首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MalF is an essential cytoplasmic membrane protein of the maltose transport system of Escherichia coli. We have developed a general approach for analysis of the mechanism of integration of membrane proteins and their membrane topology by characterizing a series of fusions of beta-galactosidase to MalF. The properties of the fusion proteins indicate the following. (1) The first two presumed transmembrane segments of MalF are sufficient to anchor beta-galactosidase firmly to the inner membrane. (2) Hybrid proteins with beta-galactosidase fused to a presumed cytoplasmic domain of MalF have high beta-galactosidase specific activity; fusions to periplasmic domains have low activity. We propose therefore, that periplasmic and cytoplasmic domains of integral membrane proteins can be distinguished by the enzymatic properties of such hybrid proteins. In general, it appears that cleaved or non-cleaved signal sequences when attached to beta-galactosidase cause it to become embedded in the membrane, and this results in the inability of the hybrid proteins to assemble into active enzyme. Additional properties of these fusion proteins contribute to our understanding of the regulation of MalF synthesis. The MalF protein, synthesized as part of the malEFG operon of E. coli, is approximately 30-fold less abundant in the cell than MalE protein (the maltose-binding protein). Differential amounts of the fusion proteins indicate that a regulatory signal occurs within the malF gene that is responsible for the step-down in expression from the malE gene to the malF gene.  相似文献   

2.
The MalF protein is an integral membrane protein of Escherichia coli containing eight membrane-spanning stretches and a large periplasmic domain of approximately 180 amino acids. We have asked whether this protein is dependent for its membrane insertion on the bacterial secretion machinery specified by the sec genes. Using azide to inhibit the SecA protein and sec mutants to reduce the functioning of the machinery, we have studied the membrane assembly of MalF and beta-galactosidase and alkaline phosphatase fusions to MalF. In no case did we see an effect of reducing sec gene function on the insertion of MalF or fusion proteins. Selection for mutants that would cause internalization of a MalF-beta-galactosidase hybrid protein yielded no mutations in sec genes. Our results suggest that MalF can assemble in the membrane independently of the bacterial secretion machinery.  相似文献   

3.
The amino acid sequence of the sodium ion-dependent citrate transporter CitS of K. pneumoniae contains 12 hydrophobic stretches that could form membrane-spanning segments. A previous analysis of the membrane topology in Escherichia coli using the PhoA gene fusion technique indicated that only nine of these hydrophobic segments span the membrane, while three segments, Vb, VIII and IX, were predicted to have a periplasmic location (Van Geest, M., and Lolkema, J. S. (1996) J. Biol. Chem. 271, 25582-25589). A topology study of C-terminally truncated CitS molecules in dog pancreas microsomes revealed that the protein traverses the endoplasmic reticulum membrane 11 times. In agreement with the PhoA fusion data, segment Vb was predicted to have a periplasmic location, but, in contrast, segments VIII and IX were found to be membrane-spanning (Van Geest, M., Nilsson, I., von Heijne, G., and Lolkema, J. S. (1999) J. Biol. Chem. 274, 2816-2823). In the present study, using site-directed Cys labeling, the topology of segments VIII and IX in the full-length CitS protein was determined in the E. coli membrane. Engineered cysteine residues in the loop between the two segments were accessible to a membrane-impermeable thiol reagent exclusively from the cytoplasmic side of the membrane, demonstrating that transmembrane segments (TMSs) VIII and IX are both membrane-spanning. It follows that the folding of CitS in the E. coli and endoplasmic reticulum membrane is the same. Cysteine accessibility studies of CitS-PhoA fusion molecules demonstrated that in the E. coli membrane segment VIII is exported to the periplasm in the absence of the C-terminal CitS sequences, thus explaining why the PhoA fusions do not correctly predict the topology. An engineered cysteine residue downstream of TMS VIII moved from a periplasmic to a cytoplasmic location when the fusion protein containing TMSs I-VIII was extended with segment IX. Thus, downstream segment IX is both essential and sufficient for the insertion of segment VIII of CitS in the E. coli membrane.  相似文献   

4.
M Mourez  M Hofnung    E Dassa 《The EMBO journal》1997,16(11):3066-3077
The cytoplasmic membrane proteins of bacterial binding protein-dependent transporters belong to the superfamily of ABC transporters. The hydrophobic proteins display a conserved, at least 20 amino acid EAA---G---------I-LP region exposed in the cytosol, the EAA region. We mutagenized the EAA regions of MalF and MalG proteins of the Escherichia coli maltose transport system. Substitutions at the same positions in MalF and MalG have different phenotypes, indicating that EAA regions do not act symmetrically. Mutations in malG or malF that slightly affect or do not affect transport, determine a completely defective phenotype when present together. This suggests that EAA regions of MalF and MalG may interact during transport. Maltose-negative mutants fall into two categories with respect to the cellular localization of the MalK ATPase: in the first, MalK is membrane-bound, as in wild-type strains, while in the second, it is cytosolic, as in strains deleted in the malF and malG genes. From maltose-negative mutants of the two categories, we isolated suppressor mutations within malK that restore transport. They map mainly in the putative helical domain of MalK, suggesting that EAA regions may constitute a recognition site for the ABC ATPase helical domain.  相似文献   

5.
Active accumulation of maltose and maltodextrins by Escherichia coli depends on an outer-membrane protein. LamB, a periplasmic maltose-binding protein (MalE, MBP) and three inner-membrane proteins, MalF, MalG and MalK. MalF and MalG are integral transmembrane proteins, while MalK is associated with the inner aspect of the cytoplasmic membrane via an interaction with MalG. Previously we have shown that MBP is essential for movement of maltose across the inner membrane. We have taken advantage of malF and malG mutants in which MBP interacts improperly with the membrane proteins. We describe the properties of malE mutations in which a proper interaction between MBP and defective MalF and MalG proteins has been restored. We found that these malE suppressor mutations are able to restore transport activity in an allele-specific manner. That is, a given malE mutation restores transport activity to different extents in different malF and malG mutants. Since both malF and malG mutations could be suppressed by allele-specific malE suppressors, we propose that, in wild-type bacteria, MBP interacts with sites on both MalF and MalG during active transport. The locations of different malE suppressor mutations indicate specific regions on MBP that are important for interacting with MalF and MalG.  相似文献   

6.
MalF is one of the two integral inner membrane proteins of the maltose-maltodextrin transport system. To identify functional regions in this protein, we characterized a collection of malF mutants obtained by random mutagenesis. We analyzed their growth on maltose and maltodextrins, the steady-state levels and subcellular localization of the mutant proteins, and the subcellular localization of MalK. Only 2 of the 21 MalF mutant proteins allowed growth on maltose and maltodextrins. Most mutations resulting in immunodetectable proteins mapped to hydrophilic domains, indicating that insertions affecting transmembrane segments gave rise to unstable or lethal proteins. All MalF mutant proteins, even those C-terminally truncated or with large N-terminal deletions, were inserted into the cytoplasmic membrane. Having identified mutations leading to reduced steady-state level, to partial mislocation, and/or to misfolding, we were able to assign to some regions of MalF a role in the assembly of the MalFGK2 complex and/or in the transport mechanism.  相似文献   

7.
K McGovern  M Ehrmann    J Beckwith 《The EMBO journal》1991,10(10):2773-2782
We have used genetic methods to investigate the role of the different domains of a bacterial cytoplasmic membrane protein, MalF, in determining its topology. This was done by analyzing the effects of MalF topology of deleting various domains of the protein using MalF-alkaline phosphatase fusion proteins. Our results show that the cytoplasmic domains of the protein are the pre-eminent topogenic signals. These domains contain information that determines their cytoplasmic location and, thus, the orientation of the membrane spanning segments surrounding them. Periplasmic domains do not appear to have equivalent information specifying their location and membrane spanning segments do not contain information defining their orientation in the membrane. The strength of cytoplasmic domains as topogenic signals varies, correlated with the density of positively charged amino acids within them.  相似文献   

8.
The Escherichia coli ProU system is a member of the ATP-binding cassette (ABC) superfamily of transporters. ProU consists of three components (ProV, ProW, and ProX) and functions as a high-affinity, binding protein-dependent transport system for the osmoprotectants glycine betaine and proline betaine. The ProW protein is the integral inner membrane component of the ProU system. Its hydropathy profile predicts seven transmembrane spans and a hydrophilic amino terminus of approximately 100 residues, and it suggests the presence of an amphiphilic alpha-helix (L-61 to F-97) in close proximity to the first strongly hydrophobic segment of ProW. We have studied the membrane topology of the ProW protein by the phoA and lacZ gene fusion approach. A collection of 10 different proW-phoA fusions with alkaline phosphatase activity and 8 different proW-lacZ fusions with beta-galactosidase activity were isolated in vivo after TnphoAB and TnlacZ mutagenesis of a plasmid-encoded proW gene. The recovery of both enzymatically active ProW-PhoA and ProW-LacZ hybrid proteins indicates that segments of ProW are exposed on both sides of the cytoplasmic membrane. To compare the enzymatic activities of each of the indicator proteins joined at a particular site in ProW, we switched the phoA and lacZ reporter genes in vitro in each of the originally in vivo-isolated gene fusions. A mirror-like pattern in the enzyme activity of the resulting new ProW-PhoA and ProW-LacZ hybrid proteins emerged, thus providing positive signals for the location of both periplasmic and cytoplasmic domains in ProW. The protease kallikrein digests the amino-terminal tail of a ProW-LacZ hybrid protein in spheroplasts, suggesting that the amino terminus of ProW is located on the periplasmic side of the cytoplasmic membrane. From these data, a two-dimensional model for ProW was constructed; this model consists of seven transmembrane alpha-helices and an unusual amino-terminal tail of approximately 100 amino acid residues that protrudes into the periplasmic space.  相似文献   

9.
The ars operon of the conjugative R-factor R773 encodes an oxyanion pump that catalyzes extrusion of arsenicals from cells of Escherichia coli. The oxyanion translocation ATPase is composed of two polypeptides, the catalytic ArsA protein and the intrinsic membrane protein, ArsB. The topology of regions of the ArsB protein in the inner membrane was determined using a variety of gene fusions. Random gene fusions with lacZ and phoA were generated using transposon mutagenesis. A series of gene fusions with blaM were constructed in vitro using a beta-lactamase fusion vector. To localize individual segments of the ArsB protein, a ternary fusion method was developed, where portions of the arsB gene were inserted in-frame between the coding regions for two heterologous proteins, in this case a portion of a newly identified arsD gene and the blaM sequence encoding the mature beta-lactamase. The location of a periplasmic loop was determined from V8 protease digestion of an ArsA-ArsB chimera. From analysis of data from 26 fusions, a topological model of the ArsB protein with 12 membrane-spanning regions is proposed.  相似文献   

10.
This report describes a new transposon designed to facilitate the combined use of beta-galactosidase and alkaline phosphatase gene fusions in the analysis of protein localization. The transposon, called TnlacZ, is a Tn5 derivative that permits the generation of gene fusions encoding hybrid proteins carrying beta-galactosidase at their C termini. In tests with plasmids, TnlacZ insertions that led to high cellular beta-galactosidase activity were restricted to sequences encoding either cytoplasmic proteins or cytoplasmic segments of a membrane protein. The fusion characteristics of TnlacZ are thus complementary to those of TnphoA, a transposon able to generate alkaline phosphatase fusions whose high-activity insertion sites generally correspond to periplasmic sequences. The structure of TnlacZ allows the conversion of a TnlacZ fusion into the corresponding TnphoA fusion (and vice versa) through recombination or in vitro manipulation in a process called fusion switching. Fusion switching was used to generate the following two types of fusions with unusual properties: a low-specific-activity beta-galactosidase-alkaline phosphatase gene fusion and two toxic periplasmic-domain serine chemoreceptor-beta-galactosidase gene fusions. The generation of both beta-galactosidase and alkaline phosphatase fusions at exactly the same site in a protein permits a comparison of the two enzyme activities in evaluating the subcellular location of the site, such as in studies of membrane protein topology. In addition, fusion switching makes it possible to generate gene fusions whose properties should facilitate the isolation of mutants defective in the export or membrane anchoring of different cell envelope proteins.  相似文献   

11.
A theoretical model for the cytoplasmic membrane topology of the Rhodobacter capsulatus PucC protein was derived and tested experimentally with pucC'::pho'A gene fusions. The alkaline phosphatase (AP) activities of selected fusions were assayed, and the resultant pattern of high and low activity was compared with that of the theoretical model. High AP activity correlated well with fusion joints located in regions predicted to be periplasmic, and most fusions in predicted cytoplasmic loops yield approximately 1/20th as much activity. Replacement of pho'A with lac'Z in nine of the fusions confirmed the topology, as beta-galactosidase activities were generally reciprocal to the corresponding AP activity. On the basis of the theoretical analysis and the information provided by the activities of fusions, a model for PucC topology in which there are 12 membrane-spanning segments and both the N and C termini are located in the cytoplasm is proposed. Translationally out-of-frame pucC::phoA fusions were expressed in an R. capsulatus delta pucC strain. None of the fusions missing only one or two of the proposed C-terminal transmembrane segments restored the wild-type phenotype, suggesting that the C terminus of PucC is important for function.  相似文献   

12.
Structure and autoregulation of the metJ regulatory gene in Escherichia coli   总被引:13,自引:0,他引:13  
The nucleotide sequence of the Escherichia coli metJ regulatory gene (312 nucleotides) has been determined as well as that of two mutations located within the gene. Analysis of the sequence downstream from the metJ gene has revealed inverted repeats homologous to several intercistronic regions, also reported to occur between operons. A hybrid protein that contains the 55 first amino acid residues of the metJ protein substituting for the 8 amino acid residues at the NH2 terminus of beta-galactosidase was produced by gene fusion. The hybrid protein retaining beta-galactosidase activity was purified. Its amino-terminal sequence was determined and this allowed us to locate the translational start codon of the metJ gene. Evidence was provided for autoregulation by repression of the metJ gene. By sequencing upstream from metJ, the region situated between the metJ and metB genes was found to contain putative operator structures that we propose to call "Met boxes."  相似文献   

13.
The cytochrome o terminal oxidase complex is a component of the aerobic respiratory chain of Escherichia coli. This enzyme catalyzes the oxidation of ubiquinol-8 to ubiquinone-8 within the cytoplasmic membrane and the concomitant reduction of O2 to H2O. The hydropathy profiles of the deduced amino acid sequences suggest that all five of the gene products of the cyo operon contain multiple membrane-spanning helical segments. The goal of this work was to obtain experimental evidence for the topology of the five gene products in the cytoplasmic membrane by using the technique of gene fusions. A number of random gene fusions were generated in vitro encoding hybrid proteins in which the amino-terminal portion was provided by the subunit of interest and the carboxyl-terminal portion by one of two sensor proteins, alkaline phosphatase lacking its signal sequence or beta-galactosidase. Results obtained are self-consistent, and topological models are proposed for all of the five gene products encoded by the cyo operon. Based on the sequence similarities with subunits of the aa3-type cytochrome c oxidases, the experimental evidence obtained here can be used to infer topological models for the mitochondrial encoded subunits of the eukaryotic cytochrome c oxidases.  相似文献   

14.
For most paramyxoviruses, syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins (X. Hu et al., J. Virol. 66:1528-1534, 1992). The stalk region of the Newcastle disease virus (NDV) HN protein has been implicated in both fusion promotion and virus specificity of that activity. The NDV F protein contains two heptad repeat motifs which have been shown by site-directed mutagenesis to be critical for fusion (R. Buckland et al., J. Gen. Virol. 73:1703-1707, 1992; T. Sergel-Germano et al., J. Virol. 68:7654-7658, 1994; J. Reitter et al., J. Virol. 69:5995-6004, 1995). Heptad repeat motifs mediate protein-protein interactions by enabling the formation of coiled coils. Upon analysis of the stalk region of the NDV HN protein, we identified two heptad repeats. Secondary structure analysis of these repeats suggested the potential for these regions to form alpha helices. To investigate the importance of this sequence motif for fusion promotion, we mutated the hydrophobic a-position amino acids of each heptad repeat to alanine or methionine. In addition, hydrophobic amino acids in other positions were also changed to alanine. Every mutant protein retained levels of attachment activity that was greater than or equal to the wild-type protein activity and bound to conformation-specific monoclonal as well as polyclonal antisera. Neuraminidase activity was variably affected. Every mutation, however, showed a dramatic decrease in fusion promotion activity. The phenotypes of these mutant proteins indicate that individual amino acids within the heptad repeat region of the stalk domain of the HN protein are important for the fusion promotion activity of the protein. These data are consistent with the idea that the HN protein associates with the F protein via specific interactions between the heptad repeat regions of both proteins.  相似文献   

15.
The Tsr protein of Escherichia coli is a chemosensory transducer that mediates taxis toward serine and away from certain repellents. Like other bacterial transducers, Tsr spans the cytoplasmic membrane twice, forming a periplasmic domain of about 150 amino acids and a cytoplasmic domain of about 300 amino acids. The 32 N-terminal amino acids of Tsr resemble the consensus signal sequence of secreted proteins, but they are not removed from the mature protein. To investigate the function of this N-terminal sequence in the assembly process, we isolated translational fusions between tsr and the phoA and lacZ genes, which code for the periplasmic enzyme alkaline phosphatase and the cytoplasmic enzyme beta-galactosidase, respectively. All tsr-phoA fusions isolated code for proteins whose fusion joints are within the periplasmic loop of Tsr, and all of these hybrid proteins have high alkaline phosphatase activity. The most N-terminal fusion joint is at amino acid 19 of Tsr. Tsr-lacZ fusions were found throughout the tsr gene. The beta-galactosidase activity of the LacZ-fusion proteins varies greatly, depending on the location of the fusion joint. Fusions with low activity have fusion joints within the periplasmic loop of Tsr. The expression of these fusions is most likely reduced at the level of translation. In addition, one of these fusions markedly reduces the export and processing of the periplasmic maltose-binding protein and the outer membrane protein OmpA, but not of intact PhoA or of the outer membrane protein LamB. A temperature-sensitive secA mutation, causing defective protein secretion, stops expression of new alkaline phosphatase activity coded by a tsr-phoA fusion upon shifting to the nonpermissive temperature. The same secA mutation, even at the permissive temperature, increases the activity and the level of expression of LacZ fused to the periplasmic loop of Tsr relative to a secA+ strain. We conclude that the assembly of Tsr into the cytoplasmic membrane is mediated by the machinery responsible for the secretion of a subset of periplasmic and outer membrane proteins. Moreover, assembly of the Tsr protein seems to be closely coupled to its synthesis.  相似文献   

16.
The cytoplasmic tail of the immature Moloney murine leukemia virus (MoMuLV) envelope protein is approximately 32 amino acids long. During viral maturation, the viral protease cleaves this tail to release a 16-amino-acid R peptide, thereby rendering the envelope protein fusion competent. A series of truncations, deletions, and amino acid substitutions were constructed in this cytoplasmic tail to examine its role in fusion and viral transduction. Sequential truncation of the cytoplasmic tail revealed that removal of as few as 11 amino acids resulted in significant fusion when the envelope protein was expressed in NIH 3T3 cells, similar to that seen following expression of an R-less envelope (truncation of 16 amino acids). Further truncation of the cytoplasmic tail beyond the R-peptide cleavage site toward the membrane-spanning region had no additional effect on the level of fusion observed. In contrast, some deletions and nonconservative amino acid substitutions in the membrane-proximal region of the cytoplasmic tail (residues L602 to F605) reduced the amount of fusion observed in XC cell cocultivation assays, suggesting that this region influences the fusogenicity of full-length envelope protein. Expression of the mutant envelope proteins in a retroviral vector system revealed that decreased envelope-mediated cell-cell fusion correlated with a decrease in infectivity of the resulting virions. Additionally, some mutant envelope proteins which were capable of mediating cell-cell fusion were not efficiently incorporated into retroviral particles, resulting in defective virions. The cytoplasmic tail of MoMuLV envelope protein therefore influences both the fusogenicity of the envelope protein and its incorporation into virions.  相似文献   

17.
The Escherichia coli uhpT protein catalyzes the active transport of sugar-phosphates by an obligatory exchange mechanism. To examine its transmembrane topology, we isolated a collection of uhpT-phoA fusions encoding hybrid proteins of different lengths from the N terminus of UhpT fused to alkaline phosphatase by using transposon TnphoA. These fusions displayed different levels of alkaline phosphatase activity, although comparable levels of full-length UhpT-PhoA proteins were produced in maxicells of both high- and low-activity fusions. The full-length protein species were unstable and were degraded to the size of the alkaline phosphatase moiety in the case of a high-activity fusion or to small fragments in the case of a low-activity fusion. The enzyme activity present in low-activity fusions appeared to result from export of a small proportion of the fusion proteins to the periplasmic space. Although fusions were not obtained in all predicted extramembranous loops, the deduced topology of UhpT was consistent with a model of 12 membrane-spanning regions oriented with the amino and carboxyl termini in the cytoplasm.  相似文献   

18.
Alkaline phosphatase fusions were used to study the membrane topology of DcrA, a protein of 668 amino acids fromDesulfovibrio vulgaris Hildenborough, which has two potentially membrane-spanning hydrophobic sequences at residues 11 to 29 and 188 to 207. A fusion at amino acid residue 170 in the proposed periplasmic domain exhibited high alkaline phosphatase activity, while low activity was observed for a fusion at amino acid residue 284 in the proposed cytoplasmic domain. The data support a topological model for DcrA similar to that of the methyl-accepting chemotaxis proteins of the enteric bacteria.  相似文献   

19.
Pseudotyping retrovirus and lentivirus vectors with different viral fusion proteins is a useful strategy to alter the host range of the vectors. Although lentivirus vectors are efficiently pseudotyped by Env proteins from several different subtypes of murine leukemia virus (MuLV), the related protein from gibbon ape leukemia virus (GaLV) does not form functional pseudotypes. We have determined that this arises because of an inability of GaLV Env to be incorporated into lentivirus vector particles. By exploiting the homology between the GaLV and MuLV Env proteins, we have mapped the determinants of incompatibility in the GaLV Env. Three modifications that allowed GaLV Env to pseudotype human immunodeficiency virus type 1 particles were identified: removal of the R peptide (C-terminal half of the cytoplasmic domain), replacement of the whole cytoplasmic tail with the corresponding MuLV region, and mutation of two residues upstream of the R peptide cleavage site. In addition, we have previously proposed that removal of the R peptide from MuLV Env proteins enhances their fusogenicity by transmitting a conformational change to the ectodomain of the protein (Y. Zhao et al., J. Virol. 72:5392-5398, 1998). Our analysis of chimeric MuLV/GaLV Env proteins provides further evidence in support of this model and suggests that proper Env function involves both interactions within the cytoplasmic tail and more long-range interactions between the cytoplasmic tail, the membrane-spanning region, and the ectodomain of the protein.  相似文献   

20.
MalF and MalG are the cytoplasmic membrane components of the binding protein-dependent ATP binding cassette maltose transporter in Escherichia coli. They are thought to form the transport channel and are thus of critical importance for the mechanism of transport. To study the contributions of individual transmembrane segments of MalF, we isolated 27 point mutations in membrane-spanning segments 3, 4, and 5. These data complement a previous study, which described the mutagenesis of membrane-spanning segments 6, 7, and 8. While most of the isolated mutations appear to cause assembly defects, L(323)Q in helix 5 could interfere more directly with substrate specificity. The phenotypes and locations of the mutations are consistent with a previously postulated structural model of MalF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号