首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In Cupriavidus metallidurans CH34, the proteins CnrX, CnrY, and CnrH regulate the expression of the cnrCBA operon that codes for a cation-efflux pump involved in cobalt and nickel resistance. The periplasmic part of CnrX can be defined as the metal sensor in the signal transduction complex composed of the membrane-bound anti-sigma factor CnrY and the extra-cytoplasmic function sigma factor CnrH. A soluble form of CnrX was overproduced and purified. This protein behaves as a dimer in solution as judged from gel filtration, sedimentation velocity experiments, and NMR. Native crystals diffracting to 2.3 A using synchrotron radiation were obtained using the hanging-drop vapor-diffusion method. They belong to the primitive monoclinic space group P2(1), with unit cell parameters a = 31.87, b = 74.80, c = 93.67 A, beta = 90.107 degrees. NMR data and secondary structure prediction suggest that this protein is essentially formed by helices.  相似文献   

3.
Cupriavidus metallidurans CH34 has gained increasing interest as a model organism for heavy metal detoxification and for biotechnological purposes. Resistance of this bacterium to transition metal cations is predominantly based on metal resistance determinants that contain genes for RND (resistance, nodulation, and cell division protein family) proteins. These are part of transenvelope protein complexes, which seem to detoxify the periplasm by export of toxic metal cations from the periplasm to the outside. Strain CH34 contains 12 predicted RND proteins belonging to a protein family of heavy metal exporters. Together with many efflux systems that detoxify the cytoplasm, regulators and possible metal-binding proteins, RND proteins mediate an efficient defense against transition metal cations. To shed some light into the origin of genes encoding these proteins, the genomes of C. metallidurans CH34 and six related proteobacteria were investigated for occurrence of orthologous and paralogous proteins involved in metal resistance. Strain CH34 was not much different from the other six bacteria when the total content of transport proteins was compared but CH34 had significantly more putative transition metal transport systems than the other bacteria. The genes for these systems are located on its chromosome 2 but especially on plasmids pMOL28 and pMOL30. Cobalt–nickel and chromate resistance determinants located on plasmid pMOL28 evolved by gene duplication and horizontal gene transfer events, leading to a better adaptation of strain CH34 to serpentine-like soils. The czc cobalt–zinc–cadmium resistance determinant, located on plasmid pMOL30 in addition copper, lead and mercury resistance determinants, arose by duplication of a czcICAB core determinant on chromosome 2, plus addition of the czcN gene upstream and the genes czcD, czcRS, czcE downstream of czcICBA. C. metallidurans apparently evolved metal resistance by horizontal acquisition and by duplication of genes for transition metal efflux, mostly on the two plasmids, and decreased the number of uptake systems for those metals. This paper is dedicated to Dr. Max Mergeay for a long time of cooperation, constructive competition and friendship.  相似文献   

4.
The survival and behavior of Cupriavidus metallidurans strain CH34 were tested in space. In three spaceflight experiments, during three separate visits to the ‘International Space Station’ (ISS), strain CH34 was grown for 10–12 days at ambient temperature on mineral agar medium. Space- and earth-grown cells were compared post-flight by flow cytometry and using 2D-gel protein analysis. Pre-, in- and post-flight incubation conditions and experiment design had a significant impact on the survival and growth of CH34 in space. In the CH34 cells returning from spaceflight, 16 proteins were identified which were present in higher concentration in cells developed in spaceflight conditions. These proteins were involved in a specific response of CH34 to carbon limitation and oxidative stress, and included an acetone carboxylase subunit, fructose biphosphate aldolase, a DNA protection during starvation protein, chaperone protein, universal stress protein, and alkyl hydroperoxide reductase. The reproducible observation of the over-expression of these same proteins in multiple flight experiments, indicated that the CH34 cells could experience a substrate limitation and oxidative stress in spaceflight where cells and substrates are exposed to lower levels of gravity and higher doses of ionizing radiation. Bacterium C. metallidurans CH34 was able to grow normally under spaceflight conditions with very minor to no effects on cell physiology, but nevertheless specifically altered the expression of a few proteins in response to the environmental changes.  相似文献   

5.
Cupriavidus metallidurans CH34 is a facultative chemolithotrophic bacterium that possesses two megaplasmids (pMOL28 and pMOL30) that confer resistance to eleven metals. The ability of Cupriavidus metallidurans CH34 to resist silver is described here. Electronic microscopy, energy-dispersive X-ray (EDX) and X-ray diffractometry (DRX) observations revealed that C. metallidurans CH34 strongly associated silver with the outer membrane, under chloride chemical form. Using derivate strains of C. metallidurans CH34, which carried only one or no megaplasmid, we show that this resistance seems to be carried by pMOL30.  相似文献   

6.
7.
8.
Separation and cells concentration constitute important stages in most biotechnological processes. Particularly, use of flocculation/sedimentation can improve significantly the extraction of biopolymers accumulated by microorganisms and the biodegradation of xenobiotic compounds by cell sludge. In this work the use of tannin and aluminum sulphate (Al2(SO4)3) as flocculating agents for concentration of cells of Cupriavidus necator DSM 545 is evaluated. Cells were grown in broth nutrient medium in Erlenmeyer flasks, submitted to orbital agitation of 160 rpm at 30 °C for 21 h. The optimal concentrations of flocculating agents, as determined with a standard jar test method, were equal to 2,800 mg/L for tannin and 800 mg/L for Al2(SO4)3, allowing for recovery of 95% of the cells in both cases. Obtained flocs presented density and average diameter of 1.03 g/mL ± 0.01 g/mL and 158 μm ± 19 μm for tannin and of 1.05 g/mL ± 0.01 g/mL and 146 μm ± 14 μm for Al2(SO4)3, respectively. Batch settling tests were performed in order to determine the operational capacity of continuous settlers to be used for separation of the investigated flocculent suspensions. Finally, cultivation of cells using flocs as inoculum indicated that the cells remained viable after flocculation with usage of the optimum flocculating agent concentrations.  相似文献   

9.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

10.
The interaction between Shigella dysenteriae or Shigella sonnei and Acanthamoeba castellanii was studied by viable counts, gentamicin assay and electron microscopy. The result showed that Shigella dysenteriae or Shigella sonnei grew and survived in the presence of amoebae for more than 3 weeks. Gentamicin assay showed that the Shigella were viable inside the Acanthamoeba castellanii which was confirmed by electron microscopy that showed the Shigella localized in the cytoplasm of the Acanthamoeba castellanii. In conclusion, the relationship between Shigella dysenteriae and Shigella sonnei with Acanthamoeba castellanii is symbiotic, and accordingly free-living amoebae may serve as a transmission reservoir for Shigella in water.  相似文献   

11.
The heavy metal resistant ciliate, Stylonychia mytilus, isolated from industrial wastewater has been shown to be potential bioremediator of contaminated wastewater. The ciliate showed tolerance against Zn2+ (30 μg/mL), Hg2+ (16 μg/mL) and Ni2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared with the culture grown without metal stress. The reduction in cell population was 46% for Cd2+, 38% for Hg2+, 23% for Zn2+, 39% for Cu2+ and 51% for Ni2+ after 8 days of metal stress. S. mytilus reduced 91% of Cd2+, 90% of Hg2+ and 98% of Zn2+ from the medium after 96 h of incubation in a culture medium containing 10 μg/mL of the respective metal ions. Besides this, the ciliate could also remove 88% of Cu2+ and 73% Ni2+ from the medium containing 5 μg/mL of each metal after 96 h. The ability of Stylonychia to take up variety of heavy metals from the medium could be exploited for metal detoxification and environmental clean-up operations.  相似文献   

12.
13.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Seol E  Jung Y  Lee J  Cho C  Kim T  Rhee Y  Lee S 《Plant cell reports》2008,27(7):1197-1206
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species.  相似文献   

15.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

16.
17.
Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.  相似文献   

18.
19.
A pea rust fungus, Uromyces viciae-fabae, has been classified into two varieties, var. viciae-fabae and var. orobi, based on differences in urediniospore wall thickness and putative host specificity in Japan. In principal component analyses, morphological features of urediniospores and teliospores of 94 rust specimens from Vicia, Lathyrus, and Pisum did not show definite host-specific morphological groups. In molecular analyses, 23 Uromyces specimens from Vicia, Lathyrus, and Pisum formed a single genetic clade based on D1/D2 and ITS regions. Four isolates of U. viciae-fabae from V. cracca and V. unijuga could infect and sporulate on P. sativum. These results suggest that U. viciae-fabae populations on different host plants are not biologically differentiated into groups that can be recognized as varieties.Contribution no. 184, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

20.
Cupriavidus metallidurans strain CH34 is a β-Proteobacterium that thrives in low concentrations of heavy metals. The genetic determinants of resistance to heavy metals are located on its two chromosomes, and are particularly abundant in the two megaplasmids, pMOL28 and pMOL30. We explored the involvement of mobile genetic elements in acquiring these and others traits that might be advantageous in this strain using genome comparison of Cupriavidus/Ralstonia strains and related β-Proteobacteria. At least eleven genomic islands were identified on the main replicon, three on pMOL28 and two on pMOL30. Multiple islands contained genes for heavy metal resistance or other genetic determinants putatively responding to harsh environmental conditions. However, cryptic elements also were noted. New mobile genetic elements (or variations of known ones) were identified through synteny analysis, allowing the detection of mobile genetic elements outside the bias of a selectable marker. Tn4371-like conjugative transposons involved in chemolithotrophy and degradation of aromatic compounds were identified in strain CH34, while similar elements involved in heavy metal resistance were found in Delftia acidovorans SPH-1 and Bordetella petrii DSM12804. We defined new transposons, viz., Tn6048 putatively involved in the response to heavy metals and Tn6050 carrying accessory genes not classically associated with transposons. Syntenic analysis also revealed new transposons carrying metal response genes in Burkholderia xenovorans LB400, and other bacteria. Finally, other putative mobile elements, which were previously unnoticed but apparently common in several bacteria, were also revealed. This was the case for triads of tyrosine-based site-specific recombinases and for an int gene paired with a putative repressor and associated with chromate resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号