首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Metal oxyhydroxide precipitates that form from acid mine drainage (AMD) may indirectly limit periphyton by sorbing nutrients, particularly P. We examined effects of nutrient addition on periphytic algal biomass (chl a), community structure, and carbon and nitrogen content along an AMD gradient. Nutrient diffusing substrata with treatments of +P, +NP and control were placed at seven stream sites. Conductivity and SO4 concentration ranged over an order of magnitude among sites and were used to define the AMD gradient, as they best indicate mine discharge sources of metals that create oxyhydroxide precipitates. Aqueous total phosphorous (TP) ranged from 2 to 23 μg · L?1 and significantly decreased with increasing SO4. Mean chl a concentrations at sites ranged from 0.2 to 8.1 μg · cm?2. Across all sites, algal biomass was significantly higher on +NP than control treatments (Co), and significantly increased with +NP. The degree of nutrient limitation was determined by the increase in chl a concentration on +NP relative to Co (response ratio), which ranged from 0.6 to 9.7. Response to nutrient addition significantly declined with increasing aqueous TP, and significantly increased with increasing SO4. Thus, nutrient limitation of algal biomass increased with AMD impact, indicating metal oxyhydroxides associated with AMD likely decreased P availability. Algal species composition was significantly affected by site but not nutrient treatment. Percent carbon content of periphyton on the Co significantly increased with AMD impact and corresponded to an increase in the relative abundance of Chlorophytes. Changes in periphyton biomass and cellular nutrient content associated with nutrient limitation in AMD streams may affect higher trophic levels.  相似文献   

2.
The objective of the study was to identify nutrient impacts, if any, on stream periphyton growth in Black Bear Creek (north central Oklahoma) and its tributaries. Passive diffusion periphytometers were deployed at ten study sites within the Black Bear Creek basin to evaluate periphyton growth in response to nutrient enrichment. These sites were selected to represent a gradient of land uses, from predominantly agricultural to predominantly urban. Periphytometer treatments included phosphorus (P) (1.0 mg/L PO4-P, n = 10), nitrogen (N) (10.0 mg/L NO3-N, n = 10), N plus P (n = 10) and control (reverse osmosis-treated water, n = 10). Results indicated that average dissolved inorganic N (DIN, PQL = 0.04 mg/L) concentrations were significantly correlated (R2 = 0.63, p < 0.01) with chlorophyll a production on the periphytometer control treatments in the Black Bear Creek basin. Periphytic growth was nutrient-limited (increased chlorophyll a was measured on nutrient-enriched growth media) at four of the ten sites sampled; two sites were limited by N and two sites were co-limited by both N and P. The lotic ecosystem trophic status index (LETSI), the ratio of C to N + P chlorophyll a, was calculated to compare treatment responses across sites. At nutrient-limited sites, LETSI was positively correlated to ambient DIN values (R2 = 0.97, p < 0.01). However, some sites that were not nutrient-limited had ambient nutrient concentrations similar to sites with observed nutrient limitation, indicating other factors were limiting periphyton growth at those sites.  相似文献   

3.
4.
1. We conducted bioassays of nutrient limitation to understand how macronutrients and the position of streams relative to lakes control nitrogen (N2) fixation and periphytic biomass in three oligotrophic Rocky Mountain catchments. We measured periphytic chlorophyll‐a (chl‐a) and nitrogen‐fixation responses to nitrogen (N) and phosphorus (P) additions using nutrient‐diffusing substrata at 19 stream study sites, located above and below lakes within the study catchments. 2. We found that periphytic chl‐a was significantly co‐limited by N and P at 13 of the 19 sites, with sole limitation by P observed at another four sites, and no nutrient response at the final two sites. On average, the addition of N, P and N + P stimulated chl‐a 35%, 114% and 700% above control values respectively. The addition of P alone stimulated nitrogen fixation by 2500% at five of the 19 sites. The addition of N, either with or without simultaneous P addition, suppressed nitrogen fixation by 73% at nine of the 19 sites. 3. Lake outlet streams were warmer and had higher dissolved organic carbon concentrations than inlet streams and those further upstream, but position relative to lakes did not affect chl‐a and nitrogen fixation in the absence of nutrient additions. Chl‐a response to nutrient additions did not change along the length of the study streams, but nitrogen fixation was suppressed more strongly by N, and stimulated more strongly by P, at lower altitude sites. The responses of chl‐a and nitrogen fixation to nutrients were not affected by location relative to lakes. Some variation in responses to nutrients could be explained by nitrate and/or total N concentration. 4. Periphytic chl‐a and nitrogen fixation were affected by nutrient supply, but responses to nutrients were independent of stream position in the landscape relative to lakes. Understanding interactions between nutrient supply, nitrogen fixation and chl‐a may help predict periphytic responses to future perturbations of oligotrophic streams, such as the deposition of atmospheric N.  相似文献   

5.
The interaction of mating system and nutrient limitation in determining seed production was investigated in the annual, self-compatible plant Lupinus texensis (Fabaceae). Abortion of developing seeds is a major factor limiting seed production in natural populations (17-28%). Selfing rates are generally low (0.02-0.21), suggesting that deleterious recessive genes may be maintained at significant levels in natural populations. The average inbreeding depression associated with seed development is δ = 0.24. Nutrient limitation reduced seed output across experimental treatments by a factor of 0.22 through decreased production of inflorescences, flowers, and ovules, and by a factor of 0.29 through increased abortion of fruits and of seeds within fruits. Competition for resources among fruits increased the frequency of seed abortion. Moreover, a greater proportion of selfed seeds were aborted as the overall abortion rate increased. Estimates of genetic load may therefore only be appropriate if undertaken in the field, and inbreeding depression may vary from year to year simply due to changes in environmental conditions rather than to underlying genetic changes in populations. The existence of inbreeding depression and the high frequency of abortions suggest that selective abortion favoring outcrossed progeny occurs in natural populations of L. texensis.  相似文献   

6.
To provide a reference for wetlands elsewhere we analysed soil nutrients and the vegetation of floodplains and fens in the relatively undisturbed Biebrza-valley, Poland. Additionally, by studying sites along a water-table gradient, and by comparing pairs of mown and unmown sites, we aimed with exploring long-term effects of drainage and annual hay-removal on nutrient availabilities and vegetation response. In undrained fens and floodplains, N mineralization went slowly (0–30 kg N ha−1 year−1) but it increased strongly with decreasing water table (up to 120 kg N ha−1 year−1). Soil N, P and K pools were small in the undisturbed mires. Drainage had caused a shift from fen to meadow species and the disappearance of bryophytes. Biomass of vascular plants increased with increasing N mineralization and soil P. Annual hay-removal tended to have reduced N mineralization and soil K pools, but it had increased soil P. Moreover, N concentrations in vascular plants were not affected, but P and K concentrations and therefore N:P and N:K ratios tended to be changed. Annual hay-removal had induced a shift from P to K limitation in the severely drained fen, and from P to N limitation in the floodplain. The low nutrient availabilities and productivity of the undisturbed Biebrza mires illustrate the vulnerability of such mires to eutrophication in Poland and elsewhere. In nutrient-enriched areas, hay removal may prevent productivity increase of the vegetation, but also may severely alter N:P:K stoichiometry, induce K-limitation at drained sites, and alter vegetation structure and composition.  相似文献   

7.
Three field experiments were performed in Lake Lacawac, PA to determine the importance of potentially limiting nutrients relative to other factors (grazing, depth) in structuring shallow water algal periphyton communities. All three experiments measured periphyton growth (as chlorophyll-a, AFDM or biovolumes of the algal taxa) on artificial clay flower pot substrates which released specified nutrients to their outer surfaces.Control of standing crop by nutrient supply rate vs. grazing was examined in Expt. I. Substrates releasing excess N and P, together with one of 4 levels of C (as bicarbonate) were placed either inside or outside exclosures designed to reduce grazer densities. Chlorophyll-a rose from 1.1–25.6 µg.cm–2, and some dominant taxa (e.g., Oedogonium, Nostoc, Anacystis) were replaced by others (e.g., Scenedesmus, Cryptomonas) as bicarbonate supply increased. Reductions in invertebrate density did not significantly affect chlorophyll-a at any of the nutrient levels.Reasons for the species shift were further evaluated in Expt. II, using a minielectrode to measure the elevation of pH within the periphyton mat through photosynthetic utilization of bicarbonate. The pH adjacent to pots diffusing N, P and large quantities of bicarbonate, and supporting high chlorophyll-a densities of 32 µg cm–2, averaged 10.0 compared to 6.3 in the water column. Pots diffusing only N and P supported 0.7 µg chlorophyll-a cm–2 and elevated pH to 8.2. We suspect that bicarbonate addition favored efficient bicarbonate users (e.g., Scenedesmus), while inhibiting other taxa (e.g., Oedogonium) because of the attendant high pH.Expt. III was designed to test effects of depth (0.1 m vs. 0.5 m) and N (NH4 + vs. NO3 ) upon the growth response to bicarbonate observed in Expts. I and II. Similar standing crop and species composition were noted on pots at 0.1 m vs. 0.5 m. Enrichment with NH4 + vs. NO3 also appeared to have little effect upon the periphyton community.Shallow water periphyton communities in Lake Lacawac, when supplied with sufficient N and P, appear to show a distinctive response to increasing bicarbonate concentration and pH which is robust to moderate variation in grazer densities, distance from the water surface, and the form of N enrichment.  相似文献   

8.
Nutrient limitation of periphyton and phytoplankton was assessed in the Upper Guadalupe River, Texas USA. Nutrient-diffusing substrates with added nitrogen (N) and phosphorus (P) were used to identify the limiting nutrient for lotic algae at three river sites in summer, fall, and winter. Pots enriched with P had significantly higher chlorophyll a concentrations for 7 of 9 trials. Added N alone did not significantly increase algal standing crops, although it was found to be secondarily limiting on one (and possibly two) occasions. Flow-through enrichment experiments were conducted in order to quantify the concentration of P needed to significantly increase algal standing crops. Response to enrichment was rapid when ambient P concentration was low (< 0.010 mg L–1), but more moderate when ambient P levels were higher (0.015–0.025 mg L–1). Nutrient limitation of phytoplankton in small surface-release reservoirs varied throughout the study, but N was either primarily or secondarily limiting in 6 of 8 trials; shifts in the limiting nutrient were correlated with fluctuations in flow into the reservoirs. Our enrichment studies show that algal response to nutrient addition was unpredictable as phytoplankton tended to be N-limited while periphyton was mainly P-limited. Further, while discharge apparently dictated the nutrient-biomass relationship for phytoplankton in reservoirs, ambient nutrient level is an important determinant of lotic periphyton response to enrichment.  相似文献   

9.
10.
Nutrient limitation conditions, optimization and comparison of polyhydroxyalkanoate (PHA) yields and biomass production by parent and mutant strains of Rhizobium meliloti were investigated. Complex interactions among concentrations of sucrose (5–55 g/l), urea (0.05–0.65 g/l) inoculum (10–250 ml/l) and K2HPO4 (0.5–2 g/l), were studied using central composite rotatable design (CCRD) experiments. Phosphate-limiting medium (0.33 g K2HPO4/l) in the presence of excess carbon (sucrose 42.5 g/l) results in more production of PHA (2.2 g/l) in the parent strain. In comparison, the mutant strain required moderate levels of sucrose (30 g/l), along with excess of phosphate (1 g/l) for high PHA content of cell biomass (80%) and PHA yield (3.3 g/l). Optimised PHA production (biomass 4.8 g/l and PHA 3.09 g/l) by the parent strain occurred at: sucrose 51.58 g/l, urea 0.65 g/l, K2HPO4 0.48 g/l and inoculum 10 ml/l. In the mutant strain, higher yields of biomass (9.05 g/l) and PHA (5.66 g/l) were obtained in Optimised medium containing: sucrose 55 g/l, urea 0.65 g/l, K2HPO4 1.0 g/l and inoculum 150.58 ml/l.  相似文献   

11.
Key demographic traits in insect herbivores (survival, growth, and egg production) are often responsive to variation in diet quality, especially to dietary nitrogen (N) levels. Soluble carbohydrates may also be limiting. Using defined diets under controlled laboratory conditions, we examined survival, growth, and egg production in response to a range of diet qualities in adult females of a grass-feeding grasshopper Ageneotettix deorum (Scudder). Diets varied factorially within naturally occurring ranges of total N (1–7%) and carbohydrate (4–27%) levels. N concentrations significantly impacted weight gain, egg production rate, the elapsed time until the first egg pod, and the time between the first and second egg pod. These responses were typically quadratic in nature with a maximum response near 4–5% total N. The rate of pod production rather than number of eggs per pod best explained changes in reproductive rate. Dietary carbohydrate levels seldom exerted a significant impact on demographic parameters except when interacting with N on survival, egg weight, and the period between egg pods. Clearly, factors that alter the availability of quality diet, especially total N levels, can contribute to demographic responses in A. deorum. Received: 5 August 1996 / Accepted: 26 April 1997  相似文献   

12.
  • 1 In the laboratory, the growth and reproduction of Anuraeopsis fissa were measured when fed on Scenedesmus species grown in nutrient‐sufficient, nitrogen‐limited and phosphorus‐limited media and in the presence or absence of one adult Daphnia longispina per vial.
  • 2 Poor food quality may reduce the effect of competition on rotifers. Competition from Daphnia was stronger with nutrient sufficient algae than with nutrient limited algae. P‐limitation significantly reduced Anuraeopsis population growth rate and fecundity. The effect of nutrient limitation on Anuraeopsis was stronger than that of competition with Daphnia. The Anuraeopsis population declined with P‐limited food in both the presence and absence of Daphnia.
  • 3 Exploitative competition by Daphnia on Anuraeopsis was stronger in the nutrient‐sufficient treatment than in the N‐limited one. Density, fecundity and population growth rate of Anuraeopsis were negatively affected by Daphnia in the nutrient‐sufficient treatment, while only fecundity was reduced by Daphnia in the N‐limited treatment. Consequently, in the N‐limited treatment, mortality should be lower in the presence of Daphnia. This result could suggest that Anuraeopsis lives longer when short of nitrogen.
  • 4 Nutrient limitation may affect to the competitive interactions between zooplankton species. P‐limitation decreased the quality of algae as food for Anuraeopsis while N‐limitation decreased the susceptibility of this rotifer species to exploitative competition by Daphnia.
  相似文献   

13.
Ault  Timothy  Velzeboer  Renate  Zammit  Rebecca 《Hydrobiologia》2000,429(1-3):89-103
We investigated the influence of nutrient availability, specifically nitrogen, phosphorus and silicon on growth and community structure of phytoplankton from the Port Adelaide River estuary, South Australia. Two bioassay experiments were conducted. The first, Nutrich1, involved addition of nutrients in vitro to samples of the natural phytoplankton community from a single location in the upper estuary. The second, Nutrich2, involved nutrient addition and incubation of water from five locations in the estuary following inoculation with a `standardised' phytoplankton assemblage derived from laboratory cultures. In Nutrich1, enrichment with silicon led to greatly enhanced phytoplankton biomass due to increased growth of diatoms. Addition of nitrogen or phosphorus had little effect on phytoplankton growth. In Nutrich2, addition of nitrogen resulted in enhanced growth of phytoplankton in water collected from near the mouth the estuary, but there were no differences in growth among nutrient treatments for the remaining locations. Comparison of phytoplankton growth rate among locations revealed a trend of decreasing growth in moving towards the mouth of the estuary. This trend was unaffected by enrichment with nitrate, phosphate or silicate. We suggest that spatial variation in growth potential within the Port Adelaide River estuary may relate to variation in the concentration of nitrogen as ammonium.  相似文献   

14.
Ephemerella inermis Eaton is a univoltine species that emerges in July. Eggs hatch in August and larvae grow rapidly in autumn and spring, but not during winter. Baetis tricaudatus Dodds produces three cohorts per year. Emergence periods occur in early June, July and early September. Only one cohort overwinters as larvae.
Microdistribution of both species is controlled largely by the discharge pattern of the river. During 1978, a year of frequent floods, animals were equally distributed among slow and fast water portions of the river. Nocturnal drift densities of both species were much greater in slow than in fast water areas. During 1979, a year of relatively stable flow, benthic larval densities were significantly greater in fast water than in slow water.
Early instar E. inermis larvae are most abundant in nearshore areas, but move to deeper water in late autumn. Baetis tricaudatus larvae are seldom numerous in near-shore areas.
Densities of both species were positively associated with concentrations of detritus and of other invertebrates, but only when relationships were considered in areas of similar current velocity independently of season.  相似文献   

15.
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions.  相似文献   

16.
The toxicity of crude oil in relation to nutrient limitation was studied in Skeletonema costatum cultures. The addition of 100 mg/l of crude oil, although slightly toxic for the algae grown in complete media, was eventually lethal for the algae growing in phosphorus and nitrogen limited media, indicating the importance of those two nutrients for the algal resistance to oil pollution problems. Less severe effects of crude oil were observed in the silicon limited media, suggesting that the adsorptive properties of silica play an important role in the uptake and intracellular distribution of hydrocarbons. Chl a and carbon uptake were found to be more sensitive parameters for assessing hydrocarbon toxicity than cell counting.  相似文献   

17.
Cell suspension cultures of the Madagascan Periwinkle, Catharanthus roseus (L). G. Don were grown as batch cultures in two different types of media; in one medium the limiting nutrient was inorganic nitrogen, and in the other it was carbon. The response of the cells to these growth-limiting conditions was monitored by measuring cellular fresh weight, dry weight and protein accumulation, cell viability, medium sugar and nitrate levels, and the activities of certain intracellular enzymes throughout growth in batch culture. The enzymes investigated were glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), hexokinase (EC 2.7.1.40), phosphofructokinase (EC 2.7.1.11), nitrate reductase (EC 1.6.6.1), glutamate dehydrogenase (EC 1.4.1.2) and glutamine synthetase (EC 6.3.1.2). The effect of culturing the cells under different nutritional regimes was apparent in all aspects of growth; only some enzyme activities were unaffected. Cell viability remained at a high level for several days after growth limitation in both types of culture. The possibility that protein degradation in nitrogen-limited batch cultures is under very stringent control is discussed.  相似文献   

18.
Carl  Leon M.  Walty  David  Rimmer  David M. 《Hydrobiologia》1992,243(1):237-247
Changes in a grayling spawning population are described that occurred in relation to both natural and man-induced events. The spawning population was monitored from 1982 to 1987 with a trap on a fishway on the Beaverlodge River, Alberta. Most of the spawning run in each year was tagged with recaptures noted in subsequent years. Male grayling grew slightly faster than females. Growth rates were variable and appeared to be quite low in years of low water flow. Grayling first spawned at 2 to 6 years of age. The majority of tagged grayling would have returned to spawn a second time after a delay of one to two years were it not for the high adult mortality. It is hypothesized that the variable time to first maturity and the delay in the second spawning is a response to highly variable juvenile recruitment. Annual mortality rates increased with age, suggesting an increased vulnerability of larger fish to angling. The population appears highly sensitive to over-exploitation, because of the high mortality rates and the delayed time to spawning of the adults.Deceased.Deceased.  相似文献   

19.
In the Lower Athabasca region of Alberta (Canada), surface mining for bitumen from oil sands creates highly disturbed environments, which need to be restored, after mine closing, to equivalent land capability in terms of biodiversity and ecosystem services. We demonstrate a method to characterize ecosystem diversity and conditions using biophysical indicators of the Lower Athabasca meant for informing land reclamation planning and monitoring by identifying and creating a typology of the main assemblages of topography, soil and forest vegetation at the watershed, landform and ecosite scales, and analysing the relationships among land units of various scales. Our results showed that watersheds could be classified into distinct groups with specific features, even for a region with a generally flat or gently rolling topography, with slope, surficial deposits and aspect as key drivers of differences. Despite the subtle topography, the moisture regime, which is linked to large-scale cycles that are dependent on the surrounding matrix, was of primary importance for driving vegetation assemblages. There was no unique and homogeneous association between topography and vegetation; the specific landforms each displayed a range of ecosites, and the same ecosites were found in different landforms. This suggests that landscapes cannot be defined in a qualitative manner but rather with quantitative indicators that express the proportion occupied by each class of ecological units within the coarser units, therefore requiring during land reclamation that sufficient care is given to create heterogeneity within a given landform in terms of soil texture and drainage so that a mosaic of ecosite conditions is created.  相似文献   

20.
Pollen limitation and resource limitation have been documented as the major factors responsible for plants commonly producing more ovules than seeds, but few studies have examined pollen deposition directly in natural populations at different sites and times. We investigated the causes of low seed set in four populations of Liriodendron chinense (Magnoliaceae), an insect‐pollinated endangered tree endemic to southern China, over 2–3 years. One pistil potentially produces two ovules. The number of pistils per flower varies among populations, but in three of the four populations the variation in a given population was not significantly different among years. Overall, populations with higher pistil numbers tend to set more seeds per flower, but a positive correlation between pistil numbers and seed production per flower was observed in only one of the four populations. The numbers of pollen grains deposited per stigma varied from 0 to 60. The proportion of pollinated stigmas per flower ranged from 44% to 88% among populations and years. The numbers of pollen grains deposited per stigma and the percentages of pollinated stigmas were significantly different between populations, and two populations showed significant differences between years. A positive correlation between stigmatic pollen load and seed set was sought in ten population‐by‐year combinations but, in a given population, high stigmatic pollen loads did not always result in high seed set. Examination of pollen deposition, pistil and seed production over several sites and years showed that in addition to pollination, other factors such as resource or genetic loads were likely to limit the (lower than 10%) seed set in L. chinense. It appears that small, isolated populations experience severe pollination limitation; one population studied had seed/ovule ratios of 0.84% and 1.88% in 1995 and 1996. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 31–38.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号