首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We compared the parasitoid communities associated with grass-feeding herbivores in Germany and Britain to examine geographical consistency in community composition and to test ecological characteristics of the plants and host insects that may explain variability in parasitoid community structure. The parasitoid communities of 16 chalcid wasps feeding on ten grass species were sampled between 1986 and 1989 at 4-11 sites per grass species in southwest Germany. The data were compared to published data from Great Britain, comprising 18 chalcid hosts on ten grass species sampled between 1980 and 1992 at 24 sites in Wales and England. Results showed that many conclusions drawn from patterns in Britain did not hold for Germany, emphasizing the need to repeat analyses in different geographical regions. The parasitoid communities of the Tetramesa hosts included on average 8.1 parasitoid species in Germany, while the British hosts supported only 4.1 parasitoids. The number of monophagous parasitoid species was similar in both areas (2.4 vs 3.2), but German host populations supported many more polyphagous species (5.1 vs 0.9). This difference reinforces the earlier conclusion that parasitoid communities in Britain are highly undersaturated. Increased numbers of parasitoid species in Germany did not result in increased parasitism rates, so the closer species packing was paralleled by reduced impact of each species. In Germany, percent parasitism (range: 5-74%) was closely correlated with log host density, explaining 90% of the variance, while in Great Britain, percent parasitism was less variable (range: 36-76%) and was not related to host density or other host or host plant characteristics. Gallers and non-gallers supported equal numbers of parasitoids in both Germany and Britain, offering support for neither the enemy hypothesis of the adaptive nature of plant galls nor for the finding that galls are often more susceptible to enemy attack than their non-galling relatives. Furthermore, gregarious Tetramesa hosts were not attacked by more parasitoid species than solitary hosts.  相似文献   

2.
Herbivore fitness can be altered by a combination of interacting organisms, such as its food plant, conspecifics, and predators/parasitoids. Here, we tested relative effects of plant species, herbivore intraspecific competition type, and spatial distribution of the herbivore among plant units on herbivore survival and whether parasitoids modified these effects. We used an endophagous bruchine seed predator Callosobruchus maculatus for the herbivore, and a braconid wasp Heterospilus prosopidis for the parasitoid. The survival rate of C. maculatus was measured for each of 16 combinations of two plants (bean species, Vigna unguiculata and V. radiata), two competition types of C. maculatus larvae (contest and scramble), two spatial distributions of hosts [sparse (1 C. maculatus larva per seed over 20 seeds) and dense (2 C. maculatus larvae per seed over ten seeds)], and with/without a parasitoid pair. In the absence of the parasitoid, C. maculatus survival rate was lower with V. radiata and in the contest type. With the parasitoid, the proportion parasitized hosts was independent of total host density. Neither the proportion of parasitized hosts nor host survival rate was affected by plant species or host strain, but they were affected by host spatial distribution. When host distribution was dense, a higher proportion of hosts were parasitized, and C. maculatus survival rate was lower. Here we discuss parasitoid potential as a selective agent for the sparse within-pod distribution of its hosts in the field.  相似文献   

3.
The interaction between the entomopathogenic fungusAschersonia aleyrodis and the parasitoidEncarsia formosa on greenhouse whitefly as a host organism was studied, in particular, the survival of the parasitoid after treatment of parasitized hosts with fungal spores. The mean number of parasitized black pupae per parasitoid produced at 25°C was significantly reduced after spore treatment in the first three days following parasitization. Spore treatment four, seven or ten days after parasitization resulted in a mean number of parasitized pupae not significantly different from the number of black pupae in the control. The rather sudden change from low to high survival of parasitized hosts when treated with spores four days after parasitization in spite of high numbers of infected unparasitized larvae, coincided with the hatching of the parasitoid larva from the egg inside the host. Possible reasons for this decrease in susceptibility to infection after parasitoid egg hatch, such as induced changes in host cuticle or haemolymph, are discussed. Parasitoids emerged from treated hosts did not show differences in reproduction compared with parasitoids emerging from untreated hosts. Both natural enemeies of whitefly are compatible to a great extent.  相似文献   

4.
R. Singh  M. Srivastava 《BioControl》1989,34(4):581-586
The influence of kairomones on the numerical response of the parasitoidTrioxys indicus against its hostAphis craccivora at its varying density was studied. The kairomones (applied as aqueous extract of the host) significantly enhanced the rate of parasitisation and multiplication and the area of discovery of the parasitoid and also the K-values of mortality of the host at all parasitoid densities introduced (1, 2, 4, 8, 12 and 16 parasitoids) into troughs having about 200 hosts. The sex-ratio of F1 offspring decreased at lower parasitoid densities and remained more or less unchanged at higher parasitoid densities after the application of kairomones. The present findings indicate that if kairomones are applied properly, the number of hosts destroyed by a stimulated parasitoid will be about 200, twice the number reported earlier, thus fewer parasitoids will be needed to regulate an estimated population of the hosts.   相似文献   

5.
Abstract.
  • 1 In nature, interference among Anagrus delicatus (Hymenoptera: Mymaridae) parasitoids reduced the per-capita number of hosts parasitized. Interference increased with parasitoid density.
  • 2 Anagrus delicatus did not avoid parasitizing hosts that had recently been parasitized by conspecific wasps. Evidence indicated that this superparasitism was largely a random process, increasing with the ratio of parasitized to unparasitized hosts.
  • 3 Individual parasitoid efficiency, the number of hosts killed per wasp per unit time, decreased with increasing wasp density. This occurred whether wasps searched the patch together (simultaneously) or one by one (sequentially), and was the result of an increase in time spent superparasitizing hosts at higher wasp density. This is known as indirect mutual interference.
  • 4 Increasing numbers of parasitoids together on the same patch caused a significant decline in the rate and per-capita number of hosts parasitized. However, there was not a correspondent decline in searching efficiency with increasing wasp density (i.e. no direct mutual interference).
  • 5 These forms of parasitoid density dependence should contribute to the stability of the host—parasitoid interaction.
  相似文献   

6.
Two gregarious parasitoids, Apanteles ruficrus and A. kariyai attack larvae of the common armyworm, Pseudaletia separata. Their growth pattern and growth rate of the parasitoids were not affected by host age at the time of oviposition, even though host weight increased exponentially with age. Consequently, the maximal weight of a single parasitoid larva was nearly constant regardless of host instar parasitized. Parasitoid females laid more eggs in later-instar hosts than in earlier-instar hosts. When parasitized at the same age, heavily parasitized hosts attained a larger mass than lightly parasitized larvae. Therefore, the ratio of the maximal weight of the host to the parasitoid mass was nearly constant. These results indicate that host growth is regulated by the parasitoids.  相似文献   

7.
D. Wool  M. Burstein 《BioControl》1991,36(4):531-538
In an ecological investigation of the gall-forming aphid,Smynthurodes betae Westw., we discovered that more than 20% of the fundatrix galls were parasitized byMonoctonia pistaciaecola Stary (Aphidiidae). This is a new host record for this parasitoid. A Pteromalid hyper-parasite was identified asPachyneuron? leucopiscida Mani. Ecological information on the parasitoid is provided, and the low frequency of parasitoids known from gall-forming aphids, compared with freeliving ones, is discussed.  相似文献   

8.
The role of olfactory stimuli in host detection and evaluation was studied in two encyrtid Hymenoptera. The first, Epidinocarsis lopezi De Santis, is a monophagous parasitoid of the cassava mealybug Phenacoccus manihoti Matile-Ferrero, itself feeding exclusively on cassava, Manihot esculenta Crantz. The second, Leptomastix dactylopii Howard, is a monophagous parasitoid of the Citrus mealybug, Planococcus citri Risso, but this latter is highly polyphagous. The behaviour of females of both parasitoids (attaction and locomotion) was compared in a tubular olfactometer for the odours of their respective hosts on cassava and poinsettia. Tests were made using: 1) healthy host-plant alone; 2) host-plant infested with unparasitized mealybugs; 3) unparasitized mealybugs only; 4) host-plant infested with parasitized mealybugs and 5) parasitized mealybugs only. Only E. lopezi was attracted by the odour of the host-plant alone, but both species were attracted by the odour of an infested host-plant and that of unparasitized mealybugs. The odour of parasitized mealybugs, alone or on host-plant, induced an undirected activity. The attraction of E. lopezi to the odour of the host-plant alone could be linked to the monophagous diet of its host, whereas the attraction of the two species of parasitoids to the odours of infested host-plants and unparasitized mealybugs could be due to the fact that both parasitoids are specialists. The behavioural response of both species to the odour of parasitized mealybugs revealed a new aspect in host discrimination: the identification of parasitized hosts could be partly mediated through olfactory stimuli, and not only through gustatory stimuli.  相似文献   

9.
We investigated the effect of host (Plodia interpunctella; Lepidoptera: Pyralidae) nutritional status on development of the solitary endoparasitoid,Venturia canescens (Hymenoptera: Ichneumonidae). Parasitoids from 3rd (L3) instars reared on a deficient diet during early parasitism took longer to develop and suffered higher mortality than those reared from hosts fedad libitum although there was not a significant difference in the size of eclosing wasps from the two groups. L5 hosts reared at high density produced smaller parasitoids, which developed more rapidly than those reared from hosts from low density containers, although mortality was higher in the latter. In a separate experiment we starved groups of 10–20 hosts (parasitized as L3) daily beginning on the 4th day after parasitism, to determine the host developmental stage required for successful parasitoid development to eclosion. Parasitoid survivorship increased with length of host access to food, while the egg-to-adult parasitoid development time increased throughout the experiment. Parasitoid size decreased with increasing periods of host starvation. The successful emergence ofVenturia depends uponPlodia reaching the size normally attained in the mid-5th instar, or 50–70% of the mass of healthy late 5th instars. Our results show that when earlier instars are parasitized, host growth is essential for successful parasitoid development to eclosion. Furthermore, they suggest that, for many koinobionts, host suitability may be greatly influenced by feeding rate and food quality.  相似文献   

10.
闭弯尾姬蜂与菜蛾盘绒茧蜂寄生菜蛾幼虫时的种间竞争   总被引:5,自引:1,他引:4  
在室内25℃下,以菜蛾3龄初幼虫作寄主,研究了菜蛾盘绒茧蜂Cotesia plutellae和半闭弯尾姬蜂Diadegma semiclausum的种间竞争。当寄主供2种蜂同时产卵寄生时,2种蜂各自的寄生率与其单独寄生时无显著差异,合计寄生率比一种蜂单独存在时有所提高,但差异不显著。2种蜂均能产卵寄生已被另一种蜂寄生了的寄主幼虫。当寄主被2种蜂寄生的间隔时间很短(少于10 h)时,所育出的蜂绝大部分(80%以上)为绒茧蜂;当寄主先被绒茧蜂寄生,并饲养2天以上再供弯尾姬蜂寄生时,所育出的全为绒茧蜂;当寄主先被弯尾姬蜂寄生,并饲养2天以上再供绒茧蜂寄生时,寄主幼虫绝大部分不能存活,只有少部分能育出寄生蜂,且多为弯尾姬蜂。当2种蜂的幼虫存在于同一寄主体内时,2种蜂的发育均受到另一种蜂的抑制;绒茧蜂1龄幼虫具有物理攻击能力,能将弯尾姬蜂卵或幼虫致死。这些结果表明,菜蛾盘绒茧蜂与半闭弯尾姬蜂在同一寄主中发育时,前者具有明显的竞争优势。  相似文献   

11.
When two herbivore pest species are potential hosts of a single parasitoid species, two questions arise. Firstly, which host is preferable for mass rearing in terms of later parasitoid performance, and secondly, how do parasitoids perform in mixed herbivore situations after colony establishment? We tested Hyssopus pallidus, a gregarious parasitoid of two major pests of apple, Cydia (Grapholita) molesta and Cydia pomonella, before and after landing on apples infested by one of the two Cydia species. Pre-alighting host preference was tested in a Y-tube olfactometer setup, and parasitism success in a contact bioassay. To gain information on parasitoid performance throughout the growing season, different fruit growth stages were used. Irrespective of the host they had developed on, the parasitoids showed similar olfactory preferences when given a dual choice between infested and healthy fruits, and they did not discriminate between fruits infested by C. molesta and C. pomonella. Responsiveness was generally high, especially late in the season close to harvest. Both hosts are parasitized regardless of the host the parasitoid female had developed on, and no differences in parasitism rates or number of offspring were noted for the two hosts offered. Results were consistent for all apple growth stages tested. In conclusion, mass rearing of this parasitoid can be carried out on either host, without limiting the future efficacy of the bio-control agent. Similarly, established colonies are expected to develop further on both hosts without any bias in host preference.  相似文献   

12.
We investigate the effect of parasitoid phenology on host–parasitoid population cycles. Recent experimental research has shown that parasitized hosts can continue to interact with their unparasitized counterparts through competition. Parasitoid phenology, in particular the timing of emergence from the host, determines the duration of this competition. We construct a discrete-time host–parasitoid model in which within-generation dynamics associated with parasitoid timing is explicitly incorporated. We found that late-emerging parasitoids induce less severe, but more frequent, host outbreaks, independent of the choice of competition model. The competition experienced by the parasitized host reduces the parasitoids’ numerical response to changes in host numbers, preventing the ‘boom-bust’ dynamics associated with more efficient parasitoids. We tested our findings against experimental data for the forest tent caterpillar (Malacosoma disstria Hübner) system, where a large number of consecutive years at a high host density is synonymous with severe forest damage.  相似文献   

13.
Abstract.
  • 1 The relationship between parasitization by Edovum puttleri Grissell and density of eggs of the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), was studied on two spatial scales (eggs mass and 6 m2 cage).
  • 2 For both scales, rates of parasitism were generally inversely related to host density for periods ranging from 2 to 8 days after parasitoid release. Thereafter, parasitism became independent of host density.
  • 3 The initial inverse-density relationship and subsequent shift to density independence may result from several factors: (1) ambient temperatures, (2) the parasitoid's limited egg production, (3) differential times of exposure of egg masses to parasitoids, and/or (4) the parasitoid's patterns of host feeding and oviposition.
  • 4 Although overall levels of parasitism were relatively low, total mortality of L.decemlineata eggs (including nonviable and cannibalized eggs, and those killed by parasitoid feeding) in parasitized egg masses was consistently high (?70–90%).
  相似文献   

14.
Parasitism by the braconid wasp Cotesia congregata affects the growth of Manduca sexta larvae in a parasitoid 'dose-dependent' fashion. Following parasitization of fourth-instar larvae, more heavily parasitized larvae grew larger compared to those containing fewer parasitoids due to an increase in host dry weight. The differences in host mass appeared to arise after oviposition. A 'dose-dependent' enhancement of host dry weight would appear nutritionally beneficial for the parasitoids developing in more 'crowded' hosts. The efficiencies of conversion of ingested and digested food to body mass and the approximate digestibility of the diet ingested by the host caterpillar did not vary significantly with clutch size although parasitoids took slightly longer to develop in the more heavily parasitized hosts. Larval parasitoids developing in the presence of many competitors weighed up to 50% less than those developing in hosts with fewer endoparasitoids, although the weight of adult female parasitoids did not vary significantly with wasp clutch size. The maximum number of emerging wasps was 200 parasitoids, possibly representing the host's 'carrying capacity' for larvae parasitized in the fourth-instar. The ratio of emerging to non-emerging parasitoids decreased as parasitoid clutch size increased, with few or none emerging from very heavily parasitized hosts containing more than 400 parasitoids. Copyright 1997 Elsevier Science Ltd. All right reserved  相似文献   

15.
One of the foraging decisions facing parasitoids is whetherto accept (superparasitize) or reject hosts that have alreadybeen parasitized. An important distinction is whether the hosthas been parasitized by the female parasitoid herself or bya conspecific. In solitary parasitoids, the pay-off from anegg laid in the latter host type (conspecific superparasitism)is the probability that the second egg wins the competitionfor the host and results in an offspring. The pay-off from anegg laid in the former type (self-superparasitism) increaseswith an increasing probability that another female will superparasitizethe host in the near future. When this probability equals one,self-superparasitism and conspecific superparasitism have thesame payoff. However, conspecific superparasitism will generallyhave a higher pay-off than self-superparasitism. It will thereforebe beneficial for a female parasitoid to be able to distinguishbetween a host she parasitized and one parasitized by a conspecific.The degree of benefit depends on the probability of conspecificsuperparasitism in the near future. Using an optimal diet model,I show that when a parasitoid encounters a patch containinga mixture of unparasitized and already-parasitized hosts, afemale that can distinguish between the two types of parasitizedhosts gains more offspring than a female without this ability.However, when parasitoids search a patch together with conspecifics,it is adaptive to self-superparasitize, and the pay-off fromthis ability may be negligible. It is therefore predicted thatwhen a female parasitoid searches a partially depleted patchalone, it will reject the hosts parasitized by itself more frequentlythan hosts parasitized by conspecifics. In contrast, femaleparasitoids searching together are predicted to accept hoststhat they parasitized themselves much more often. The resultsshow that the solitary parasitoid Leptopilina heterotoma (Hymenoptera:Eucoilidae) is able to distinguish between hosts that it parasitizedand hosts parasitized by conspecifics. The predictions of themodel are met in a second experiment that shows that L. heterotomaself-superparasitizes when the probability of conspecific superparasitismis high.  相似文献   

16.
In natural populations of insect herbivores, genetic differentiation is likely to occur due to variation in host plant utilization and selection by the local community of organisms with which they interact. In parasitoids, engaging in intimate associations with their host during immature development, local variation may exist in host quality for parasitoid development. We compared the development of a gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae), collected in The Netherlands, in three strains and three caterpillar instars (L1–L3) of its main host, Pieris brassicae L. (Lepidoptera: Pieridae). Hosts had been collected in The Netherlands and France, and were reared in the laboratory for one generation. We also used an established Dutch laboratory strain that had not been exposed to parasitoids for at least 24 generations. Parasitoid survival to adulthood was inversely correlated with host instar at parasitism. Adult parasitoid body mass was largest when hosts were parasitized as L1 and smallest when hosts were parasitized as L3, whereas egg‐to‐adult development time was quickest on L3 hosts and slowest on L1 hosts. Higher survival and faster development of C. glomerata on French L2 hosts also showed that there is variation in host‐instar‐related suitability. Many L2 and most L3 caterpillars that were parasitized exhibited signs of pathogen infection and perished within a few days of parasitism, whereas this never happened when hosts were parasitized as L1 or in non‐parasitized control caterpillars. Our results reveal that, irrespective of the host strain, L1 hosts are optimally synchronized with C. glomerata development. By contrast, the high precocious mortality of L3 larvae may be due to stress‐induced regulation by the parasitoid in order to ‘force’ its developmental program into synchrony with the developing parasitoid larvae. Our results underscore a potentially important role played by pathogens in mediating herbivore–parasitoid interactions that are host‐instar‐dependent in their expression.  相似文献   

17.
We present a time discrete spatial host–parasitoid model. The environment is a chain of patches connected by dispersal events. Dispersal of parasitoids is host-density dependent. When the host density is small (resp. high), the proportion of migrant parasitoids is close to unity (resp. to zero). We assume fast patch to patch dispersal with respect to local interactions. Local host–parasitoid interactions are described by the classical Nicholson–Bailey model. By using time scales separation methods (or aggregation methods), we obtain a reduced model that governs the total host and parasitoid densities (obtained by addition over all patches). The aggregated model describes the time evolution of the total number of hosts and parasitoids of the system of patches. This global model is useful to make predictions of emerging behaviour regarding the dynamics of the complete system. We study the effects of number of patches and host density-dependent parasitoid dispersal on the overall stability of the host–parasitoid system. We finally compare our stability results with the CV2 > 1 rule.  相似文献   

18.
The braconid parasitoidOpius dissitus Muesebeck (Hymenoptera, Braconidae) produced 1.7 to 3 times more offspring when provided second and third instar leafminers (Liriomyza sativae Blanchard) as compared to first instars. Females arising from parasitization of different instars did not differ significantly in numbers of chorionated eggs in their ovaries at adult eclosion. Development time was prolonged by about two days when parasitoid oviposition occurred in first, as compared to third instar hosts. Parasitoid length was positively correlated with host weight (r2=0.75). Because only 7% of variation in host weight could be explained by host density, parasitoid length varied considerably among hosts reared at the same density. Longevity and lifetime fecundity of parasitoids were inversely related to the weight of their hosts.  相似文献   

19.
Laboratory experiments were conducted to examine the effect of ryegrass infection by the endophytic fungusAcremonium loliiLatch, Christensen and Samuels onMicroctonus hyperodaeLoan, a parasitoid ofListronotus bonariensis(Kuschel). Progression of parasitoids through the larval instar stages was shown to depend on adequate nutrition of the weevil host. Compared to confinement on endophyte-free ryegrass, parasitized weevils held on nonpreferred diets comprising leaf segments from endophyte-infected ryegrass and switchgrass contained parasitoid larvae with retarded development. Similarly, development of parasitoid larvae was retarded in hosts feeding on artificial diet containing diterpenes and alkaloids ofA. loliiorigin. Several diterpenes incorporated into the diet reduced survival of the parasitoid larvae. Attack rate of parasitoids was reduced when the quality of potential host weevils was compromised by confinement on nonpreferredA. lolii-infected ryegrass or without food for 14 days.  相似文献   

20.
In a laboratory study, we determined the potential of threeTrichogramma (Hymenoptera: Trichogrammatidae) species,T. brassicae Bezdenko,T. minutum Riley andT. nr.sibiricum Sorokina, for biological control against six species of forest lepidopteran pests, black army cutworm, hemlock looper, eastern spruce budworm, western spruce budworm, white-marked tussock moth, and gypsy moth. Females of each parasitoid species were offered eggs from each of the six host species. Parasitization and the effect of the host species on the emerging progeny were examined and recorded.Trichogramma minutum had the broadest host range and successfully parasitized four host species out of the six offered.Trichogramma nr.sibiricum had the narrowest host range and parasitized only two species of hosts. Of the six host species, black army cutworm was the most preferred by all threeTrichogramma species; white-marked tussock moth and gypsy moth were not parasitized by any parasitoids. There was a positive correlation between the size of female offspring and their corresponding egg complement in all three parasitoid species. The developmental time of parasitoids from egg to adult was influenced by both the parasitoid and host species. Our results suggest thatT. minutum has the greatest potential for biological control against various forest lepidopteran pests and that the black army cutworm may be the best target candidate for further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号