首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribulose-l,5-diphosphate (RuDP) carboxylase protein and activitywere determined in relation to net photosynthetic rate duringthe senescence of intact flag leaves of wheat on the plant.Initially the decrease in RuDP carboxylase activity was greaterthan the decline in net photosynthesis. The major decrease inRuDP carboxylase activity over this period resulted from a decreasein enzyme specific activity from 11 to 2 µmol CO2 fixedh–1 mg–1 protein. Loss of RuDP carboxylase proteindid not occur until late in senescence by which time chlorophyllconcentration had decreased by more than 50%. Treatment of flagleaves at weekly intervals with either 1000 parts 10–62-chloro-ethyltrimethylammonium chloride or 100 parts 10–6gibberellic acid with 1 part 10–6 kinetin did not significantlyaffect net photosynthetic rate, RuDP carboxylase protein oractivity during senescence.  相似文献   

2.
Ribulose-1,5-diphosphate carboxylase (carboxydismutase) was prepared from Chinese Cabbage [Brassica petsai (Parl)] and the K(m) values and molecular weight were determined. These parameters were found to be in good agreement with values reported for this enzyme from other higher plants. Investigation of carboxydismutase activity from the photosynthetic micro-organisms Chlamydomonas reinhardi (IU 89+), Plectonema boryanum (IU 594), and Chromatium strain D showed striking similarity to the higher plant enzyme, when the sedimentation coefficients were compared.  相似文献   

3.
4.
Zusammenfassung Die am Fructose- und Gluconatabbau über den Entner-Doudoroff-Weg beteiligten Enzyme sowie die Enzyme des oxydativen Pentosephosphat-Weges wurden in Rohextrakten von Hydrogenomonas eutropha Stamm H 16 und Pseudomonas facilis, sowohl nach autotrophem Wachstum als auch nach heterotrophem Wachstum auf Fructose oder Gluconat, bestimmt. Fructose induziert in H. eutropha alle Enzyme des Entner-Doudoroff-Weges, Gluconat nur die Gluconokinase, die 6-Phosphogluconat-Dehydratase und die 2-Keto-3-desoxy-6-phosphogluconat-Aldolase. Dagegen induzieren in P. facilis beide Substrate den gesamten Enzymsatz. Das Fehlen der 6-Phosphogluconat-Dehydrogenase in H. eutropha und das Vorhandensein einer NAD-abhängigen 6-Phosphogluconat-Dehydrogenase in P. facilis wurden bestätigt. Die Enzymaktivitäten in voll induzierten, auf Fructose gewachsenen Zellen beider Arten sind ähnlich.Mit beiden Stämmen wurden Einbauexperimente mit U-14C-, 1-14C- und 6-14C-Fructose sowie 1-14C- und 6-14C-Gluconat als Substrate durchgeführt. Die Ribose wurde aus der RNS isoliert und durch Lactobacillus plantarum fermentativ in Essigund Milchsäure gespalten. Die spezifische Radioaktivität der einzelnen C-Atome wurde durch schrittweisen Abbau der Säuren, quantitative Bestimmung des dabei entstehenden 14CO2 und Messung der darin enthaltenen absoluten Radioaktivität ermittelt.Die Ergebnisse zeigen, daß die Ribose in Stamm H 16 ausschließlich über die nicht-oxydativen Reaktionen des Pentosephosphat-Weges gebildet wird. Die C-Atome 1,2 und 3 des Gluconats tragen nicht signifikant zur Gluconeogenese bei.Das Markierungsmuster der Ribose aus P. facilis ist mit dem von Stamm H 16 nahezu identisch. Die oxydativen Reaktionen des Pentosephosphat-Weges über die 6-Phosphogluconat-Dehydrogenase sind von quantitativ geringerer Bedeutung als die Transaldolase-Transketolase-Reaktionen.
The biosynthetic pathway of RNA ribose in Hydrogenomonas eutropha Strain H 16 and Pseudomonas facilis
Summary The enzymes involved in the degradation of fructose and gluconate via the Entner-Doudoroff-pathway as well as those involved in the oxidative pentose phosphate pathway have been determined in crude extracts of Hydrogenomonas eutropha strain H 16 and of Pseudomonas facilis after either autotrophic growth or heterotrophic growth on fructose or gluconate as substrates. In H. eutropha fructose induces all enzymes of the Entner-Doudoroff-pathway, gluconate induces only glucokinase, 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase. In contrast, in P. facilis both substrates induce the entire set of enzymes. The absence of 6-phosphogluconate dehydrogenase in H. eutropha and the presence of a NAD-linked 6-phosphogluconate dehydrogenase in P. facilis have been confirmed. Otherwise, the enzyme activities in fully induced fructose grown cells of both species are similar.Incorporation experiments were performed using both bacterial species and employing U-14C-, 1-14C-, and 6-14C-fructose as well as 1-14C- and 6-14C-gluconate as substrates. Ribose was isolated from RNA and fermented by Lactobacillus plantarum with the production of acetic and lactic acids. By stepwise degradation of the acids and by quantitative measurement and scintillation counting of the carbon dioxide formed the specific radioactivity of each carbon atom has been determined.The results demonstrate that in strain H 16 ribose is formed exclusively via the non-oxidative reactions of the pentose phosphate pathway. Carbon atoms 1 to 3 of gluconate do not significantly contribute to gluconeogenesis.With P. facilis an almost identical labelling pattern was observed, indicating that the oxidative reactions of the pentose phosphate pathway via 6-phosphogluconate dehydrogenase are quantitatively of minor importance for ribose synthesis than the transaldolase-transketolase reactions.

Abkürzungen ATP Adenosin-5-triphosphat - DAP Dihydroxyacetonphosphat - E-4-P Erythrose-4-phosphat - ED Entner-Doudoroff - EDTA Äthylen-diamin-tetraessigsäure - FDP(ase) Fructose-1,6-diphosphat(ase) - F-6-P Fructose-6-phosphat - G-6-P(-DH) Glucose-6-phosphat(-Dehydrogenase) - GAP Glycerinaldehyd-3-phosphat - GDH Glycerin-1-phosphat-Dehydrogenase - GK Gluconokinase - HK Hexokinase - KDPG 2-Keto-3-desoxy-6-phosphogluconat - LDH Lactat-Dehydrogenase - NAD(H2) Nicotin-amid-adenin-dinucleotid (reduziert) - NADP(H2) Nicotinamid-adenin-dinucleotidphosphat (reduziert) - PGI Phosphoglucose-Isomerase - PP Pentosephosphat - 6-PG(-DH) 6-Phosphogluconat(-Dehydrogenase) - 6-PG-DHT 6-Phosphogluconat-Dehydratase - R-5-P Ribose-5-phosphat - Ru-5-P Ribulose-5-phosphat - Su-7-P Seduheptulose-7-phosphat - TA Transaldolase - TEA Triäthanolaminhydrochlorid - TIM Triosephosphat-Isomerase - TK Transketolase - TPP Thiaminpyrophosphat - Tris Tris-(hydroxymethyl)-aminomethan - Xu-5-P Xylulose-5-phosphat  相似文献   

5.
以杂交稻(汕优63)为试验材料,在木村B营养液中培养至三叶期,用草酸5mmol/L预处理水稻2d,再处以氧化胁迫(用0.1mmol/L浓度的活性氧诱发剂甲基紫精处理)。结果表明MV诱发的氧化胁迫下,Rubisco及其它可溶性蛋白快速降解。草酸预处理可明显缓解Rubisco及其它可溶性蛋白的降解,降解速率分别降低1/3和1/2左右。植株经草酸处理后其叶片中几种抗氧化酶如AsA-POD、SOD、CAT活性大大提高,这可能是草酸预处理可缓解氧化胁迫下Rubisco和其它可溶性蛋白降解的重要原因。既然草酸能有效地诱导植物的抗氧化防卫反应,它可能作为一种诱抗剂来提高植物的抗逆性。  相似文献   

6.
When frozen leaves of 24-day-old maize (Zea mays L.) plant werethawed on moist filter paper at 26°C (freeze-thaw treatment)several enzymes, including phosphoenolpyruvate carboxylase (PEPC)and ribulose-1,5-bisphosphate carboxylase (RuBPC), were rapidlyinactivated and degraded. The kinetics of the inactivation anddegradation were pseudo first-order, and the halftimes for inactivationof PEPC and RuBPC were 3.2 and 2.4 min, respectively. The effectof the freeze-thaw treatment on the inactivation and degradationdiffered among various enzymes: the residual activities of RuBPC,PEPC, hydroxypyruvate reductase, Cyt c oxidase, NADP-malic enzymeand a-mannosidase 10 min after the start of the thawing treatmentwere 7, 16, 54, 64, 97 and 98% of the initial respective levels.Thirty min after the starting of thawing treatment, the amountsof total soluble protein, the large subunit of RuBPC, the smallsubunit of RuBPC, the PEPC subunit and the NADP-malic enzymesubunit had fallen to 61, 2, 16, 8, and 66% of the initial respectiveamounts. The effect of freeze-thaw treatment on PEPC was greater in oldleaves than in young leaves. There was a steady increase ofthe rate of degradation of PEPC by freeze-thaw treatment asplants aged from 6 to 24 days. These results are discussed inthe context of protein degradation in plant cells. (Received August 9, 1993; Accepted January 10, 1994)  相似文献   

7.
An antibody specific for ribulose 1,5-diphosphate carboxylase was used to isolate the enzyme from greening barley (Hordeum vulgare L.) leaves. The increase in enzymatic activity during greening was due to de novo synthesis of the enzyme. Increases in enzymatic activity were accompanied by corresponding increases in enzyme protein and by incorporation of radioactive leucine, all of which were inhibited by low concentrations of cycloheximide. 14C-Labeled amino acids were incorporated into the enzyme by covalent peptide bonding.  相似文献   

8.
Lord JM  Brown RH 《Plant physiology》1975,55(2):360-364
Ribulose 1,5-diphosphate carboxylase has been purified from extracts of autotrophically grown Chlorella fusca by ammonium sulfate precipitation and centrifugation on a linear sucrose density gradient. The enzyme was homogeneous by the criterion of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 530,000, and it was composed of two types of subunit of molecular weight 53,000 and 14,000. Ribulose 1,5-diphosphate, CO(2), and Mg(2+) had Michaelis constant values of 15 mum, 0.3 mm, and 0.37 mm, respectively. At high bicarbonate concentration (17 mm and 50 mm), 6-phosphogluconate inhibited the enzyme, the inhibition being noncompetitive with respect to ribulose 1,5-diphosphate (Ki 0.065 mm), whereas at low bicarbonate concentration (1 mm), 6-phosphogluconate activated the enzyme. Oxygen was a competitive inhibitor with respect to CO(2), suggesting the enzyme also functions as an oxygenase. This was confirmed by direct assay, a 1: 1 stoichiometry between ribulose 1,5-diphosphate consumed and O(2) uptake being observed.  相似文献   

9.
Characterisation of proteases degrading ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC: 4.1.1.39) was studied in the cowpea leaf during monocarpic senescence 3 and 9 d after flowering (DAF), representing early and mid pod fill. The stage at 3 DAF coincided with decrease in the metabolic parameters characterising senescence, i.e., contents of total soluble proteins, RuBPCO, and leaf nitrogen. At 9 DAF, there was a decline in total soluble proteins and an appearance of a 48 kDa cysteine protease. Characterisation of the proteases was done using specific inhibitors. Subcellular localisation at 3 DAF was studied by following the degradation of RuBPCO large subunit (LSU) in the vacuole lysates using immunoblot analyses. Cysteine proteases played a predominant role in the degradation of RuBPCO LSU at the crude extract level. At 9 DAF, expression of cysteine protease isoforms was monitored using polyclonal antibodies against papain and two polypeptides of molecular masses 48 and 35 kDa were observed in the vacuole lysates. We confirmed thus the predominance of cysteine proteases in the vacuoles during different stages of pod development in cowpea leaf.  相似文献   

10.
11.
Placing light-grown Lemna gibba L. G-3 into the dark results in a changed pattern of protein synthesis. Although the amount of protein in the tissue and the over-all rate of incorporation of [35S]methionine into protein does not significantly decline during four days of darkness, the rate of synthesis of three polypeptides declines dramatically. One of these polypeptides is the chlorophyll a/b-binding protein and the two others are the large and small subunits of ribulose-1,5-bisphosphate carboxylase. The changed rates of synthesis of the two subunits were examined after transitions of plants from light to dark and dark to light. The in vivo synthesis of both subunits, while declining to a low level during four days of darkness, increases rapidly upon returning the plants to white light. In addition, the level of poly(A) mRNA coding for the precursor polypeptide of the small subunit of the enzyme falls to a low level in the dark and increases rapidly in response to white light. The increase in translatable mRNA for the small subunit is rapid enough to account for a major part of the increased synthesis of this subunit.  相似文献   

12.
13.
A mutant strain of the green alga Chlamydomonas reinhardi, ac-20, is described in which both the rate of CO2 fixation by whole cells and the rate of carboxylation of ribulose-1,5-diphosphate in cell-free extracts are reduced, particularly when sodium acetate is present in the growth medium. Of the enzymes of the reductive pentose phosphate cycle tested, only ribulose-1,5-diphosphate carboxylase activity is reduced in the mutant strain, and it appears that the low carboxylase activity limits the strain's rate of photosynthetic carbon metabolism. Evidence is presented to show that the fluctuation in the level of the enzyme activity in the presence or absence of acetate results from the fluctuation in the level of some factor(s) limiting the rate of synthesis of the protein.  相似文献   

14.
When actinomycin D, puromycin, streptomycin, chloramphenicol, and cycloheximide, known inhibitors of protein synthesis, were applied to leaves of intact seedlings or detached leaves of barley prior to their greening, the same general response resulted: the light-induced increase in activity of ribulose 1,5-diphosphate carboxylase was prevented while that of phosphoribulokinase was only partially suppressed; synthesis of chlorophyll was arrested. This is taken as preliminary evidence that de novo synthesis of protein may be responsible for the observed increase in ribulose-1,5-diphosphate carboxylase activity during greening. However, other factors may be involved with the light-induced stimulation of phosphoribulokinase.

Carbohydrate metabolites and substrates of the enzymes failed to induce the formation of ribulose-1,5-diphosphate carboxylase and phosphoribulokinase in the dark. No evidence was found for the presence of inhibitors in etiolated seedlings or activators in illuminated leaves of barley. Carboxylase activity almost equal to that of the illuminated water control was stimulated by MgCl2 in the dark; MgCl2 had no effect on the activity of the kinase.

  相似文献   

15.
Roy H  Terenna B 《Plant physiology》1977,60(4):532-537
The products of amino acid incorporation by pea (Pisum sativum L.) leaf soluble fraction polyribosomes in the wheat germ system were examined by two-dimensional electrophoresis and fluorography.  相似文献   

16.
The concentration of ribulose-1,5-bisphosphate carboxylase was measured in the foliage of `Moapa 69,' `Ladak,' and `Vernal' cultivars of alfalfa (Medicago sativa L.) after plants were exposed to 0.25 or 0.30 microliters per liter ozone for 2 hours. The quantity of ribulose-1,5-bisphosphate carboxylase decreased 80%, 68%, and 36% in leaves which did not exhibit ozone symptoms and to undetectable levels, 99% and 79% in symptomatic foliage for each cultivar, respectively.  相似文献   

17.
RubisCO的研究进展   总被引:15,自引:0,他引:15  
1,5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)是调节光合和光呼吸,决定净光合作用的一个关键酶;也是植物可溶性蛋白质中含量最高的蛋白质.该酶广泛存在于植物及一些微生物体内.综述了近年来有关RubisCO的一些研究进展. 包括RubisCO的基本性质、结构与功能、酶基因工程、酶活性调节及其活化酶等.  相似文献   

18.
19.
Electrophoretically homogeneous ribulose-1,5-bisphosphate (RuBP) carboxylase was obtained from autotropically grown Hydrogenomonas eutropha by sedimentation of the 105,000 X g supernatant in a discontinuous sucrose gradient and by ammonium sulfate fractionation followed by another sucrose gradient centrifugation. The molecular weight of the enzyme determined by light scattering was 490,000 +/- 15,000. The enzyme could be dissociated by sodium dodecyl sulfate into three types of subunits, and the molecular weights (+/- 10%) could be measured. There were two species of large subunits, L and L' (molecular weight 56,000 and 52,000, respectively) and one species of small subunits (molecular weight, 15,000). The mole ratio of L to L' was 5:3, and the overall mole ratio of the small to large subunits was 1.08. The simplest quaternary structure of the enzyme is L5L'3S8. The enzyme contained RuBP oxygenase activity as evidenced by the O2-dependent production of phosphoglycolate and 3-phosphoglyceric acid in equimolar quantities from RuBP.  相似文献   

20.
The effects of oxidative stress on the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were studied in isolated chloroplasts from barley (Hordeum vulgare L. cv Angora). Active oxygen (AO) was generated by varying the light intensity, the oxygen concentration, or the addition of herbicides or ADP-FeCl3-ascorbate to the medium. Oxidative treatments stimulated association of Rubisco with the insoluble fraction of chloroplasts and partial proteolysis of the large subunit (LSU). The most prominent degradation product of the LSU of Rubisco showed an apparent molecular mass of 36 kD. The data suggest that an increase in the amount of AO photogenerated by O2 reduction at photosystem I triggers Rubisco degradation. A possible relationship between AO-mediated denaturation of Rubisco and proteolysis of the LSU is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号