high expression of DNA methyltransferase 1 (DNMT1). However, most studies are focused on the detection of DNMT1 activity, a few are concerned with the detection of DNMT1 content. In this study, we developed a simple and highly sensitive chemiluminescence (CL) assay for the detection of DNMT1 content. In this method, anti‐DNMT1 monoclonal antibody was coated on a polystyrene microplate to capture DNMT1. Then anti‐DNMT1 polyclonal antibody and goat anti‐rabbit immunoglobulin G with horseradish peroxidase (IgG‐HRP) were respectively added to combine with captured DNMT1 to form a sandwich structure. Finally, the HRP could catalyze CL substrate and achieve CL signal response. Based on this novel sensitive strategy, the recovery percents were in the ranges from 71.5% to 91.0%. The precision of intra‐assays and inter‐assays were 5.45%–11.29% and 7.03%–11.25%, respectively. The method was successfully applied for the determination of DNMT1 in human serum. The detection results of serum samples showed that the proposed assay had a high correlation with enzyme‐linked immunosorbent assay (ELISA) kit. Compared with the ELISA kit (limit of detection = 0.1 ng/mL), the method has a lower limit of detection of 0.042 ng/mL. Therefore, our method has the potential for the detection of DNMT1 content in clinical diagnosis.  相似文献   

3.
DNA methylation is a major epigenetic modification and plays a crucial role in the regulation of gene expression. Within the family of DNA methyltransferases (Dnmts), Dnmt3a and 3b establish methylation marks during early development, while Dnmt1 maintains methylation patterns after DNA replication. The maintenance function of Dnmt1 is regulated by its large regulatory N‐terminal domain that interacts with other chromatin factors and is essential for the recognition of hemi‐methylated DNA. Gelfiltration analysis showed that purified Dnmt1 elutes at an apparent molecular weight corresponding to the size of a dimer. With protein interaction assays we could show that Dnmt1 interacts with itself through its N‐terminal regulatory domain. By deletion analysis and co‐immunoprecipitations we mapped the dimerization domain to the targeting sequence TS that is located in the center of the N‐terminal domain (amino acids 310–629) and was previously shown to mediate replication independent association with heterochromatin at chromocenters. Further mutational analyses suggested that the dimeric complex has a bipartite interaction interface and is formed in a head‐to‐head orientation. Dnmt1 dimer formation could facilitate the discrimination of hemi‐methylated target sites as has been found for other palindromic DNA sequence recognizing enzymes. These results assign an additional function to the TS domain and raise the interesting question how these functions are spatially and temporarily co‐ordinated. J. Cell. Biochem. 106: 521–528, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
This study reports the identification and Hits to Leads optimization of inhibitors of coactivator associated arginine methyltransferase (CARM1). Compound 7b is a potent, selective inhibitor of CARM1.  相似文献   

5.
DNA methylation refers to the addition of cytosine residues in a CpG context (5′-cytosine-phosphate-guanine-3′). As one of the most common mechanisms of epigenetic modification, it plays a crucial role in regulating gene expression and in a diverse range of biological processes across all multicellular organisms. The relationship between temperature and DNA methylation and how it acts on the adaptability of migratory insects remain unknown. In the present work, a 5,496 bp full-length complementary DNA encoding 1,436 amino acids (named MsDnmt1) was cloned from the devastating migratory pest oriental armyworm, Mythimna separata Walker. The protein shares 36.8–84.4% identity with other insect Dnmt1 isoforms. Spatial and temporal expression analysis revealed that MsDnmt1 was highly expressed in adult stages and head tissue. The changing temperature decreased the expression of MsDnmt1 in both high and low temperature condition. Besides, we found that M. separata exhibited the shortest duration time from the last instar to pupae under 36°C environment when injected with DNA methylation inhibitor. Therefore, our data highlight a potential role for DNA methylation in thermal resistance, which help us to understand the biological role adaptability and colonization of migratory pest in various environments.  相似文献   

6.
The incorporation of chemotherapeutic agent 6-thioguanine (SG) into DNA is a prerequisite for its cytotoxic action. This modification of DNA impedes the activity of enzymes involved in DNA repair and replication. Here, using hemimethylated DNA substrates we demonstrated that DNA methylation by Dnmt3a-CD is reduced if DNA is damaged by the incorporation of SG into one or two CpG sites separated by nine base pairs. An increase in the number of SG substitutions did not enhance the effect. Dnmt3a-CD binding to either of SG-containing DNA substrates was not distorted. Our results suggest that SG incorporation into DNA may influence epigenetic regulation via DNA methylation.  相似文献   

7.
The Escherichia coli dam adenine-N6 methyltransferase modifies DNA at GATC sequences. It is involved in post-replicative mismatch repair, control of DNA replication and gene regulation. We show that E. coli dam acts as a functional monomer and methylates only one strand of the DNA in each binding event. The preferred way of ternary complex assembly is that the enzyme first binds to DNA and then to S-adenosylmethionine. The enzyme methylates an oligonucleotide containing two dam sites and a 879 bp PCR product with four sites in a fully processive reaction. On lambda-DNA comprising 48,502 bp and 116 dam sites, E. coli dam scans 3000 dam sites per binding event in a random walk, that on average leads to a processive methylation of 55 sites. Processive methylation of DNA considerably accelerates DNA methylation. The highly processive mechanism of E. coli dam could explain why small amounts of E. coli dam are able to maintain the methylation state of dam sites during DNA replication. Furthermore, our data support the general rule that solitary DNA methyltransferase modify DNA processively whereas methyltransferases belonging to a restriction-modification system show a distributive mechanism, because processive methylation of DNA would interfere with the biological function of restriction-modification systems.  相似文献   

8.
Yu Ye 《Analytical biochemistry》2010,401(1):168-1345
We have developed the first economical and rapid nonradioactive assay method that is suitable for high-throughput screening of the important pharmacological target human DNA (cytosine-5)-methyltransferase 1 (DNMT1). The method combines three key innovations: the use of a truncated form of the enzyme that is highly active on a 26-bp hemimethylated DNA duplex substrate, the introduction of the methylation site into the recognition sequence of a restriction endonuclease, and the use of a fluorogenic read-out method. The extent of DNMT1 methylation is reflected in the protection of the DNA substrate from endonuclease cleavage that would otherwise result in a large fluorescence increase. The assay has been validated in a high-throughput format, and trivial changes in the substrate sequence and endonuclease allow adaptation of the method to any bacterial or human DNA methyltransferase.  相似文献   

9.
Megakaryopoiesis is the process of formation of mature megakaryocytes that takes place in the bone marrow niche resulting in the release of platelets into the peripheral blood. It has been suggested that cell to cell communication in this dense bone marrow niche may influence the fate of the cells. Numerous studies point to the role of exosomes and microvesicles not only as a messenger of the cellular crosstalk but also in growth and developmental process of various cell types. In the current study, we explored the effects of megakaryocyte-derived microvesicles in hematopoietic cell lines in the context of differentiation. Our study demonstrated that microvesicles isolated from the induced megakaryocytic cell lines have the ability to stimulate noninduced cells specifically into that particular lineage. We showed that this lineage commencement comes from the change in the methylation status of Notch1 promoter, which is regulated by DNA methyltransferases.  相似文献   

10.
We have developed a nonradioactive assay method for DNA methyltransferases based on the ability to protect substrate DNA from restriction. DNA immobilized to a microplate well was treated sequentially with methyltransferase and an appropriate endonuclease. The amount of methylated DNA product is reflected by a proportional decrease in endonuclease cleavage, which is in turn reflected by increased retention of the end-labeled affinity probe. A single universal substrate was designed to assay multiple methyltransferases including those that do not have a cognate endonuclease. The methodology developed is suited to screen a large number of compounds for inhibitors of various methyltransferases.  相似文献   

11.
We here report a simple assay system for DNA methyltransferase (DNMT) inhibitors based on the HBx-induced DNA methylation of E-cadherin. A stable cell line named G1 was generated by co-transfecting E-cadherin luciferase reporter and HBx-expression plasmid into HepG2 cells. Treatment of G1 cells with DNMT inhibitors, 5-azacytidine, 5-aza-2′-deoxycytidine, and procainamaid, dose-dependently inhibited DNA methylation of E-cadherin promoter in the reporter, resulting in up-regulation of luciferase levels and its enzyme activity. Treatment with all-trans retinoic acid that is known to inhibit DNMT expression, also induced similar effects. Our system can be useful for development of epi-drugs targeting DNA methylation in malignancies.  相似文献   

12.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the 5"-GGATCC recognition site catalyzed by the DNA-[N4-cytosine]-methyltransferase from Bacillus amyloliquefaciens [EC 2.1.1.113] has shown that the dependence of the rate of methylation of the 20-meric substrate duplex on SAM and DNA concentration are normally hyperbolic, and the maximal rate is attained upon enzyme saturation with both substrates. No substrate inhibition is observed even at concentrations many times higher than the K M values (0.107 M for DNA and 1.45 M for SAM), which means that no nonreactive enzyme–substrate complexes are formed during the reaction. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAMDNAmetDNA SAH (S-adenosyl-L-homocysteine). However, more detailed numerical analysis of the aggregate experimental data admits an alternative order of substrate binding, DNA SAM }, though this route is an order of magnitude slower.  相似文献   

13.
Kinetic analysis of methyl group transfer from S-adenosyl-L-methionine (SAM) to the GATC recognition site catalyzed by the phage T4 DNA-[N6-adenine]-methyltransferase (MTase) [EC 2.1.1.72] showed that the reverse reaction is at least 500 times slower than the direct one. The overall pattern of product inhibition corresponds to an ordered steady-state mechanism following the sequence SAMDNAmetDNASAH (S-adenosyl-L-homocysteine). Pronounced inhibition was observed at high concentrations of the 20-meric substrate duplex, which may be attributed to formation of a dead-end complex MTase–SAH–DNA. In contrast, high SAM concentrations proportionally accelerated the reaction. Thus, the reaction may include a stage whereby the binding of SAM and the release of SAH are united into one concerted event. Computer fitting of alternative kinetic schemes to the aggregate of experimental data revealed that the most plausible mechanism involves isomerization of the enzyme.  相似文献   

14.
DNA-O6-methylguanine methyltransferase was purified from the nuclear fraction of fresh human placenta using ammonium sulphate precipitation, gel filtration, affinity chromatography on DNA-cellulose and hydroxyapatite. The methyltransferase preparation was approximately 1–2% pure based on specific activity, and was free of nucleic acids. The protein reacts stoichiometrically with O6-methylguanine in DNA with apparent second-order kinetics. The human methyltransferase has a pH optimum of about 8.5, similar to that of the corresponding rat and mouse proteins. NaCl inhibits the reaction in a concentration-dependent fashion. The human protein, like the rodent andE. coli methyltransferases, needs no cofactor. While lmM MnCl2, lmM spermidine, 5mM MgCl2 and 10 mM EDTA individually do not significantly inhibit the initial rate of reaction, the protein is nearly completely inactive in 5 mM A1Cl3 or FeCl2 or 10 mM spermidine. The initial rate of reaction increases as a function of temperature at least up to 42°. The reaction is inhibited by DNA in a concentration-dependent manner, with single-stranded DNA being more inhibitory than duplex DNA.  相似文献   

15.
De novo DNA methyltransferases, Dnmt3a and 3b, were purified by fractionation of S-100 extract from mouse lymphosarcoma cells through several chromatographic matrices followed by glycerol density gradient centrifugation. Dnmt3a was separated from Dnmt3b and Dnmt1 in the first column, Q-Sepharose whereas Dnmt3b co-purified with Dnmt1 after further fractionation through Mono-S and Mono-Q columns and glycerol density gradient centrifugation. Following purification, the majority of de novo DNA methyltransfearse activity was associated with Dnmt3b/Dnmt1 fractions. By contrast, the fractions containing Dnmt3a alone exhibited markedly reduced activity, which correlated with diminished expression of this isoform in these cells. Histone deacetylase 1(Hdac1) cofractionated with Dnmt3a throughout purification whereas Hdac1 was separated from Dnmt3b/Dnmt1 following chromatography on Mono-Q column. Dnmt3a purified through glycerol gradient centrifugation was also associated with a histone H3 methyltransferase (HMTase) activity whereas purified Dnmt3b/Dnmt1 was devoid of any HMTase activity. The activity of this HMTase was abolished when lysine 9 of N-terminal histone H3 peptide was replaced by leucine whereas mutation of lysine 4 to leucine inhibited this activity only partially. This is the first report on the identification of a few key co-repressors associated with endogenous Dnmt3a and of a complex containing Dnmt3b and a minor form of Dnmt1 following extensive biochemical fractionation.  相似文献   

16.
近年来表观遗传学研究在恶性肿瘤分型以及临床治疗方面发挥了重要作用。表观遗传是一种不涉及DNA序列变化的、可以在细胞分裂中传递的基因表达调控机制, 主要包括DNA甲基化和组蛋白乙酰化。其中DNA甲基化是目前人们研究最为深入的一种表观遗传学修饰方式, 主要发生在CpG二核苷酸序列的胞嘧啶上, 已经证实其与多种肿瘤发生密切相关。DNA甲基化的可诱导性和可逆性特点也为肿瘤发生机制的探讨和肿瘤治疗提供了新的途径。大量证据表明DNA甲基化在骨髓增生异常综合征(Myelodysplastic syndrome, MDS)的形成与发展中发挥作用。两个去甲基化药物(阿扎胞苷和地西他滨)在临床上应用治疗高危和中高危的MDS病人取得的成功, 为MDS的病因研究和临床治疗带来了新的思路。文章主要就这两种药物对MDS的作用机制、应用效果和新的临床问题等方面进行综述, 增加对药物作用的理解, 为临床治疗提供更好的手段。  相似文献   

17.
18.
Kim HJ  Yano A  Wada Y  Sano H 《Annals of botany》2007,99(5):845-856
BACKGROUND AND AIMS: Plants possess three types of DNA methyltransferase, among which methyltransferase type 1 (MET1) is considered to play a major role by maintaining the CpG methylation patterns. However, little information is available as to its enzymatic activity, interacting proteins and spatial and temporal behaviours during DNA replication. In the present study, one example, NtMET1 from tobacco plants, was selected and an analysis was made of its biochemical properties and cellular localization. METHODS: NtMET1 was expressed in Sf9 insect cells, and a purified sample was subjected to a standard in vitro methylation assay. Intramolecular interaction was examined by the yeast two-hybrid and pull-down assays. Transgenic tobacco plants (Nicotiana tabacum) over-expressing NtMET1 were constructed via Agrobacterium-mediated transformation. Cellular localization was examined by fluorescence protein fusion, which was expressed in tobacco bright yellow 2 cells. KEY RESULTS: In vitro assays showed no detectable methylation activity when both hemimethylated and unmethylated DNA samples were used as the substrate. In planta assays with over-expressing transgenic lines showed no hypermethylation but rather hypomethylation of genomc DNA. The inability of methylation was conceivably due to a tight intramolecular interaction between the N- and C-terminal regions with the catalytic domain residing on the C-terminus being completely masked. Cellular localization analyses indicated that NtMET1 localized to the nucleus in the resting stage and migrates to the cytoplasm during mitosis, particularly at metaphase. The pattern observed resembled that of Ran GTPase, and in vitro pull-down assays showed a clear interaction between NtMET1 and AtRAN3, an Arabidopsis orthologue of tobacco Ran GTPase, NtRan-A1. CONCLUSIONS: The results suggest that enzymatic activity of NtMET1 is well adjusted by its own intra/intermolecular interaction and perhaps by interactions with other proteins, one of which was found to be Ran GTPase. Results also revealed that NtMET1 becomes localized to the vicinity of chromatin with the aid of Ran GTPase during cell division, and may play an important role in progress through mitosis independently of methylation activity.  相似文献   

19.
The genome of Mycoplasma arthritidis strain 158 has modified cytosine residues at AGCT sequences that render the DNA resistant to digestion with the AluI restriction endonuclease. The DNA methyltransferase responsible for the base modification has previously been designated MarI. From the complete genome sequence of M. arthritidis , we identify Marth_orf138 as a candidate marI gene. Marth_orf138 was cloned in Escherichia coli and its TGA codons converted to TGG. DNA isolated from E. coli cells expressing the modified Marth_orf138 gene was degraded by the AluI nuclease, indicating that Marth_orf138 does not code for MarI. However, the DNA from E. coli was found to have acquired resistance to the restriction endonuclease HhaI. Genomic DNA from M. arthritidis was also found to be resistant to HhaI (recognizes GCGC). The M. arthritidis isoschizomer of the HhaI DNA methyltransferase, coded by Marth_orf138, is designated MarII. Transformation of M. arthritidis was not significantly affected by modification of plasmid at HhaI sites, indicating that the mycoplasma lacks a restriction endonuclease that recognizes GCGC sites.  相似文献   

20.
Somatic R882H DNMT3A mutations occur frequently in AML, but their pathogenic mechanism is unclear. As R882H mutations usually are heterozygous, wildtype (WT) and R882H subunits co-exist in affected cells. R882 is located in the RD interface of DNMT3A tetramers, which forms the DNA binding site. R882H causes strong changes in the flanking sequence preferences of DNMT3A. Here, we analyzed flanking sequence preferences for CGNNNN sites showing that most disfavored sites are methylated 4–5 fold slower by R882H than WT, while it methylates most preferred sites 2-fold faster. Overall, R882H was more active than WT at 13% and less active at 52% of all CGNNNN sites. We prepared mixed DNMT3A heterotetramers containing WT and R882H subunits and show that mixed complexes preferentially assemble with an R882H/R882H RD interface. Structural comparisons and MD simulations confirmed the conclusion that the R882H RD interface is more stable than that of WT, in part because H882 forms an inter-subunit contact in the RD interface, while R882 contacts the DNA. As the subunits at the RD interface contribute the two active centers to the DNMT3A tetramer, R882H characteristic flanking sequence preferences of DNMT3A were observed in mixed tetrameric complexes containing WT and R882H subunits, and they are not diluted by the “averaged” effects of mixed or WT interfaces. Hence, R882H has a dominant effect on the flanking sequence preferences and other catalytic properties of DNMT3A in samples containing WT and R882H subunits, which may explain its pathogenic effect in heterozygous state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号