首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 133 毫秒
1.
大鼠海马神经元内11β-HSD1和GR的共存及其意义   总被引:4,自引:0,他引:4  
Wan SL  Liao MY  Hao RS  Li ZF  Sun G 《生理学报》2002,54(6):473-478
本研究旨在探讨糖皮质激素代谢酶-11β-羟基类固醇脱氢酶Ⅰ型(11β-HSD1)和糖皮质激素受体(GR)在大鼠海马神经元内的共同分布及其意义。用免疫细胞化学方法研究显示,海马神经元内不仅存在11β-HSD1免疫反应物质,还存在GR免疫反应物质,而且11β-HSD1与GR共存于同一个海马神经元内,用Western印迹杂交和薄层层析(TLC)方法研究表明,地塞米松(DEX)可以促进11β-HSD1与GR共存于同一个海马神经元内,用Western印迹杂交和薄层层析(TLG)方法研究表明,地塞米松(DEX)可以促进11β-HSD1蛋白表达及其酶的活性,利用11β-HSD1基因启动子区序列构建的以CAT酶为报告基因的pBLCAT6质粒转染PC12细胞,证实DEX能够促进CAT酶的表达。以上糖皮质激素的作用均可为GR受体阻断剂RU38486所阻断,结果提示;糖皮质激素(GC)与GR结合后,可以作用于与其共存的11β-HSD1基因启动子区,使11β-HSD1表达增加,从而使更多的GC代谢产物转化为有活性的GC,此机制可能与保证GC在海马神经元内与亲和力较低的GR结合有关。  相似文献   

2.
PTSD样大鼠海马MR和GR变化的研究   总被引:6,自引:0,他引:6  
目的研究PTSD大鼠海马神经元核受体MR(mineralocorticoid receptor,盐皮质激素受体)和GR(glu-cocorticoid receptor糖皮质激素受体)表达的变化。方法采用国际认定的SPS方法刺激大鼠建立PTSD大鼠模型,分别取SPS处理后24h、7d、14d大鼠脑组织;同时取正常脑组织(非SPS刺激)作为对照,应用免疫组化、Western Blot方法分别进行各组海马神经元GR和MR表达变化的观察及定量检测。结果(1)经SPS处理后,免疫组化和Western Blot结果显示海马神经元MR表达呈现随着24h、7d、14d逐渐下调的趋势;(2)经SPS处理后,免疫组化和Western Blot结果显示海马神经元GR表达于24h时下调,而7d、14d时呈现逐渐回升趋势。结论大鼠经SPS处理后,海马MR表现为持续下调状态;而GR表达为短暂下调,随后回调,揭示PTSD大鼠海马神经元核受体—MR和GR的表达变化可能是引发海马功能降低的重要因素之一。  相似文献   

3.
穹窿切断后海马神经元GR表达变化的研究   总被引:5,自引:0,他引:5  
目的实施大鼠穹窿切断术研究海马神经元核受体GR(glucocorticoidreceptor糖皮质激素受体)表达的变化。方法建立大鼠穹窿切断模型,于穹窿切断术后0、4、7、10d取材;同时取材假手术组(非穹窿切断术)作为对照,应用免疫组化、WesternBlotting方法分别进行各组海马神经元GR表达变化的观察及定量检测。结果穹窿切断7d后,免疫组化和WesternBlotting结果显示海马神经元GR表达下调,10d下调更为显著。结论穹窿切断后,海马GR表达下调,提示可能减弱海马对HPA轴的抑制。  相似文献   

4.
为了观察产前束缚应激对子代大鼠空间学习记忆能力、海马神经干细胞增殖及巢蛋白表达的影响,将体重240~260 g的Sprague-Dawley雌性母鼠12只随机分成2组,对照组于孕期不做任何处理,束缚应激组于孕14~20 d时给予束缚应激,3次/天,45 min/次。取1月龄子代大鼠进行实验研究。Morris水迷宫定位航行实验结果显示,应激组子代与对照组相比,到达平台的潜伏期延长(P0.05),而在空间探索实验中,应激组子代在原平台象限停留时间与对照组相比无显著差异。免疫组织化学结果显示,应激组雌性子代海马巢蛋白(nestin)和BrdU阳性细胞表达均较对照组显著增加(P0.05),而雄性子代海马nestin和BrdU阳性细胞表达与对照组相比无显著性差异(P0.05)。以上结果提示,产前束缚应激可引起雌性子代大鼠海马神经干细胞数量增加以及增殖能力增强,可能与机体对产前应激所致脑损伤的代偿性反应相关。  相似文献   

5.
为了探讨地塞米松对子代大鼠海马轴突的影响,建立了孕期地塞米松暴露(prenatal dexamethasone exposure, PDE)模型。Wistar大鼠于孕中晚期皮下注射地塞米松(0.2 mg·kg-1·d-1),部分子代于孕20天(GD20)、出生后12周(PW12)处死取海马样本,检测海马糖皮质激素受体(glucocorticoid receptor, GR)活化指标以及轴突损伤指标。PDE子代胎鼠海马GR活化,GR、糖皮质激素调节激酶1(glucocorticoid-regulated kinase 1, SGK1)和FK506结合蛋白(FK506 binding protein 5, FKBP5)表达显著增加。轴突损伤指标包括生长相关蛋白43(growth associated protein-43,GAP43)、信号素3A(semaphorin 3A, SEMA3A)和集聚蛋白(agrin)表达明显升高。而PDE成年子代大鼠海马GR无明显活化,轴突损伤指标GAP43、SEMA3A和AGRIN表达明显升高。研究结果证实PDE通过活化胎海马GR引起轴突发育损伤,且轴突损伤可延续至出生后。  相似文献   

6.
目的探讨PTSD样大鼠蓝斑(locus ceruleus,LC)神经元盐皮质激素受体(mineralocorticoid receptors,MR)表达的变化。方法使用连续单一应激(SPS)方法建立PTSD大鼠模型,随机分为SPS处理后24h、4d、7d、14d和28d组,非SPS刺激大鼠作为对照,应用免疫组化、免疫印迹方法分别进行各组蓝斑神经元MR表达变化的观察及检测,进行图像分析和统计学处理。结果蓝斑神经元MR的表达呈现24h急剧下调,4d、7d,14d和28d恢复性上调。结论PTSD样大鼠蓝斑神经元MR的表达变化可能直接参与了PTSD持续性精神行为障碍的发生发展过程。  相似文献   

7.
目的观察创伤后应激障碍(PTSD)样大鼠前额内侧皮质(medial prefrontal cortex,mPFC)神经元核受体-盐皮质激素受体(Mineralocorticoid receptors,MR)表达的变化。方法采用国际认定的单一连续应激(single prolonged stress,SPS)方法建立PTSD大鼠模型,取成年健康雄性Wistar大鼠90只,随机分为PTSD模型1d、7d、14d、28d和正常对照组。采用免疫组化、免疫印迹和RT-PCR方法分别进行各组mPFC神经元MR表达变化的观察及检测,进行图像分析和统计学处理。结果 PTSD大鼠mPFC神经元MR的表达在SPS-1d时高于对照组,随后下降,SPS-14d最低,SPS-28d恢复性上调,但仍然低于对照组(P<0.05)。结论 PTSD模型大鼠经SPS处理后,mPFC中出现MR表达的变化,该变化可能参与PTSD的下丘脑-垂体-肾上腺(hypothalamic pituitary adren axis,HPA)轴的变化机制。  相似文献   

8.
目的探讨细胞免疫缺陷对海马盐皮质激素受体(MR)和糖皮质激素受体(GR)表达水平的影响及意义。方法随机选取不同年龄(1周,7周)的雄性裸小鼠(Balb/c-nu/nu)各6只作为实验组,另随机选取与实验组动物年龄、性别、数量相一致的正常Balb/c小鼠作为对照组;所有动物采用RT-PCR方法检测其海马中MR、GR的mRNA变化。结果与正常对照组相比,1周裸小鼠MR的mRNA表达无明显变化,7周裸小鼠MR的mRNA水平较正常对照组显著上调(P0.05);1周与7周裸小鼠GR的mRNA水平均较正常对照组显著上调(P0.05)。结论早期裸小鼠海马内GR和MR表达上调可能是引起认知减退的原因。  相似文献   

9.
目的皮下注射bFGF于血管性痴呆大鼠,研究用药前后对大鼠海马神经干细胞增殖能力的影响。方法制作VD大鼠模型,随机取用VD大鼠模型12只,分治疗组6只,痴呆组6只。另外,取假手术组6只。皮下注射bFGF于治疗组中血管性痴呆大鼠。治疗5周后,以Morris水迷宫定位航行试验和空间探索试验来检测大鼠的学习记忆能力,巢蛋白(nestin)免疫组织化学染色,观察海马nestin阳性细胞数的变化。结果治疗组大鼠海马nestin阳性细胞数较痴呆组明显增多。结论皮下注射bFGF后能迁移至海马,诱导海马产生nestin阳性细胞,刺激大鼠海马神经干细胞增殖,修复受损组织。  相似文献   

10.
本文旨在探讨N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体与神经肽Y(neuropeptide Y,NPY)在慢性应激抑郁发生中的作用与关系。建立慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)抑郁模型,海马单侧分别微量注射非竞争性NMDA受体拮抗剂MK-801、NPY-Y1受体阻断剂GR231118和NMDA后,利用体重测量及糖水偏爱测试、强迫游泳及敞箱实验等方法观察动物行为变化,运用免疫组织化学方法检测海马CA3区和齿状回(dentate gyrus,DG)内NPY的表达。结果显示,CUMS组大鼠表现出抑郁样行为变化,海马NPY表达显著降低;海马微量注射NMDA或NPY-Y1受体阻断剂GR231118,动物行为学表现均与CUMS组相同,注射NMDA可使NPY表达显著降低;海马微量注射MK-801能明显改善应激引起的抑郁样行为表现,并使海马NPY表达增加。联合注射GR231118与MK-801后,GR231118可以显著减弱MK-801的抗抑郁样行为的效应。以上结果表明,CUMS可能使谷氨酸(glutamic acid,Glu)过量释放,NMDA受体过度激活,抑制NPY表达,导致抑郁发生。NPY抗抑郁作用主要是通过NPY-Y1受体实现。  相似文献   

11.
Corticosteroids are important factors in the maintenance of homeostasis in the brain. They are regulated via the interaction with two corticosteroid receptor systems—the mineralocorticoid (MR) and glucocorticoid receptor (GR). In the present study, we observed age-related changes in serum cortisol levels, and immunoreactivities and protein levels of MR and GR in the hippocampal CA1 region and dentate gyrus. The serum cortisol levels were significantly high (about twofold) in the aged group compared to that in the adult group. In the adult dog (2–3 years old), MR and GR immunoreactivity was detected in neurons in the pyramidal layer of the CA1 region, and in the granular and multiform layers of the dentate gyrus. In the aged dog (10–12 years old), MR immunoreactivity in the CA1 region was significantly decreased, especially, in the dentate multiform layer. In contrast, GR immunoreactivity in the aged dog was slightly decreased in the CA1 region and dentate gyrus. In the Western blot analysis, MR protein level in the aged dog was significantly lower compared to that of the adult dog; GR protein level in the aged dog was not significantly decreased. This result indicates that the reduction of MR immunoreactivity and protein level in the hippocampus of the aged dog may be associated with neural dysfunction in the aged hippocampus.  相似文献   

12.
13.
New developments in corticosteroid receptor research enabled us to perform a highly detailed study on the neuroanatomical topography of MR and GR in the rat hippocampus. Receptor immunocytochemistry was used to map the distribution of GR protein with the help of a monoclonal antibody raised against the purified rat liver GR-hormone complex. Furthermore, in situ hybridization with 35S-labeled RNA probes, which were transcribed from cDNAs complementary to either a fragment of the rat brain MR gene or to the rat liver GR gene, was applied to investigate the localization of MR and GR mRNA in the limbic brain. The pyramidal neurons of cell field Ca1 and CA2 and the granular neurons of the dentate gyrus showed marked GR immunoreactivity (GRir) as well as intense labeling of GR mRNA. The radiolabeled density of GR mRNA in cell fields CA3 and CA4 was considerable less, whereas low-to-almost-undetectable levels of GRir could be observed in these regions. MR mRNA appeared to be evenly distributed over all cell fields of the hippocampus and the dentate gyrus. The topography of GRir, GR mRNA and MR mRNA was found to agree with the cellular distribution of MR and GR binding sites in the hippocampus. Moreover, the microanatomy of MR and GR in the hippocampus appeared to overlap. Our data strongly suggest that MR and GR are co-expressed in the majority of pyramidal and granular neurons of the hippocampal formation. This assumption is based on coherence in the detection of different aspects of the receptor cycle of MR and GR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effects of corticosteroids in the brain are mediated through the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). We used a sensitive competitive RT-PCR assay to quantify the amounts of GR and MR mRNA in human brain tissue specimens from patients with focal epilepsies. GR and MR mRNAs were expressed at approximately the same levels in the temporal lobe, frontal lobe, and hippocampus as compared to tissues with high glucocorticoid/mineralocorticoid receptor expression (liver/kidney). GR and MR mRNA concentrations in the temporal lobe increased markedly during childhood and reached adult levels at puberty. GR and MR mRNA expression was significantly higher in the temporal lobe and frontal lobe cortex of women than in those of men. In women, MR and GR mRNA concentrations were markedly lower in hippocampal tissue than in frontal and temporal lobe cortex tissue. In conclusion, our data demonstrate sex- and site-dependent expression of corticosteroid receptor mRNA in the human brain.  相似文献   

15.
Corticosteroids and the brain   总被引:5,自引:0,他引:5  
Mineralocorticoid (MR) and glucocorticoid receptors (GR) are expressed in the central nervous system. Radioligand binding studies, autoradiography, immunocytochemistry and in situ hybridization have shown that MR and GR are found in abundance in neurons of the limbic system (hippocampus), a structure involved in mood, affect and subtle control of the hypothalamic-pituitary-adrenal (HPA) axis. In the hippocampus MR binds corticosterone (CORT) as well as aldosterone (ALDO) with high affinity. MR seems mainly occupied by CORT in the face of its 2-3 order higher circulating concentration. GR binds CORT with a 6-10-fold lower affinity. MR and GR gene expression, as well as the native receptor proteins, seem to be controlled in a coordinative manner. When GR is down-regulated by excess homologous steroid, MR appears to be increased. Down regulation of MR reduces GR as well. MR and GR display a differential ontogenetic pattern. Ontogeny, particularly that of GR, can be permanently influenced when animals are exposed during the first post-natal week of maternal deprivation, handling, CORT or ACTH1-24 injections. These MR and GR changes persist into senescence and have been proposed to result in altered CORT responsiveness, stress regulation, behavioural adaptation and brain aging.  相似文献   

16.
17.
Early-life stress caused by the deprivation of maternal care has been shown to have long-lasting effects on the hypothalamic-pituitary-adrenal (HPA) axis in offspring of uniparental mammalian species. We asked if deprivation of maternal care in biparental species alters stress responsiveness of offspring, using a biparental avian species--the zebra finch, Taeniopygia guttata. In our experiment, one group of birds was raised by both male and female parents (control), and another was raised by males alone (maternally deprived). During adulthood, offspring of both groups were subjected to two stressors (restraint and isolation), and corticosterone concentrations were measured. Additionally, we measured baseline levels of the two corticosteroid receptors--glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)--in the hippocampus, hypothalamus and cerebellum. Our results suggest that maternally deprived offspring are hyper-responsive to isolation in comparison with controls. Furthermore, mRNA levels of both GR and MR receptors are altered in maternally deprived offspring in comparison with controls. Thus, absence of maternal care has lasting consequences for HPA function in a biparental species where paternal care is available.  相似文献   

18.
Messenger RNAs coding for glucocorticoid (GR) and mineralocorticoid (MR) receptor proteins were localized to discrete subfields of the hippocampal formation by in situ hybridization histochemistry, using cRNA probes of approximately equivalent specific activity. Both GR and MR mRNAs were present in all subfields examined; GR mRNA was of greatest abundance in CA1, while MR mRNA was most densely labeled in CA3. In all subfields examined, MR mRNA was considerably more abundant than GR mRNA. Removal of circulating glucocorticoids by adrenalectomy precipitated an up-regulation of GR mRNA in subfields CA1-2 and the dentate gyrus, which was reversed by dexamethasone replacement. High doses of dexamethasone significantly down-regulated GR mRNA in CA3. In contrast, adrenalectomy produced significant up-regulation of MR mRNA only in subfield CA1-2. The data indicate that steroid receptor mRNAs are differentially distributed in hippocampus, and that sensitivity to steroids occurs within defined structural domains of the hippocampal formation.  相似文献   

19.
Therapeutic brain irradiation in children can cause a progressive decline in cognitive functions through a diminished capability to learn and memorize. Because of the known involvement of the hippocampus in memory consolidation, this study was aimed at examining the late effects of gamma radiation on hypothalamic-pituitary-adrenal (HPA) axis activity and hippocampal corticosteroid receptor expression in an animal model of cranial radiotherapy. In the late-response phase, the basal and stress-induced corticosterone levels were not affected by radiation, but the suppression of glucocorticoid negative feedback by dexamethasone was attenuated in irradiated rats. Western blot analyses showed that exposure to radiation led to a decrease of cytosolic glucocorticoid receptor (GR) levels and a concomitant elevation of mineralocorticoid receptor (MR). The results obtained were complemented by those of RT-PCR, since the ratio of GR/MR mRNA was also decreased after radiation exposure. Dexamethasone appeared to be much less effective in shifting GR to the nuclear compartment in irradiated rats than in sham-irradiated animals. However, the expression of chaperones that aid GR intracellular trafficking, Hsp90 and Hsp70, remained unaffected. In conclusion, our data suggest that the hallmark of the late response to gamma radiation is a hyposuppressive state of the HPA axis that is associated with a decrease in both the GR/MR ratio and the nuclear accumulation of dexamethasone-activated GR in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号