首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Use of simian immunodeficiency virus for vaccine research   总被引:2,自引:0,他引:2  
Rhesus monkeys were immunized with purified, disrupted, noninfectious simian immunodeficiency virus (SIV) in adjuvant induced SIV neutralizing antibodies. Two of six previously vaccinated macaques were protected against infection when challenged with 200-1,000 animal infectious doses of uncloned, pathogenic SIV and both have remained free of signs of virus infection for 19 and 30 months. Prior vaccination appeared to be of benefit in decreasing the virus load and in delaying the onset of AIDS in animals that became infected. Nonetheless, two of four previously vaccinated monkeys that became infected following challenge eventually developed AIDS and died 505 and 538 days after infection. Thus, for a vaccine to be truly effective against AIDS, it may have to protect absolutely against initial infection.  相似文献   

2.
We compared the efficacy of immunization with either simian immunodeficiency virus (SIV) Env glycoprotein (Env), Env plus Gag proteins (Gag-Env), or whole inactivated virus (WIV), with or without recombinant live vaccinia vector (VV) priming, in protecting 23 rhesus macaques (six vaccine and two control groups) from challenge with SIVmac251 clone BK28. Vaccination elicited high titers of syncytium-inhibiting and anti-Env (gp120/gp160) antibodies in all vaccinated macaques and anti-Gag (p27) antibodies in groups immunized with WIV or Gag-Env. Only WIV-immunized macaques developed anticell (HuT78) antibodies. After homologous low-dose intravenous virus challenge, we used frequency of virus isolation, provirus burden, and change in antibody titers to define four levels of resistance to SIV infection as follows. (i) No infection ("sterilizing" immunity) was induced only in WIV-immunized animals. (ii) Abortive infection (strong immunity) was defined when virus or provirus were detected early in the postchallenge period but not thereafter and no evidence of virus or provirus was detected in terminal tissues. This response was observed in two animals (one VV-Env and one Gag-Env). (iii) Suppression of infection (incomplete or partial immunity) described a gradient of virus suppression manifested by termination of viremia, declining postchallenge antibody titers, and low levels (composite mean = 9.1 copies per 10(6) cells) of provirus detectable in peripheral blood mononuclear cells or lymphoid tissues at termination (40 weeks postchallenge). This response occurred in the majority (8 of 12) of subunit-vaccinated animals. (iv) Active infection (no immunity) was characterized by persistent virus isolation from blood mononuclear cells, increasing viral antibody titers postchallenge, and high levels (composite mean = 198 copies per 10(6) cells) of provirus in terminal tissues and blood. Active infection developed in all controls and two of three VV-Gag-Env-immunized animals. The results of this study restate the protective effect of inactivated whole virus vaccines produced in heterologous cells but more importantly demonstrate that a gradient of suppression of challenge virus growth, reflecting partial resistance to SIV infection, is induced by subunit vaccination. The latter finding may be pertinent to studies with human immunodeficiency virus vaccines, in which it is plausible that vaccination may elicit significant suppression of virus infection and pathogenicity rather than sterilizing immunity.  相似文献   

3.
Infection of pigtail macaques with SIVsmmPBj14, biological clone 3 (SIV-PBj14-bc13), produces an acute and usually fatal shock-like syndrome 7 to 14 days after infection. We used this simian immunodeficiency virus (SIV) model as a rapid and rigorous challenge to evaluate the efficacy of two SIV Env vaccine strategies. Groups of four pigtail macaques were immunized four times over a 25-week span with either a recombinant Semliki Forest virus expressing the SIV-PBj14 Env gp160 (SFV-SIVgp160) or purified recombinant SIV-PBj14 gp120 (rgp120) in SBN-1 adjuvant. Antibody titers to SIV Env developed in all immunized animals (mean peak titers prior to challenge, 1:1,700 for SFV-SIV gp 160 and 1:10,500 for rgp120), but neither neutralizing antibodies nor SIV-specific T-cell proliferative responses were detectable in any of the vaccinees. All macaques were challenged with a 100% infectious, 75% fatal dose of SIV-PBj14-bc13 at week 26. Three of four control animals died of acute SIV-PBj14 syndrome on days 12 and 13. By contrast, all four SFV-SIVgp160-immunized animals and three of the four rgp120-immunized animals were protected from lethal disease. While all virus-challenged animals became infected, symptoms of the SIV-PBj14 syndrome were more severe in controls than in vaccinees. Mean virus titers in plasma at 13 days postchallenge were approximately 10-fold lower in vaccinated than control animals. However, there was no apparent correlation between survival and levels of peripheral blood mononuclear cell-associated culturable virus, provirus load, or any antiviral immunologic parameter examined. The results indicate that while immunization with SFV-SIVgp160 and rgp120 did not protect against virus infection, these Env vaccines did lower the virus load in plasma and protect against the lethal SIV-PBj14 challenge.  相似文献   

4.
Several groups have reported protection against experimental SIV infection in macaques immunized with a whole inactivated virus vaccine. The aim of the current study was to investigate whether five macaques vaccinated with whole inactivated SIV and previously shown to be protected against challenge with two divergent strains of SIV grown on human cells could resist challenge with a subsequent homologous SIV grown on macaque cells. We show here that this same vaccine did not protect when the challenge virus was grown on primary cells of monkey origin.  相似文献   

5.
Twelve rhesus monkeys were vaccinated with SIVmac316 delta nef (lacking nef sequences), and 12 were vaccinated with SIVmac239 delta3 (lacking nef, vpr, and upstream sequences in U3). SIVmac316 and SIVmac239 differ by only eight amino acids in the envelope; these changes render SIVmac316 highly competent for replication in macrophages. Seventeen of the animals developed persistent infections with the vaccine viruses. Seven of the 24 vaccinated animals, however, developed infections that were apparently transient in nature. Six of these seven yielded virus from peripheral blood when tested at weeks 2 and/or 3, three of the seven had transient antibody responses, but none of the seven had persisting antibody responses. The 24 monkeys were challenged in groups of four with 10 rhesus monkey infectious doses of wild-type, pathogenic SIVmac251 at weeks 8, 20, and 79 following receipt of vaccine. None of the seven with apparently transient infections with vaccine virus were protected upon subsequent challenge. Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions. (i) There was a trend toward increased protection with length of time of vaccination. (ii) Solid vaccine protection was achieved by 79 weeks with the highly attenuated SIV239 delta3. (iii) Solid long-term protection was achieved in at least two animals in the absence of complete sterilizing immunity. (iv) Genetic backbone appeared to influence protective capacity; animals vaccinated with SIV239 delta3 were better protected than animals receiving SIV316 delta nef. This better protection correlated with increased levels of the replicating vaccine strain. (v) The titer of virus-neutralizing activity in serum on the day of challenge correlated with protection when measured against a primary stock of SIVmac251 but not when measured against a laboratory-passaged stock. The level of binding antibodies to whole virus by enzyme-linked immunosorbent assay also correlated with protection.  相似文献   

6.
Swine influenza viruses (SIV) naturally infect pigs and can be transmitted to humans. In the pig, genetic reassortment to create novel influenza subtypes by mixing avian, human, and swine influenza viruses is possible. An SIV vaccine inducing cross-protective immunity between different subtypes and strains circulating in pigs is highly desirable. Previously, we have shown that an H3N2 SIV (A/swine/Texas/4199-2/98 [TX98]) containing a deleted NS1 gene expressing a truncated NS1 protein of 126 amino acids, NS1black triangle126, was attenuated in swine. In this study, 4-week-old pigs were vaccinated with the TX98 NS1black triangle126 modified live virus (MLV). Ten days after boosting, pigs were challenged with wild-type homologous H3N2 or heterosubtypic H1N1 SIV and sacrificed 5 days later. The MLV was highly attenuated and completely protected against challenge with the homologous virus. Vaccinated pigs challenged with the heterosubtypic H1N1 virus demonstrated macroscopic lung lesions similar to those of the unvaccinated H1N1 control pigs. Remarkably, vaccinated pigs challenged with the H1N1 SIV had significantly lower microscopic lung lesions and less virus shedding from the respiratory tract than did unvaccinated, H1N1-challenged pigs. All vaccinated pigs developed significant levels of hemagglutination inhibition and enzyme-linked immunosorbent assay titers in serum and mucosal immunoglobulin A antibodies against H3N2 SIV antigens. Vaccinated pigs were seronegative for NS1, indicating the potential use of the TX98 NS1black triangle126 MLV as a vaccine to differentiate infected from vaccinated animals.  相似文献   

7.
Adult vampire bats (Desmodus rotundus) were vaccinated by intramuscular, scarification, oral, or aerosol routes (n = 8 in each group) using a vaccinia-rabies glycoprotein recombinant virus. Sera were obtained before and 30 days after vaccination. All animals were then challenged intramuscularly with a lethal dose of rabies virus. Neutralizing antirabies antibodies were measured by rapid fluorescent focus inhibition test (RFFIT). Seroconversion was observed with each of the routes employed, but some aerosol and orally vaccinated animals failed to seroconvert. The highest antibody titers were observed in animals vaccinated by intramuscular and scarification routes. All animals vaccinated by intramuscular, scarification, and oral routes survived the viral challenge, but one of eight vampire bats receiving aerosol vaccination succumbed to the challenge. Of 31 surviving vaccinated and challenged animals, nine lacked detectable antirabies antibodies by RFFIT (five orally and four aerosol immunized animals). In contrast, nine of 10 non-vaccinated control bats succumbed to viral challenge. The surviving control bat had antiviral antibodies 90 days after viral challenge. These results suggest that the recombinant vaccine is an adequate and safe immunogen for bats by all routes tested.  相似文献   

8.
This study focused on the antigenic cross‐reactivity between tick‐borne encephalitis virus (TBEV) and Omsk hemorrhagic fever virus (OHFV) to assess the efficacy of the commercial TBE vaccine against OHFV infection. Neutralization tests performed on sera from OHFV‐ and TBEV‐infected mice showed that neutralizing antibodies are cross‐protective. The geometric mean titers of antibodies against TBEV and OHFV from TBEV‐infected mice were similar. However, the titers of anti‐TBEV antibodies in OHFV‐infected mice were significantly lower than those of anti‐OHFV antibodies in the same animals. In mouse vaccination and challenge tests, the TBE vaccine provided 100% protection against OHFV infection. Eighty‐six percent of vaccinees seroconverted against OHFV following complete vaccination, and the geometric mean titers of neutralizing antibodies against OHFV were comparable to those against TBEV. These data suggest that the TBE vaccine can prevent OHFV infection.  相似文献   

9.
Neutralizing antibodies were assessed before and after intravenous challenge with pathogenic SIVsmE660 in rhesus macaques that had been immunized with recombinant modified vaccinia virus Ankara expressing one or more simian immunodeficiency virus gene products (MVA-SIV). Animals received either MVA-gag-pol, MVA-env, MVA-gag-pol-env, or nonrecombinant MVA. Although no animals were completely protected from infection with SIV, animals immunized with recombinant MVA-SIV vaccines had lower virus loads and prolonged survival relative to control animals that received nonrecombinant MVA (I. Ourmanov et al., J. Virol. 74:2740-2751, 2000). Titers of neutralizing antibodies measured with the vaccine strain SIVsmH-4 were low in the MVA-env and MVA-gag-pol-env groups of animals and were undetectable in the MVA-gag-pol and nonrecombinant MVA groups of animals on the day of challenge (4 weeks after final immunization). Titers of SIVsmH-4-neutralizing antibodies remained unchanged 1 week later but increased approximately 100-fold 2 weeks postchallenge in the MVA-env and MVA-gag-pol-env groups while the titers remained low or undetectable in the MVA-gag-pol and nonrecombinant MVA groups. This anamnestic neutralizing antibody response was also detected with T-cell-line-adapted stocks of SIVmac251 and SIV/DeltaB670 but not with SIVmac239, as this latter virus resisted neutralization. Most animals in each group had high titers of SIVsmH-4-neutralizing antibodies 8 weeks postchallenge. Titers of neutralizing antibodies were low or undetectable until about 12 weeks of infection in all groups of animals and showed little or no evidence of an anamnestic response when measured with SIVsmE660. The results indicate that recombinant MVA is a promising vector to use to prime for an anamnestic neutralizing antibody response following infection with primate lentiviruses that cause AIDS. However, the Env component of the present vaccine needs improvement in order to target a broad spectrum of viral variants, including those that resemble primary isolates.  相似文献   

10.
The ability of two vaccine preparations (UV-psoralen inactivated SIV administered intramuscularly and live-attenuated SIV inoculated intravaginally) to prevent genital transmission of virulent SIV in rhesus macaques was tested. Two of six whole-inactivated SIV vaccinated macaques, three of five live-attenuated SIV vaccinated macaques, and four of six controls became persistently infected after two separate intravaginal inoculations with a 50% animal infectious dose of virulent SIV. No association was observed between levels of SIV-specific antibodies in serum or vaginal secretions prior to challenge and subsequent infection with virulent SIV.  相似文献   

11.
T-cell-mediated immune effector mechanisms play an important role in the containment of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication after infection. Both vaccination- and infection-induced T-cell responses are dependent on the host major histocompatibility complex classes I and II (MHC-I and MHC-II) antigens. Here we report that both inherent, host-dependent immune responses to SIVmac251 infection and vaccination-induced immune responses to viral antigens were able to reduce virus replication and/or CD4+ T-cell loss. Both the presence of the MHC-I Mamu-A*01 genotype and vaccination of rhesus macaques with ALVAC-SIV-gag-pol-env (ALVAC-SIV-gpe) contributed to the restriction of SIVmac251 replication during primary infection, preservation of CD4+ T cells, and delayed disease progression following intrarectal challenge exposure of the animals to SIV(mac251 (561)). ALVAC-SIV-gpe immunization induced cytotoxic T-lymphocyte (CTL) responses cumulatively in 67% of the immunized animals. Following viral challenge, a significant secondary virus-specific CD8+ T-cell response was observed in the vaccinated macaques. In the same immunized macaques, a decrease in virus load during primary infection (P = 0.0078) and protection from CD4 loss during both acute and chronic phases of infection (P = 0.0099 and P = 0.03, respectively) were observed. A trend for enhanced survival of the vaccinated macaques was also observed. Neither boosting the ALVAC-SIV-gpe with gp120 immunizations nor administering the vaccine by the combination of mucosal and systemic immunization routes increased significantly the protective effect of the ALVAC-SIV-gpe vaccine. While assessing the role of MHC-I Mamu-A*01 alone in the restriction of viremia following challenge of nonvaccinated animals with other SIV isolates, we observed that the virus load was not significantly lower in Mamu-A*01-positive macaques following intravenous challenge with either SIV(mac251 (561)) or SIV(SME660). However, a significant delay in CD4+ T-cell loss was observed in Mamu-A*01-positive macaques in each group. Of interest, in the case of intravenous or intrarectal challenge with the chimeric SIV/HIV strains SHIV(89.6P) or SHIV(KU2), respectively, MHC-I Mamu-A*01-positive macaques did not significantly restrict primary viremia. The finding of the protective effect of the Mamu-A*01 molecule parallels the protective effect of the B*5701 HLA allele in HIV-1-infected humans and needs to be accounted for in the evaluation of vaccine efficacy against SIV challenge models.  相似文献   

12.
During the past few years, definite progress has been made in the field of human immunodeficiency virus type 1 (HIV-1) vaccines. Initial attempts using envelope gp120 or gp140 from T-cell line-adapted (TCLA) HIV-1 strains to vaccinate chimpanzees showed that neutralizing antibody-based immune responses were protective against challenge with homologous TCLA virus strains or strains with low replicative capacity, but these neutralizing antibodies remained inactive when tested on primary HIV-1 isolates, casting doubts on the efficacy of gp120-based vaccines in the natural setting. Development of a live attenuated simian immunodeficiency virus (SIV) vaccine was undertaken in the macaque model using whole live SIV bearing multiple deletions in the nef, vpr and vpx genes. This vaccine provided remarkable protective efficacy against wild-type SIV challenge, but the deletion mutants remain pathogenic, notably in neonate monkeys. Study of the mechanisms of protection in the SIV model unravelled the importance of the T-cell responses, whether in the form of cytotoxic T-lymphocyte (CTL) killing activity, or in that of antiviral factor secretion of cytokines, beta-chemokines and other unidentified antiviral factors by CD8+ T-cells. Induction of such a response is being sought at this time using various live recombinant virus vaccines, either poxvirus or alphavirus vectors or DNA vectors, which can be combined together or with a gp120/gp140 boost in various prime-boost combination strategies. New vectors include attenuated vaccinia virus NYVAC, modified vaccinia strain Ankara (MVA), Semliki Forest virus, Venezuelan equine encephalitis virus, and Salmonellas. Recent DNA prime-poxvirus boost combination regimens have generated promising protection results against SIV or SIV/HIV (SHIV) challenge in macaque models. Emphasis is also put on the induction of a mucosal immune response, involving both a secretory IgA response and a mucosal CTL response which could constitute a 'first line of defence' in the vaccinated host. Finally, a totally novel vaccine approach based on the use of Tat or Tat and Rev antigens has been shown to induce efficient protection from challenge with pathogenic SIV or SHIV in vaccinated macaques. The only vaccine in phase 3 clinical trials in human volunteers is a gp120-based vaccine, AIDSVAX. A prime-boost combination of a recombinant canarypoxvirus and a subunit gp120 vaccine is in phase 2. Emphasis has been put recently on the necessity of testing prototype vaccines in developing countries using immunogens derived from local virus strains. Trial sites have thus been identified in Kenya, Uganda, Thailand and South Africa where phase I trials have begun or are expected to start presently.  相似文献   

13.
The potential of the simian immunodeficiency virus (SIV) variable 2 (V2) domain as an effective region to boost SIV-neutralizing antibodies and to protect against live SIV challenge was tested in rhesus macaques. In this study, two rhesus macaques were primed with vaccinia virus recombinants expressing the surface glycoprotein gp140 of SIVmac and were given booster injections with the SIVmac V2 domain presented by a highly immunogenic carrier, the hepatitis B surface antigen (HBsAg). The two vaccinated macaques exhibited SIV-neutralizing antibodies after primer injections that were enhanced by the V2/HBsAg injections. Part of these SIV-neutralizing antibodies were directed specifically to the V2 region, as shown by neutralization-blocking experiments. However, despite having consistent SIV-neutralizing antibody titers, animals were not protected against homologous challenge with BK28, the molecular clone of SIVmac251. No SIV envelope-specific cellular cytotoxic response was detected throughout the immunization protocol, suggesting that neutralizing antibodies directed to SIV envelope gp140 and especially to the V2 domain were unable on their own to protect against SIV challenge. Furthermore, the vaccinees seemed to have higher viral loads than control animals after challenge, raising the question of whether neutralizing antibodies induced by vaccination and directed to the SIV envelope selected viral escape mutants, as shown previously in SIV-infected macaques. This mechanism is certainly worthy of intensive investigation and raises some concern for SIV envelope-targeted immunization.  相似文献   

14.
Here we provide the first report of protection against a vaginal challenge with a highly virulent simian immunodeficiency virus (SIV) by using a vaccine vector. New poliovirus vectors based on Sabin 1 and 2 vaccine strain viruses were constructed, and these vectors were used to generate a series of new viruses containing SIV gag, pol, env, nef, and tat in overlapping fragments. Two cocktails of 20 transgenic polioviruses (SabRV1-SIV and SabRV2-SIV) were inoculated into seven cynomolgus macaques. All monkeys produced substantial anti-SIV serum and mucosal antibody responses. SIV-specific cytotoxic T-lymphocyte responses were detected in three of seven monkeys after vaccination. All 7 vaccinated macaques, as well as 12 control macaques, were challenged vaginally with pathogenic SIVmac251. Strikingly, four of the seven vaccinated animals exhibited substantial protection against the vaginal SIV challenge. All 12 control monkeys became SIV positive. In two of the seven SabRV-SIV-vaccinated monkeys we found no virological evidence of infection following challenge, indicating that these two monkeys were completely protected. Two additional SabRV-SIV-vaccinated monkeys exhibited a pronounced reduction in postacute viremia to <10(3) copies/ml, suggesting that the vaccine elicited an effective cellular immune response. Three of six control animals developed clinical AIDS by 48 weeks postchallenge. In contrast, all seven vaccinated monkeys remained healthy as judged by all clinical parameters. These results demonstrate the efficacy of SabRV as a potential human vaccine vector, and they show that the use of a vaccine vector cocktail expressing an array of defined antigenic sequences can be an effective vaccination strategy in an outbred population.  相似文献   

15.
There is need for improved human influenza vaccines, particularly for older adults who are at greatest risk for severe disease, as well as to address the continuous antigenic drift within circulating human subtypes of influenza virus. We have engineered an influenza virus-like particle (VLP) as a new generation vaccine candidate purified from the supernatants of Sf9 insect cells following infection by recombinant baculoviruses to express three influenza virus proteins, hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1). In this study, a seasonal trivalent VLP vaccine (TVV) formulation, composed of influenza A H1N1 and H3N2 and influenza B VLPs, was evaluated in mice and ferrets for the ability to elicit antigen-specific immune responses. Animals vaccinated with the TVV formulation had hemagglutination-inhibition (HAI) antibody titers against all three homologous influenza virus strains, as well as HAI antibodies against a panel of heterologous influenza viruses. HAI titers elicited by the TVV were statistically similar to HAI titers elicited in animals vaccinated with the corresponding monovalent VLP. Mice vaccinated with the TVV had higher level of influenza specific CD8+ T cell responses than a commercial trivalent inactivated vaccine (TIV). Ferrets vaccinated with the highest dose of the VLP vaccine and then challenged with the homologous H3N2 virus had the lowest titers of replicating virus in nasal washes and showed no signs of disease. Overall, a trivalent VLP vaccine elicits a broad array of immunity and can protect against influenza virus challenge.  相似文献   

16.
Although live attenuated vaccines can provide potent protection against simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that confer this protection have not been determined. To test whether cellular immune responses mediated by CD8+ lymphocytes contribute to this vaccine-induced protection, we depleted rhesus macaques vaccinated with the live attenuated virus SIVmac239Delta3 of CD8+ lymphocytes and then challenged them with SIVmac251 by the intravenous route. While vaccination did not prevent infection with the pathogenic challenge virus, the postchallenge levels of virus in the plasmas of vaccinated control animals were significantly lower than those for unvaccinated animals. The depletion of CD8+ lymphocytes at the time of challenge resulted in virus levels in the plasma that were intermediate between those of the vaccinated and unvaccinated controls, suggesting that CD8+ cell-mediated immune responses contributed to protection. Interestingly, at the time of challenge, animals expressing the Mamu-A*01 major histocompatibility complex class I allele showed significantly higher frequencies of SIV-specific CD8+ T-cell responses and lower neutralizing antibody titers than those in Mamu-A*01- animals. Consistent with these findings, the depletion of CD8+ lymphocytes abrogated vaccine-induced protection, as judged by the peak postchallenge viremia, to a greater extent in Mamu-A*01+ than in Mamu-A*01- animals. The partial control of postchallenge viremia after CD8+ lymphocyte depletion suggests that both humoral and cellular immune responses induced by live attenuated SIV vaccines can contribute to protection against a pathogenic challenge and that the relative contribution of each of these responses to protection may be genetically determined.  相似文献   

17.
Plasma from four rhesus macaques (Macaca mulatta), of which two were experimentally infected with the simian immunodeficiency virus (SIV) isolate SIVmac251, one with isolate SIVsmF236, and another with a SIVsmF236 molecular clone, SIVsmH-4, enhanced SIVmac infection of MT-2 cells. In addition to SIV-positive plasma, infection-enhancement required complement, CD4, and CR2. Titers of infection-enhancing antibodies appeared to correlate with disease progression. The MT-2/SIVmac251 system should be useful in future studies of complement-mediated, antibody-dependent enhancement of macaque and sooty mangabey SIV isolates.  相似文献   

18.
We made an H1N1 vaccine candidate from a virus library consisting of 144 (?=?16 HA×9 NA) non-pathogenic influenza A viruses and examined its protective effects against a pandemic (2009) H1N1 strain using immunologically na?ve cynomolgus macaques to exclude preexisting immunity and to employ a preclinical study since preexisting immunity in humans previously vaccinated or infected with influenza virus might make comparison of vaccine efficacy difficult. Furthermore, macaques carrying a major histocompatibility complex class I molecule, Mafa-A1*052:02, were used to analyze peptide-specific CD8(+) T cell responses. Sera of macaques immunized with an inactivated whole particle formulation without addition of an adjuvant showed higher neutralization titers against the vaccine strain A/Hokkaido/2/1981 (H1N1) than did sera of macaques immunized with a split formulation. Neutralization activities against the pandemic strain A/Narita/1/2009 (H1N1) in sera of macaques immunized twice with the split vaccine reached levels similar to those in sera of macaques immunized once with the whole particle vaccine. After inoculation with the pandemic virus, the virus was detected in nasal samples of unvaccinated macaques for 6 days after infection and for 2.67 days and 5.33 days on average in macaques vaccinated with the whole particle vaccine and the split vaccine, respectively. After the challenge infection, recall neutralizing antibody responses against the pandemic virus and CD8(+) T cell responses specific for nucleoprotein peptide NP262-270 bound to Mafa-A1*052:02 in macaques vaccinated with the whole particle vaccine were observed more promptly or more vigorously than those in macaques vaccinated with the split vaccine. These findings demonstrated that the vaccine derived from our virus library was effective for pandemic virus infection in macaques and that the whole particle vaccine conferred more effective memory and broader cross-reactive immune responses to macaques against pandemic influenza virus infection than did the split vaccine.  相似文献   

19.
A comprehensive vaccine for human immunodeficiency virus type 1 (HIV-1) would block HIV-1 acquisition as well as durably control viral replication in breakthrough infections. Recent studies have demonstrated that Env is required for a vaccine to protect against acquisition of simian immunodeficiency virus (SIV) in vaccinated rhesus monkeys, but the antigen requirements for virologic control remain unclear. Here, we investigate whether CD8(+) T lymphocytes from vaccinated rhesus monkeys mediate viral inhibition in vitro and whether these responses predict virologic control following SIV challenge. We observed that CD8(+) lymphocytes from 23 vaccinated rhesus monkeys inhibited replication of SIV in vitro. Moreover, the magnitude of inhibition prior to challenge was inversely correlated with set point SIV plasma viral loads after challenge. In addition, CD8 cell-mediated viral inhibition in vaccinated rhesus monkeys correlated significantly with Gag-specific, but not Pol- or Env-specific, CD4(+) and CD8(+) T lymphocyte responses. These findings demonstrate that in vitro viral inhibition following vaccination largely reflects Gag-specific cellular immune responses and correlates with in vivo virologic control following infection. These data suggest the importance of including Gag in an HIV-1 vaccine in which virologic control is desired.  相似文献   

20.
Live-attenuated strains of simian immunodeficiency virus (SIV) routinely confer apparent sterilizing immunity against pathogenic SIV challenge in rhesus macaques. Understanding the mechanisms of protection by live-attenuated SIV may provide important insights into the immune responses needed for protection against HIV-1. Here we investigated the development of antibodies that are functional against neutralization-resistant SIV challenge strains, and tested the hypothesis that these antibodies are associated with protection. In the absence of detectable neutralizing antibodies, Env-specific antibody-dependent cell-mediated cytotoxicity (ADCC) emerged by three weeks after inoculation with SIVΔnef, increased progressively over time, and was proportional to SIVΔnef replication. Persistent infection with SIVΔnef elicited significantly higher ADCC titers than immunization with a non-persistent SIV strain that is limited to a single cycle of infection. ADCC titers were higher against viruses matched to the vaccine strain in Env, but were measurable against viruses expressing heterologous Env proteins. In two separate experiments, which took advantage of either the strain-specificity or the time-dependent maturation of immunity to overcome complete protection against SIVmac251 challenge, measures of ADCC activity were higher among the SIVΔnef-inoculated macaques that remained uninfected than among those that became infected. These observations show that features of the antibody response elicited by SIVΔnef are consistent with hallmarks of protection by live-attenuated SIV, and reveal an association between Env-specific antibodies that direct ADCC and apparent sterilizing protection by SIVΔnef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号