首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodococcus rhodochrous J1 produces high- and low-molecular mass nitrile hydratases (H-NHase and L-NHase, respectively), depending on the inducer. The incorporation of cobalt into L-NHase has been found to depend on the α-subunit exchange between cobalt-free L-NHase (apo-L-NHase) and its cobalt-containing mediator, NhlAE (holo-NhlAE), this novel mode of post-translational maturation having been named self-subunit swapping and NhlE having been recognized as a self-subunit swapping chaperone. We discovered an H-NHase maturation mediator, NhhAG, consisting of NhhG and the α-subunit of H-NHase. The incorporation of cobalt into H-NHase was confirmed to be dependent on self-subunit swapping. For the first time, particles larger than apo-H-NHase were observed during the swapping process via dynamic light scattering measurements, suggesting the formation of intermediate complexes. On the basis of these findings, we initially proposed a possible mechanism for self-subunit swapping. Electron paramagnetic resonance analysis demonstrated that the coordination environment of a cobalt ion in holo-NhhAG is subtly different from that in H-NHase. Cobalt is inserted into cobalt-free NhhAG (apo-NhhAG) but not into apo-H-NHase, suggesting that NhhG functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, α-subunit swapping did not occur between apo-L-NHase and holo-NhhAG or between apo-H-NHase and holo-NhlAE in vitro. These findings revealed that self-subunit swapping is a subunit-specific reaction.  相似文献   

2.
Sirtuins are emerging as the key regulators of metabolism and aging, and their potential activators and inhibitors are being explored as therapeutics for improving health and treating associated diseases. Despite the global structural similarity among all seven isoforms of sirtuins (of which most of them catalyze the deacetylation reaction), SIRT5 is the only isoform that catalyzes the cleavage of negatively charged acylated substrates, and the latter feature appears to be encoded by the presence of Tyr102 and Arg105 residues at the active site pocket of the enzyme. To determine the contributions of the above residues in SIRT5 (vis a vis the corresponding residues of SIRT1) on substrate selectivity, inhibition by EX527 and nicotinamide, secondary structural features and thermal stability of the enzymes, we created single and double mutations (viz. Y102A, R105l, and Y102A/R105I) in SIRT5. The kinetic data revealed that while Y102A mutant enzyme catalyzed both deacetylation and desuccinylation reactions with comparable efficiencies, R105I and Y102A/R105I mutant enzymes favored the deacetylase reaction. Like SIRT1, the nicotinamide inhibition of SIRT5 double mutant (Y102A/R105I) exhibited the mixed non-competitive behavior. On the other hand, the desuccinylation reaction of both wild-type and Y102A mutant enzymes conformed to the competitive inhibition model. The inhibitory potency of EX527 progressively increased from Y102A, R105I, to Y102A/R105 mutant enzymes in SIRT5, but it did not reach to the level obtained with SIRT1. The CD spectroscopic data for the wild-type and mutant enzymes revealed changes in the secondary structural features of the enzymes, and such changes were more pronounced on examining their thermal denaturation patterns. A cumulative account of our experimental data reveal mutual cooperation between Y102 and R105 residues in promoting the desuccinylation versus deacetylation reaction in SIRT5, and the overall catalytic feature of the enzyme is manifested via the mutation induced modulation in the protein structure.  相似文献   

3.
Wang GP  Hansen MR  Grubmeyer C 《Biochemistry》2012,51(22):4406-4415
Residue-to-alanine mutations and a two-amino acid deletion have been made in the highly conserved catalytic loop (residues 100-109) of Salmonella typhimurium OMP synthase (orotate phosphoribosyltransferase, EC 2.4.2.10). As described previously, the K103A mutant enzyme exhibited a 10(4)-fold decrease in k(cat)/K(M) for PRPP; the K100A enzyme suffered a 50-fold decrease. Alanine mutations at His105 and Glu107 produced 40- and 7-fold decreases in k(cat)/K(M), respectively, and E101A, D104A, and G106A were slightly faster than the wild-type (WT) in terms of k(cat), with minor effects on k(cat)/K(M). Equilibrium binding of OMP or PRPP in binary complexes was affected little by loop mutation, suggesting that the energetics of ground-state binding have little contribution from the catalytic loop, or that a favorable binding energy is offset by costs of loop reorganization. Pre-steady-state kinetics for mutants showed that K103A and E107A had lost the burst of product formation in each direction that indicated rapid on-enzyme chemistry for WT, but that the burst was retained by H105A. Δ102Δ106, a loop-shortened enzyme with Ala102 and Gly106 deleted, showed a 10(4)-fold reduction of k(cat) but almost unaltered K(D) values for all four substrate molecules. The 20% (i.e., 1.20) intrinsic [1'-(3)H]OMP kinetic isotope effect (KIE) for WT is masked because of high forward and reverse commitment factors. K103A failed to express intrinsic KIEs fully (1.095 ± 0.013). In contrast, H105A, which has a smaller catalytic lesion, gave a [1'-(3)H]OMP KIE of 1.21 ± 0.0005, and E107A (1.179 ± 0.0049) also gave high values. These results are interpreted in the context of the X-ray structure of the complete substrate complex for the enzyme [Grubmeyer, C., Hansen, M. R., Fedorov, A. A., and Almo, S. C. (2012) Biochemistry 51 (preceding paper in this issue, DOI 10.1021/bi300083p )]. The full expression of KIEs by H105A and E107A may result from a less secure closure of the catalytic loop. The lower level of expression of the KIE by K103A suggests that in these mutant proteins the major barrier to catalysis is successful closure of the catalytic loop, which when closed, produces rapid and reversible catalysis.  相似文献   

4.
Rhodococcus rhodochrous J1 produces two kinds of cobalt-containing nitrile hydratases (NHases); one is a high molecular mass-NHase (H-NHase) and the other is a low molecular mass-NHase (L-NHase). Both NHases are composed of two subunits of different sizes (alpha and beta subunits). The H- and L-NHase genes were cloned into Escherichia coli by a DNA-probing method using the NHase gene of Rhodococcus sp. N-774, a ferric ion-containing NHase producing strain, as the hybridization probe and their nucleotide sequences were determined. In each of the H- and L-NHase genes, the open reading frame for the beta subunit was located just upstream of that for the alpha subunit, which probably belongs to the same operon. The amino acid sequences of each subunit of the H- and L-NHases from R. rhodochrous J1 showed generally significant similarities to those from Rhodococcus sp. N-774, but the arrangement of the coding sequences for two subunits is reverse of the order found in the NHase gene of Rhodococcus sp. N-774. Each of the NHase genes was expressed in E. coli cells under the control of lac promoter, only when they were cultured in the medium supplemented with CoCl2.  相似文献   

5.
Varicella-zoster virus (VZV) is the alphaherpesvirus that causes chicken pox (varicella) and shingles (zoster). The two VZV glycoproteins gE and gI form a heterodimer that mediates efficient cell-to-cell spread. Deletion of gI yields a small-plaque-phenotype virus, ΔgI virus, which is avirulent in human skin using the xenograft model of VZV pathogenesis. In the present study, 10 mutant viruses were generated to determine which residues were required for the typical function of gI. Three phosphorylation sites in the cytoplasmic domain of gI were not required for VZV virulence in vivo. Two deletion mutants mapped a gE binding region in gI to residues 105 to 125. A glycosylation site, N116, in this region did not affect virulence. Substitution of four cysteine residues highly conserved in the Alphaherpesvirinae established that C95 is required for gE/gI heterodimer formation. The C95A and Δ105-125 (with residues 105 to 125 deleted) viruses had small-plaque phenotypes with reduced replication kinetics in vitro similar to those of the ΔgI virus. The Δ105-125 virus was avirulent for human skin in vivo. In contrast, the C95A mutant replicated in vivo but with significantly reduced kinetics compared to those of the wild-type virus. In addition to abolished gE/gI heterodimer formation, gI from the C95A or the Δ105-125 mutant was not recognized by monoclonal antibodies that detect the canonical conformation of gI, demonstrating structural disruption of gI in these viruses. This alteration prevented gI incorporation into virus particles. Thus, residues C95 and 105 to 125 are critical for gI structure required for gE/gI heterodimer formation, virion incorporation, and ultimately, effective viral spread in human skin.  相似文献   

6.
A new cobalt-containing nitrile hydratase was purified from extracts of urea-induced cells from Rhodococcus rhodochrous J1 in seven steps. At the last step, the enzyme was crystallized by adding ammonium sulfate. Nitrile hydratase was a 500-530-kDa protein composed of two different subunits (alpha subunit 26 kDa, beta subunit 29 kDa). The enzyme contained approximately 11-12 mol cobalt/mol enzyme. A concentrated solution of highly purified nitrile hydratase exhibited a broad absorption spectrum in the visible range, with an absorption maxima at 410 nm. The enzyme had a wide substrate specificity. Aliphatic saturated or unsaturated nitriles as well as aromatic nitriles, were substrates for the enzyme. The optimum pH of the hydratase was pH 6.5-6.8. The enzyme was more stable than ferric nitrile hydratases. The amino-terminal sequence of each subunit of R. rhodochrous J1 enzyme was determined and compared with that of ferric nitrile hydratases. Prominent similarities were observed with the beta subunit. However, the amino acid sequence of the alpha subunit from R. rhodochrous J1 was quite different from that of the ferric enzymes.  相似文献   

7.
Zhu X  Wu G  Zeng W  Xue H  Chen B 《Journal of lipid research》2005,46(6):1303-1311
Apolipoprotein A-I(Milano) (A-I(M)) (R173C), a natural mutant of human apolipoprotein A-I (apoA-I), and five other cysteine variants of apoA-I at residues 52 (S52C), 74 (N74C), 107 (K107C), 129 (G129C), and 195 (K195C) were generated. Cysteine residues were incorporated in each of the various helices at the same helical wheel position as for the substitution in A-I(M). The secondary structural properties of the monomeric mutants, their abilities to bind lipid and to promote cholesterol efflux from THP-1 macrophages, and the possibility of antiperoxidation were investigated. Results showed that the alpha helical contents of all of the cysteine mutants were similar to that of wild-type apoA-I (wtapoA-I). The cysteine variant of A-I(M) at residue 173 [A-I(M)(R173C)] exhibited weakened structural stability, whereas A-I(G129C) a more stable structure than wtapoA-I. A-I(G129C) and A-I(K195C) exhibited significantly impaired capabilities to bind lipid compared with wtapoA-I. A-I(K107C) possessed a higher capacity to promote cholesterol efflux from macrophages than wtapoA-I, and A-I(M)(R173C) and A-I(K195C) exhibited an impaired efflux capability. Neither A-I(M)(R173C) nor any other cysteine mutant could resist oxidation against lipoxygenase. In summary, in spite of the similar mutant position on the helix, these variants exhibited different structural features or biological activities, suggesting the potential influence of the local environment of mutations on the whole polypeptide chain.  相似文献   

8.
Each of the four identical subunits of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase contains two cysteine residues, Cys156 and Cys296 (Beach, M. J., and Rodwell, V. W. (1989) J. Bacteriol. 171, 2994-3001). Both are accessible to modification by sulfhydryl reagents under nondenaturing conditions (Jordan-Starck, T. C., and Rodwell, V. W. (1989) J. Biol. Chem. 264, 17913-17918). We used site-directed mutagenesis to construct three mutant enzymes in which alanine replaced either or both cysteine residues. Mutant enzymes C156A, C296A, and C156/296A were over-expressed in Escherichia coli and were found to be fully active. Following their purification, all four forms of the enzyme were compared with respect to their catalytic efficiency, their affinities for the substrates of all four catalyzed reactions, and for their sensitivity to inactivation by sulfhydryl reagents. Replacement of cysteine residues with alanine residues had no major effect on either the specific activity or the affinity of the enzymes for any substrate. The mutants catalyzed all four HMG-CoA reductase reactions as efficiently as did the wild-type enzyme, and coenzyme A stimulated mevaldehyde reduction to the same extent as for wild-type HMG-CoA reductase. Mutant C156A and the cysteine-free mutant C156/296A were not inactivated by 5,5'-dithiobis(2-nitrobenzoate). By contrast, mutant C296A was inactivated to the same extent as was the wild-type enzyme. Following treatment of the mutant enzymes with N-ethylmaleimide, the four reductase reactions catalyzed by mutant C296A were inactivated to the same extent as for the wild-type enzyme. Neither mutant C156A nor C156/296A was affected by this reagent. We conclude that the sulfhydryl reagent-reactive group whose derivatization leads to loss of enzymatic activity is Cys156. However, this residue is not an essential active site residue since neither substrate binding nor catalysis was affected when it was replaced by alanine. Possible roles of cysteine in maintaining structural stability are discussed.  相似文献   

9.
Thirty-nine mutant tryptophan synthase alpha subunits have been purified and analyzed (in the presence of the beta 2-subunit) for their enzymatic (kcat, Km) behavior in the reactions catalyzed by the alpha 2.beta 2 complex, the fully constituted form of this enzyme. The mutant alpha subunits, obtained by in vitro random, saturation mutagenesis of the encoding trpA gene, contain single amino acid substitutions at sites within the first 121 residues of the alpha polypeptide. Four categories of altered residues have been tentatively assigned roles in the catalytic functions of this enzyme: 1) catalytic residues (Glu49 and Asp60); 2) residues involved in substrate binding or orientation (Phe22, Thr63, Gln65, Tyr102, and Leu105); 3) residues involved in alpha.beta subunit interactions (Gly51, Pro53, Asp56, Asp60, Pro62, Ala67, Phe72, Thr77, Pro78, Tyr102, Asn104, Leu105, and Asn108); and 4) residues with no apparent catalytic roles. Catalytic residue alterations result in no detectable activity in the alpha-subunit specific reactions. Substrate binding/orientation roles are detected enzymatically primarily as rate defects; alterations only at Tyr102 result in apparent Km effects. alpha.beta interaction roles are detected as rate defects in all tryptophan synthase reactions plus Km increases for the alpha-subunit substrate, indole-3-glycerol phosphate, only when L-serine is present at the beta 2-subunit active site. A substitution at only one site, Asn104, appears to be unique in its potential effect on intersubunit channeling of indole, the product of the alpha-subunit specific reaction, to the beta 2-subunit active site.  相似文献   

10.
Studies of structure-activity relationships of human interleukin-2   总被引:4,自引:0,他引:4  
Human interleukin-2 (IL-2) has 3 cysteine residues; cysteines 58 and 105 form an intramolecular disulfide bridge, whereas cysteine 125 has a free sulfhydryl group. In this study, site-specific mutagenesis has been used to modify the cysteine residues of recombinant Escherichia coli-derived IL-2 (rIL-2) to evaluate the functional structure of IL-2. Substitution or deletion of cysteine 105 disrupted the disulfide bridge and yielded a mutant protein which was 8-10 times less active than wild type rIL-2. A similar modification at position 58, however, reduced the activity of rIL-2 by more than 250-fold. Although substitution of serine for cysteine 125 did not affect IL-2 activity, deletion of cysteine 125 or deletion of amino acids in the vicinity of this cysteine yielded mutant proteins with little, if any, activity. These results indicate that the protein structure in the vicinity of both positions 58 and 125 is more critical than that close to position 105. These findings may provide a clue to the understanding of the functional structure of human IL-2.  相似文献   

11.
A recently rediscovered reaction of base-assisted lanthionine formation has been applied to several systems of disulfide-bridged peptides. In addition to previously described nonapeptides consisting of i, i+3 cystine linkages, the reaction has now been extended to systems consisting of shorter (i, i+2) and longer (i, i+4) disulfide bridges. The desulfurization reaction is also compatible with disulfide bridges formed through homocysteines and penicillamines, yielding unusual amino acids such as cystathionine and beta,beta-dimethyl lanthionine (referred to as "penthionine") in a peptide chain, respectively. Systematic study of this transformation has provided several new insights into its mechanism. We have observed formation of dehydroalanine and dehydrovaline residues resulting from i, i+2-bridged cysteines and i, i+3-bridged cysteine/penicillamine peptides, respectively, thereby supporting a beta-elimination/Michael-addition mechanism for this transformation. Amino acid analysis and NMR data from total correlation spectroscopy (TOCSY) and (1)H-(13)C heteronuclear single quantum correlation (HSQC) experiments show three diastereomeric lanthionine-bridged peptides in the product mixture. But in the case of desulfurization of a cysteine/homocysteine containing disulfide-bridged peptide, Michael addition appears to be stereoselective, yielding a single stereoisomer of cystathionine within the peptide. According to molecular modeling and CD spectroscopy, constrained peptides such as those containing penicillamine are less likely to undergo facile desulfurization. Flexibility of the torsional angles (C(alpha)H-C(alpha)-C(beta)-S) corresponding to the cysteine residues and temperature appear to be contributing factors determining the extent of desulfurization.  相似文献   

12.
N Uozumi  T Matsuda  N Tsukagoshi  S Udaka 《Biochemistry》1991,30(18):4594-4599
Bacillus polymyxa beta-amylase contains three cysteine residues at positions 83, 91, and 323, which can react with sulfhydryl reagents. To determine the role of cysteine residues in the catalytic reaction, cysteine residues were mutated to construct four mutant enzymes, C83S, C91V, C323S, and C-free. Wild-type and mutant forms of the enzyme were expressed in, and purified to homogeneity from, Bacillus subtilis. A disulfide bond between Cys83 and Cys91 was identified by isolation of tryptic peptides bearing a fluorescent label, IAEDANS, from wild-type and C91 V enzymes followed by amino acid sequencing. Therefore, only Cys323 contains a free SH group. Replacement of cysteine residues with serine or valine residues resulted in a significant decrease in the kcat/Km value of the enzyme. C323S, containing no free SH group, however, retained a high specific activity, approximately 20% of the wild-type enzyme. None of the cysteine residues participate directly in the catalytic reaction.  相似文献   

13.
Ansong C  Miles SM  Fay PJ 《Biochemistry》2006,45(44):13140-13149
Results from a recent study on subunit association in factor VIIIa indicated that the A1 and A3C1C2 domains contribute approximately 90% of the interchain binding energy in factor VIII and that A3 domain residues 1954-1961 participate in the interaction with A1 domain (Ansong, C., and Fay, P. J. (2005) Biochemistry 44, 8850-8857). Enhanced trypsin-accessibility at four sites within residues 89-142 in free A1 compared with that of A3C1C2-bound A1, as determined by mass spectrometry, suggested that residues within this region are interactive with the A3C1C2 domains. A synthetic peptide to A1 domain residues 97-105, predicted to be A3 domain-interactive from molecular modeling, inhibited the formation of a functional A1/A3C1C2 dimer (apparent K(i) = 0.64 +/- 0.21 microM) and reduced the efficiency of energy transfer between a fluorescein-labeled A1 subunit and an acrylodan-labeled A3C1C2 subunit. B-domainless factor VIII point mutants, His99Ala, Val101Ala, and Gly102Ser, exhibited reduced specific activity (32%, 51%, and 45%, respectively) compared with that of factor VIII wild type. Furthermore, the activity of factor VIII His99Ala was less stable (t(1/2) = 2.3 +/- 0.2 min) compared with that of factor VIII wild type (t(1/)(2) = 6.2 +/- 0.7 min) following heat denaturation analysis. This reduced stability appeared to result from an approximately 40% increase in the dissociation rate for the mutant factor VIII heterodimer as judged by solid-phase binding assays. These results indicate that residues within segment 97-105 of the A1 domain interact with residues within the A3C1C2 domains of the light chain and contribute to the interface in the factor VIII heterodimer.  相似文献   

14.
Gq mediates hormonal stimulation of phosphoinositide-specific phospholipase C (PI-PLC). We mutated the alpha subunit of Gq (alpha q) to replace arginine 183 with cysteine. Mutations that substitute cysteine for the corresponding arginine residues of alpha s and alpha i2 constitutively activate their respective effector pathways, creating the gsp and gip2 oncogenes. Transient expression of alpha q-R183C in COS-7 and HEK-293 cells constitutively activates PI-PLC, but wild type (WT) alpha q does not. This suggests that the mutated arginines in alpha s, alpha i2, and alpha q share a common function in regulating the active state of these proteins and that the alpha q gene may serve as a target for oncogenic mutations in human tumors. In an attempt to develop an assay for receptor stimulation of recombinant alpha q, we co-expressed receptors with alpha q-WT. We found that the alpha 2-adrenoceptor stimulates PI-PLC activation in HEK-293 cells in a fashion that depends completely on co-expression of alpha q-WT. These findings create an experimental model, similar to that provided for alpha s by S49 cyc- cells, that should make it possible to analyze receptor and effector coupling by mutant alpha q against a null background.  相似文献   

15.
This paper describes the consequences of alanine-scanning mutagenesis on 28 positions of the second epidermal growth factor (EGF-2) domain of factor IX. We identified four positions of Gln(97), Phe(98), Tyr(115), and Leu(117) that are critical for secretion of factor IX. Of the remaining mutations, 4 mutants (V86A, E113A, K122A, and S123A) are as active as wild-type factor IX (IXwt); 16 (D85A, K100A, N101A, D104A, N105A, R116A, E119A, T87A, I90A, K91A, R94A, E96A, S102A, K106A, T112A, and N120A) retain reduced but detectable activity, and 4 (N89A, N92A, G93A, and V107A) are nearly inert in the clotting assay. Both factor XIa and the factor VIIa-tissue factor complex effectively catalyzed the activation of these mutants except N89A. The mutant V107A failed to form the factor tenase complex with factor VIIIa because of a 35-fold increase in K(d). The mutants N89A and N92A did not compete with factor IXwt for factor VIIIa binding, and G93A exhibited a 6-fold increase in K(i) values in the competitive binding assay. It appears that mutations at these positions have significantly affected the interaction between factor IX and factor VIIIa, although other mutations had little effect on the binding of factor IX to factor VIIIa. Mutations in two regions, Thr(87)-Gly(93) and Asn(101)-Val(107), significantly increased the K(m) value of factor IXa (2-10-fold) in cleavage of factor X in the absence of factor VIIIa. In the presence of factor VIIIa, the catalytic efficiency of each mutant toward factor X paralleled its clotting activity. Briefly, we propose two relatively distinctive functions of factor IX for two adjacent regions in the EGF-2 domain; the first loop region (residues 89-94) is involved with the binding of its cofactor, factor VIIIa, and the third loop with connected beta-sheets (residues 102-108) is involved in the proper binding to the substrate, factor X.  相似文献   

16.
【目的】利用农杆菌(Agrobacterium tumefaciens)T-DNA系统,建立转化黑曲霉(Aspergillus niger)分生孢子的方法,构建T-DNA插入突变子文库,为黑曲霉基因组功能注释研究打下基础。【方法】采用携带二元质粒载体pCAMBIA1301的农杆菌EHA105,诱导转化黑曲霉分生孢子,筛选具有潮霉素抗性的突变子。分析抗性稳定突变子菌株的表型,采用反向PCR方法分析T-DNA插入位点相邻位置的序列,并推测突变基因可能具有的功能。【结果】实验获得具有稳定潮霉素抗性转化子193株,转化率为5.6×102转化子/108分生孢子。部分转化子表型出现较为明显改变,其中一株不能产孢,对其T-DNA插入位点序列分析比对结果显示,突变基因属于超级转运家族(major facilitator superfamily,MFS)。【结论】本研究建立的农杆菌转化黑曲霉分生孢子平台,结合T-DNA插入突变位点分析,可以为黑曲霉基因组功能注释研究提供一种简便有效的途径。  相似文献   

17.
Two different types of plasmid were isolated from strains of Rhodococcus rhodochrous. Two plasmids, of the same type but from different strains, were combined with Escherichia coli plasmids carrying antibiotic resistance markers to develop E. coli-Rhodococcus shuttle vectors. The ampicillin and kanamycin resistance markers served for selection in Rhodococcus. Electroporation was used to introduce recombinant plasmid DNA into R. rhodochrous ATCC 12674 at a frequency of 5 x 10(7) transformants per microgram DNA. With these host-vector and transformation systems, the nitrile hydratase and amidase genes of a Rhodococcus strain were introduced into the host strain and were efficiently expressed.  相似文献   

18.
S Aliau  H Mattras  E Richard  J L Borgna 《Biochemistry》1999,38(45):14752-14762
The efficiency of 11beta-[p(aziridinylethoxy)phenyl]estradiol 1 and 11beta-[p(aziridinylpentoxy)phenyl]estradiol 2 affinity labeling of the estrogen receptor alpha (ERalpha) was evaluated on the basis of their capacity to inhibit [(3)H]estradiol binding to lamb and human ERalphas. Relative to RU 39 411 (11beta-[p(dimethylaminoethoxy)phenyl]estradiol), the most closely related and chemically inert analogue of 1, the two electrophiles irreversibly inhibited [(3)H]estradiol binding to the lamb ERalpha. The fact that the compound effects were prevented (i) when the ERalpha hormone-binding site was occupied by estradiol and (ii) when the ERalpha-containing extracts were pretreated with methyl methanethiosulfonate (an SH-specific reagent) suggested that the compounds specifically alkylated ERalpha at cysteine residues. Wild-type human ERalpha was alkylated as efficiently as lamb ER, whereas the quadruple cysteine --> alanine mutant, in which all cysteines of the hormone-binding domain (residues 381, 417, 447, and 530) were changed to alanines, showed no significant electrophile labeling. The single C530A mutant was much less sensitive to the action of the electrophiles than the three other single mutants (C381A, C417A, and C447A). Moreover, analysis of the three double mutants (C381A/C530A, C417A/C530A, and C447A/C530A) showed that only the C381A/C530A mutant was less susceptible to electrophile labeling than the single C530A mutant. We concluded that in the hormone-binding pocket C530 was the main covalent attachment site of aziridines 1 and 2, whereas C381 could be a secondary site. These results agreed with the crystal structure of the hormone-binding domain of the human ERalpha bound to estrogen or antiestrogen, since C381 and C530 appeared to be (i) located in structural elements involved in delineating the hormone-binding pocket and (ii) in spatial proximity to each other, which was closer in the crystal structure of the ER:antiestrogen complex than in that of the ER:estrogen complex. Since C530 and C381 were also the main and secondary covalent attachment sites of tamoxifen aziridine (a nonsteroidal affinity-labeling agent), we propose a selective mode of superimposition of tamoxifen-class antiestrogens with RU 39 411-class antiestrogens, which could account for the relative positioning of the two types of ligands in the ERalpha hormone-binding pocket.  相似文献   

19.
The role of active site residues in fructose 1,6-bisphosphate aldolase is investigated by chemical-modification rescue. An active-site mutation, K107C, is constructed in a background where the four solvent-accessible cysteine residues are converted to alanine. The resulting mutant, tetK107C, when reacted with bromoethylamine (BrEA), shows a 40-fold increase in activity (to 80% that of wild type). Determination of the sites and their degree of modification using electrospray ionization Fourier transform mass spectrometry (ESI-FTMS) is developed, allowing correlation of activity after chemical modification rescue to the degree of modification. The stoichiometry of the reaction is 2.5 aminoethylations per subunit, as measured by ESI-FTMS. Protein modification with a double-labeled mix (1:1) of natural abundance isotope (d(0)-BrEA) and 2-bromoethyl-1,1,2,2-d4-amine hydrobromide (d(4)-BrEA), followed by dialysis and trypsin digestion, shows aminoethylated peptides as "twin peptides" separated by four mass units in ESI-FTMS analysis. Using this detection procedure under nondenaturing (native) conditions, C107 is aminoethylated, whereas the four buried thiols remain unlabeled. Aminoethylation of other residues is observed, and correlates with those peptides containing histidine, methionine, and/or the amino terminus. Quantification of the aminoethylation reaction is achieved by labeling with nondeuterated d(0)-BrEA under denaturing conditions following double labeling under native conditions. In addition to complete labeling all five thiols, the intensity of the d(0)-BrEA peak for C107 containing peptides increases, and the change in the d(0)/d(4) ratio between native and denaturing conditions shows 82 +/- 4.5% aminoethylation at C107. This correlation of modification with the recovered activity, indicates that gamma-thia-lysine replaces lysine in the catalytic mechanism. Kinetic constants measured for the rescued K107C mutant enzyme with the substrates fructose 1-phosphate and fructose 1,6-bisphosphate are consistent with the role of the positively charged lysine binding to the C6-phosphate. ESI-FTMS, combined with this double-labeling procedure, allows precise identification of sites and measurement of degree of protein modification.  相似文献   

20.
1,3-propanediol oxidoreductase (DhaT), which catalyzes the conversion of 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol (1,3-PD) with the oxidation of NADH to NAD+, is a key enzyme in the production of 1,3-PD from glycerol. DhaT is known to be severely inactivated by its physiological substrate, 3-HPA, due to the reaction of 3-HPA with the thiol group of the cysteine residues. In this study, using site-directed mutagenesis, four cysteine residues in Klebsiella pneumoniae J2B DhaT were substituted to alanine, the amino acid commonly found in cysteine’s positions in other DhaT, individually and in combination. Among the total of 15 mutants developed, a double mutant (C28A_C107A) and a triple mutant (C28A_C93A_C107A) exhibited approximately 50 and 16% higher activity than the wild-type counterpart, respectively, after 1 h incubation with 10 mM 3-HPA. According to detailed kinetic studies, the double mutant had slightly better kinetic properties (V max , K cat , and K m for both 3-HPA and NADH) than wild-type DhaT. This study shows that DhaT stability against 3-HPA can be increased by cysteine-residue removal, albeit to a limited extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号