首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a number of organic substrates on the autotrophic metabolism of Hydrogenomonas eutropha were examined. Dual substrate (mixotrophic) cultivation in the presence of hydrogen plus either fructose or alanine allowed autotrophic growth to begin immediately after the exhaustion of the organic substrate. On the other hand, the presence of acetate, pyruvate, or glutamate caused a lengthy lag to occur before autotrophic growth commenced. With acetate or pyruvate this lag (plateau) in the dicyclic growth curve was due to the repression of ribulose diphosphate carboxylase (RDPC) synthesis during mixotrophic growth. During heterotrophic growth with glutamate, RDPC was partially repressed; however, during mixotrophic growth, RDPC activity was high. Thus the delay of autotrophic growth was not due to a repression of RDPC by glutamate. The data suggest that glutamate interferes with autotrophic metabolism by repressing the incorporation of inorganic nitrogen. The repression of these vital autotrophic functions by acetate, pyruvate, and glutamate occurred both in the presence and absence of hydrogen, i.e., during both heterotrophic and mixotrophic cultivation. The derepression of the affected systems during the plateau phase of the dicyclic growth curves was demonstrated. Carbon dioxide assimilation by whole cells agreed well with the RDPC activity of extracts from cells grown under similar conditions.  相似文献   

2.
Mixotrophic Growth of Hydrogenomonas eutropha   总被引:1,自引:0,他引:1  
Mixotrophic growth conditions were established by the addition of lactate to cultures of Hydrogenomonas eutropha growing autotrophically in a gaseous environment of H(2), O(2), and CO(2) (6:2:1). The specific growth rate of mixotrophic cultures was double that of the autotrophic cultures, and lactate disappearance paralleled growth. Growth yields in mixotrophic cultures were significantly greater than those in heterotrophic cultures for equal quantities of lactate consumed. The magnitude of the increase in yield was directly proportional to the absolute growth rate at the time of lactate addition to the starting autotrophic culture and to the time under mixotrophic conditions. The specific activities of hydrogenase and ribulose diphosphate carboxylase decreased during mixotrophic growth; the total activities increased somewhat. The results suggested that the complete autotrophic and heterotrophic physiologies functioned simultaneously under mixotrophic contions.  相似文献   

3.
Auxotrophic mutants of Hydrogenomonas eutropha and H. facilis requiring utilizable amino acids were employed to demonstrate the simultaneous utilization of H(2) and an organic substrate for growth. The ratio of the cell yields under dual substrate conditions compared to heterotrophic conditions indicated the relative contributions of the autotrophic and heterotrophic systems to the growth of the organism. Wildtype H. eutropha grown under simultaneous conditions exhibited a dicyclic growth pattern, the first cycle representing either heterotrophic or simultaneous growth and the second cycle representing autotrophic growth. The duration of the changeover period was either very short with no plateau or long with a plateau up to 8 hr, depending upon the organic substrate. The growth rate under simultaneous conditions with some organic substrates was faster than either the autotrophic or heterotrophic rate, but was not the sum of the two rates. The data suggest that, in the presence of both organic and inorganic substrates, heterotrophic metabolism functions normally but autotrophic metabolism is partially repressed.  相似文献   

4.
Ribulose diphosphate carboxylase from autotrophic microorganisms   总被引:15,自引:9,他引:6       下载免费PDF全文
Thiobacillus denitrificans was grown anaerobically with nitrate as an acceptor in both sterile and nonsterile media. Ribulose diphosphate carboxylase was stable throughout the exponential growth phase and declined slowly only after cells reached the stationary phase. Reversible inactivation of the carboxylase occurred in extracts as a result of bicarbonate omission. The enzyme was purified 32-fold with excellent recovery of a preparation which was 50 to 60% pure by the criterion of polyacrylamide gel electrophoresis. This purified preparation catalyzed the fixation of 1.25 mumoles of CO(2) per min per mg of protein at pH 8.1 and 30 C, and the molecular weight of ribulose diphosphate carboxylase was approximately 350,000 daltons. A striking biphasic time course of CO(2) fixation that was independent of protein and ribulose diphosphate concentration was observed. The optimal pH of the enzyme assay was fairly broad, ranging from 7 to 8.2. Kinetic dependence upon bicarbonate, ribulose diphosphate, and Mg(2+) was characterized and indicated that bicarbonate and Mg(2+) must combine with enzyme prior to addition of ribulose diphosphate. Antiserum to ribulose diphosphate carboxylase from Hydrogenomonas eutropha was only slightly inhibitory when added to the enzyme from T. denitrificans, and the mixture did not precipitate. Cyanide (4 x 10(-5)m) gave 61% inhibition of the enzyme from T. denitrificans. Ribulose diphosphate carboxylase in extracts of H. eutropha, H. facilis, Chromatium D, Rhodospirillum rubrum, and Chlorella pyrenoidosa were also inhibited to varying extents by cyanide and antiserum to the H. eutropha enzyme.  相似文献   

5.
Zusammenfassung Hydrogenomonas H 16 oxydierte molekularen Wasserstoff auch noch nach mehreren heterotrophen Passagen mit Glutamat oder Fructose als Substrat. Dagegen ging die Fähigkeit zur Kohlendioxyd-Fixierung schon während der ersten heterotrophen Kultur weitgehend verloren. Dementsprechend ergaben Enzym-Bestimmungen an zellfreien Extrakten eine langsame Abnahme der spezifischen Aktivitäten der löslichen und der partikelgebundenen Hydrogenase, aber eine rasche Abnahme der Aktivität der Ribulose-1,5-diphosphat-Carboxylase während des heterotrophen Wachstums.
Summary Hydrogenomonas H 16 oxidized molecular hydrogen even after several subcultures with glutamate or fructose as substrate. On the contrary, the ability to fix carbon dioxide almost disappeared during the first heterotrophic culture. Corresponding to these results, measurements of enzyme activities in cell-free extracts showed a slow decrease in specific activity of the soluble and the particle bound hydrogenase but a rapid decrease in the activity of ribulose-1.5-diphosphate carboxylase during heterotrophic growth.
  相似文献   

6.
S N Mogel  B A McFadden 《Biochemistry》1989,28(13):5428-5431
Irradiation of ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach in the presence of vanadate at 4 degrees C resulted in rapid loss of carboxylase activity. The inactivation was light and vanadate dependent. When the enzyme was irradiated in the presence of the substrate ribulose 1,5-bisphosphate or an analogue such as fructose 1,6-bisphosphate, the inactivation was greatly reduced. Sodium bicarbonate and phosphate also protected against inactivation. No additional protection was observed in the presence of Mg2+ nor did Mg2+ alone protect. Carboxylase activity could be partially restored by treatment with NaBH4, and the photomodified protein could be tritiated with NaB3H4. Amino acid analysis showed that the tritium had been incorporated into serine. The data suggest that an active-site serine is photooxidized by vanadate to an aldehyde which results in activity loss. Irradiation in the presence of vanadate also resulted in cleavage in the large subunit of the enzyme which was subsequent to inactivation.  相似文献   

7.
Carbon dioxide and oxygen concentrations have a profound effect on the lag period of chemoautotrophically grown Hydrogenomonas eutropha. Minimum lag periods and high growth rates were obtained in shaken flask cultures with a prepared gas mixture containing 70% H(2), 20% O(2), and 10% CO(2). However, excessively long lag periods resulted when the same gas mixture was sparged through the culture. The lag period was shortened in sparged cultures by decreasing both the pO(2) and the pCO(2), indicating that gas medium equilibration had not occurred in shaken cultures. The lag period was completely eliminated at certain concentrations of O(2) and CO(2). The optimum pO(2) was 0.05 atm, but the optimum pCO(2) varied according to the pH of the medium and physiological age of the inoculum. At pH 6.4, the pCO(2) required to obtain immediate growth of exponential, postexponential, and stationary phase inocula at equal specific rates was 0.02, 0.05, and 0.16 atm, respectively. With each 0.3-unit increase in the pH of the medium, a 50% decrease in the CO(2) concentration was needed to permit growth to occur at the same rate. The pCO(2) changes required to compensate for the pH changes of the medium had the net effect of maintaining a constant bicarbonate ion concentration. Initial growth of H. eutropha was therefore indirectly related to pCO(2) and directly dependent upon a constant bicarbonate ion concentration.  相似文献   

8.
Strains I-110 ARS, SR, USDA 136, USDA 137, and AK13 1c of Bradyrhizobium japonicum induced Hup activity when growing heterotrophically in medium with carbon substrate and NH4Cl in the presence of 2% H2 and 2% O2. Hup activity was induced during heterotrophic growth in the presence of carbon substrates, which were assimilated during the time of H2 oxidation. Strains I-110 ARS and SR grown heterotrophically or chemoautotrophically for 3 days had similar rates of H2 oxidation. Similar rates of Hup activity were also observed when cell suspensions were induced for 24 h in heterotrophic or chemoautotrophic growth medium with 1% O2, 10% H2, and 5% CO2 in N2. These results are contrary to the reported repression of Hup activity by carbon substrates in B. japonicum. Bradyrhizobial Hup activity during heterotrophic growth was limited by H2 and O2 and repressed by aerobic conditions, and CO2 addition had no effect. Nitrogenase and ribulosebisphosphate carboxylase activities were not detected in H2-oxidizing cultures of B. japonicum during heterotrophic growth. Immunoblot analysis of cell extracts with antibodies prepared against the 65-kilodalton subunit of uptake hydrogenase indicated that Hup protein synthesis was induced by H2 and repressed under aerobic conditions.  相似文献   

9.
Zusammenfassung Die Hydrogenomonas-Stämme H 1, H 16 und H 20 nutzen als einziges Kohlenhydrat Fructose; chemolithotroph gewachsene Zellen des Stammes H 16 oxydieren diesen Zucker nach einer lag-Phase von 20 min.Die Fructose wird über den Entner-Doudoroff-Weg umgesetzt; während der Adaptation erhöht sich der Gehalt der Zellen an Phosphoglucose-Isomerase, Glucose-6-phosphat-Dehydrogenase und an den für den Entner-Doudoroff-Weg charakteristischen Enzymen.Die Aktivität der Ribulosediphosphat-Carboxylase geht bei der Adaptation an Fructose innerhalb von 2 Std um 75% zurück, sinkt dann aber während mehrerer Fructose-Passagen nur langsam ab. Folglich kann selbst mit Fructose gewachsener Hydrogenomonas H 16 Kohlendioxyd über den Calvin-Cyclus fixieren.
Summary The only carbohydrate utilized by Hydrogenomonas strains H 1, H 16 and H 20 is fructose; chemolithotrophically grown cells of strain H 16 oxidize this sugar following a lag-period of 20 min. Fructose is metabolized via the Entner-Doudoroff-pathway. During the adaptation to fructose, the level of the following enzymes increases in the cells: phosphoglucoseisomerase, glucose-6-phosphate-dehydrogenase and the enzymes characteristic of the Entner-Doudoroff-pathway.During the change from chemolithotrophic to organotrophic growth, with fructose serving as a substrate, the activity of ribulose-diphosphate carboxylase is reduced by 75% within 2 hrs. However, following repeated growth in a fructose medium, this enzyme activity decreases only very slowly. Consequently fructose-grown Hydrogenomonas H 16 is capable of fixing carbon dioxide via the Calvin cycle.
  相似文献   

10.
Two amination-deficient mutants of Hydrogenomonas eutropha, characterized by pH-dependent linear growth on non-amino acid substrates, were investigated to determine the exact nature of the mutation. Glutamate dehydrogenase, the only aminating enzyme found in wild-type cells, was present at similar levels in mutant cells. Phenylalanine and aspartate, which allowed normal growth of the mutants, could transaminate 2-oxoglutarate to glutamate, whereas alanine, which does not support normal growth, could not transfer its amino nitrogen to form glutamate. In H. eutropha, l-alanine is apparently synthesized by beta-decarboxylation of aspartate. Studies with NH(4) (+) ions as the sole nitrogen source demonstrated that growth rates of the mutant strains were dependent on both extracellular pH and NH(4) (+) ion concentration. Comparison of these results revealed that the growth rate of mutant cultures was proportional to the concentration of extracellular NH(3). Wild-type cultures were not dependent on extracellular NH(3) since exponential growth rates did not vary with pH or NH(4) (+) ion concentration. The results suggest that the mutant strains lack an NH(4) (+) ion transport system and consequently are dependent on NH(3) diffusion which does not support optimal amination rates. The significance of the findings for the amino acid metabolism of H. eutropha is discussed.  相似文献   

11.
Two key autotrophic enzyme systems, hydrogenase and ribulose diphosphate carboxylase, were examined in Mycobacterium gordonae and two other chemolithotrophic, scotochromogenic mycobacteria under different cultural conditions. In all three organisms both enzymes were inducible and were produced in significant levels only in the presence of the specific substrate, hydrogen or carbon dioxide. M. gordonae exhibited increased growth rates and yields, indicating mixotrophic growth, in the presence of a number of single organic substrates, including acetate, pyruvate, glucose, fructose, and glycerol. In contrast to other aerobic hydrogen autotrophs, the presence of either acetate or pyruvate did not repress ribulose diphosphate carboxylase, and mixotrophic growth was rapid with these substrates. In the absence of carbon dioxide, growth in glycerol medium under an atmosphere of hydrogen and oxygen was severely inhibited, even with cells preadapted to heterotrophic growth on glycerol. Cyclic adenosine monophosphate was not effective in inducing hydrogenase or carboxylase in heterotrophic, mixotrophic, or hydrogen-inhibited cultures.  相似文献   

12.
Fructose diphosphatase of Hydrogenomonas eutropha H 16, produced during autotrophic growth, was purified 247-fold from extracts of cells. The molecular weight of the enzyme was estimated to be 170,000. The enzyme showed a pH optimum of 8.5 in both crude extracts and purified preparation. The shape of the pH curve was not changed in the presence of ethylenediaminetetraacetic acid. The enzyme required Mg2+ for activity. The MgCl2 saturation curve was sigmoidal and the degree of positive cooperativity increased at lower fructose diphosphate concentrations. Mn2+ can replace Mg2+, but maximal activity was lower than that observed with Mg2+ and the optimal concentration range was narrow. The fructose diphosphate curve was also sigmoidal. The purified enzyme also hydrolyzed sedoheptulose diphosphate but at a much lower rate than fructose diphosphate. The enzyme was not inhibited by adenosine 5′-monophosphate but was inhibited by ribulose 5-phosphate and adenosine 5′-triphosphate. Adenosine 5′-triphosphate did not affect the degree of cooperativity among the sites for fructose diphosphate. The inhibition by adenosine 5′-triphosphate was mixed and by ribulose 5-phosphate was noncompetitive. An attempt was made to correlate the properties of fructose diphosphatase from H. eutropha with its physiological role during autotrophic growth.  相似文献   

13.
The effect of bicarbonate on the growth and product formation by a periodontopathic bacterium, Actinobacillus actinomycetemcomitans, was examined in an anaerobic chemostat culture with fructose as the limiting nutrient. The chemostat cultures were run at dilution rates between 0.04 and 0.25 h-1 and the maximum growth yield (Ymax fructose) was estimated to be 40.3 and 61.7 g dry wt (mol fructose)-1 in the absence and presence of bicarbonate, respectively. The major fermentation products in the absence of bicarbonate were formate, acetate, ethanol and succinate, with small amounts of lactate. The addition of bicarbonate to the medium resulted in a marked decrease in ethanol production and in a significant increase in succinate production. Washed cells possessed activity for the cleavage of formate to CO2 and H2, which seemed to play a role in supplying CO2 for the synthesis of succinate in the absence of bicarbonate. The study of enzyme activities in cell-free extracts suggested that fructose was fermented by the Embden-Meyerhof-Parnas pathway. The values of Ymax ATP and the efficiency of ATP generation (ATP-Eff) during fructose catabolism were estimated and higher values were obtained for the culture in the presence of bicarbonate: 20.2 g dry wt (mol ATP)-1 and 3.0 mol ATP (mol fructose)-1, respectively, versus Ymax ATP = 15.1 and ATP-Eff = 2.7 in the absence of bicarbonate.  相似文献   

14.
Alcaligenes eutrophus did not form the key enzymes of autotrophic metabolism, the soluble and particulate hydrogenases and ribulosebisphosphate carboxylase (RuBPC), during heterotrophic growth on succinate in batch cultures. During succinate-limited growth in a chemostat, high activities of both hydrogenases were observed. With decreasing dilution rate (D) the steady-state hydrogenase activity (H) followed first-order kinetics, expressed as follows: H = Hmax .e-alpha.D. An identical correlation was observed when autotrophic growth in a chemostat was limited by molecular hydrogen. During autotrophic growth under oxygen or carbon dioxide limitation, the activity if the soluble hydrogenase was low. These data suggested that hydrogenase formation depended on the availability of reducing equivalents to the cells. RuBPC activities were not correlated with the hydrogenase activities. During succinate-limited growth, RuBPC appeared at intermediate activities. During autotrophic growth in a carbon dioxide-limited chemostat, RuBPC was highly derepressed. RuBPC activity was not detected in cells that suffered from energy limitation with a surplus of carbon, as in a heterotrophic oxygen-limited chemostat, nor was it detected in cells limited in carbon and energy, as in the case of complete exhaustion of a heterotrophic substrate. From these data I concluded that RuBPC formation in A. eutrophus depends on two conditions, namely, carbon starvation and an excess of reducing equivalents.  相似文献   

15.
Strain H117 was isolated from the Tang Yu reservoir. Based on the phylogenetic characteristics, strain H117, which was identified as Pseudomonas sp. strain H117, had the capability to utilize bicarbonate and sodium acetate as a carbon source under anaerobic conditions. Furthermore, the strain could grow on both autotrophic and heterotrophic media, and could perform both autotrophic and heterotrophic denitrification in the medium. Response surface methodology analysis demonstrated that the maximum degradation ratio of nitrate-occurred under the following conditions in the autotrophic medium: initial pH of 6.00, C/N ratio of 4.68 and temperature of 31.33°C. The maximum degradation ratio of nitrate occurred under the following conditions in the heterotrophic medium: initial pH of 6.16, C/N ratio of 8.23 and temperature of 28.48°C. Finally, the denitrification performance of strain H117 was evaluated under the optimum conditions. These results suggest that strain H117 has potential applications for the bioremediation of polluted groundwater.  相似文献   

16.
Zusammenfassung Der Tyrosinbedarf von tyrosinbedürftigen Mutanten von Hydrogenomonas eutropha (Alcaligenes eutrophus) Stamm H 16 (ATCC 17699) läßt sich außer durch l-Tyrosin auch durch l-Phenylalanin befriedigen.Suspensionen intakter Wildtypzellen setzen Phenylalanin zu Tyrosin um und scheiden es in die Nährlösung aus. Da Tyrosin mit etwa der gleichen Rate umgesetzt wird, kommt es zu einer nur vorübergehenden Akkumulation.Durch zellfreie Extrakte wird Phenylalanin in Gegenwart von NAD(P)H2 und Sauerstoff unter Bildung von Tyrosin hydroxyliert. Die Anfangsrate beträgt 20 E/g Protein. Tyrosin wird mit etwa der gleichen Rate abgebaut. Im Rohextrakt kommt es nach einer anfänglichen Akkumulation von Tyrosin (2–3 mM) zur Einstellung einer steady state-Konzentration, die unter 1 mM liegt. Die Phenylalanin-Hydroxylase benötigt außer den genannten Komponenten noch wenigstens einen dialysierbaren, durch Chromatographie an Sephadex-G 25 abtrennbaren Cofaktor.Phenylalanin-Hydroxylase wird in Stamm H 16 durch l-Phenylalanin induziert, nicht durch l-Tyrosin, Phenylpyruvat, Hydroxyphenylpyruvat oder l-Tryptophan. Phenylalanin wirkt nur induzierend, wenn es der Nährlösung in Substratkonzentrationen (0,2%) beigefügt wird, nicht hingegen in Supplinkonzentrationen (20 g/ml).Phenylalanin-Hydroxylase ließ sich nur in den Stämmen nachweisen, die auf Phenylalanin als C- und Energiequelle wachsen (Hydrogenomonas eutropha H 16, Pseudomonas facilis, Stamm 12 X), nicht in einigen anderen geprüften Stämmen.
Hydroxylation of phenylalanine by Hydrogenomonas eutropha H 16
Summary The tyrosine requirement of tyrosine-dependent mutants of Hydrogenomonas eutropha (Alcaligenes eutrophus) strain H 16 (ATCC 17699) can be satisfied by l-tyrosine as well as by l-phenylalanine.Tyrosine is formed from l-phenylalanine by suspensions of intact wild type cells and is excreted into the medium. It is only transiently accumulated in the medium since it is further metabolized by the cells at a rate comparable to that of phenylalanine.Phenylalanine is converted to tyrosine by cell-free extracts in the presence of NAD(P)H2 and oxygen; the initial rate of tyrosine formation is 20 units per g protein. Tyrosine is degraded at an approximately equal rate. After the addition of l-phenylalanine to the crude extract tyrosine is formed and accumulated up to a 2–3 mM concentration and reaches a steady state concentration of less than 1 mM tyrosine. In addition to the components mentioned, the phenylalanine hydroxylase reaction requires at least one dialysable cofactor which has been separated by chromatography on sephadex-G 25.In strain H 16 phenylalanine hydroxylase is induced by l-phenylalanine; it is not induced by l-tyrosine, phenylpyruvate, hydroxyphenylpyruvate or l-tryptophan. Induction occurs only when phenylalanine is added to the growth medium in substrate concentrations (e.g. 0.2%); growth factor concentrations (20 g/ml) are not effective.Phenylalanine hydroxylase has been found only in those strains which are able to utilize phenylalanine as a carbon and energy source for growth: H. eutropha H 16, Pseudomonas facilis, strain 12X.
  相似文献   

17.
Alcaligenes eutrophus formed ribulosebisphosphate carboxylase (RuBPCase; EC 4.1.1.39) when grown on fructose. Addition of sodium fluoride (NaF) to fructose minimal medium resulted in a slightly decreased growth rate and a rapid fivefold increase in RuBPCase specific activity. With citrate, a glucogenic carbon source, RuBPCase was also formed, However, addition of NaF to cells growing on citrate resulted in a 50% decrease in RuBPCase specific activity. Among the enzymes of fructose catabolism, NaF (10 mM) inhibited enolase in vitro by 98% and gluconate 6-phosphate dehydratase by 87%. Inhibition of the dehydratase by NaF was insignificant in vivo, as determined with a mutant defective in phosphoglycerate mutase activity. Growth of this mutant on fructose was not inhibited by NaF, and only a minor increase in RuBPCase activity was observed. From these results, we concluded that the product of the enolase reaction, phosphoenolpyruvate, played a role in RuBPCase formation. Addition of H2 or formate to the wild type growing on fructose or citrate did not affect the growth rate but resulted in rapid formation of RuBPCase activity. Mutants impaired in H2 metabolism formed RuBPCase at a low rate during growth on fructose plus H2 but at a high rate on formate. Apparently, additional reductant from H2 or formate metabolism induced RuBPCase formation in A. eutrophus.  相似文献   

18.
Two mutants of the facultative autotroph Hydrogenomonas eutropha were isolated by using a modified penicillin selection method. The mutation involved was unusual in that its effect on cellular growth was conditional with regard to extracellular pH and the type of substrate employed. Growth of both mutants was abnormal under autotrophic conditions and during heterotrophic cultivation in the presence of organic substrates which lacked an amino group. Abnormal growth was characterized by linear growth rates which were low at pH 6.0 and moderate at pH 7.2. In contrast, growth of the mutants was normal on most amino acids. Those substrates yielding abnormal growth were oxidized at normal rates by the mutants, indicating the mutation did not impair their uptake or metabolism. The data suggest that the mutants are defective in their ability to assimilate inorganic nitrogen into organic forms, and this defect is strongly influenced by pH.  相似文献   

19.
The facultatively chemolithoautotrophic hydrogen-oxidizing bacteria Alcaligenes eutrophus and Alcaligenes hydrogenophilus partially derepressed the formation of phosphoribulokinase and ribulosebisphosphate carboxylase during heterotrophic growth on fructose or gluconate. We examined whether the indigenous magaplasmids in these bacteria that encode the ability to oxidize hydrogen affected this derepression. The results suggest an involvement of the plasmids in the derepression for the following reasons: (i) wild-type strains, except A. eutrophus TF93, exhibited the derepressible phenotype; (ii) plasmid-cured mutants formed the enzymes with formate as autotrophic growth substrate but did not derepress their formation during heterotrophic growth; (iii) the phenotype of the wild type was restored by transfer of the plasmids into plasmid-cured mutants. Plasmid pHG2 from strain TF93 differed from the other wild-type plasmids by conferring a non-derepressible phenotype onto the harboring strain. Mutants of A. eutrophus H16 carrying deletions in plasmid pHG1 showed a similar phenotype as that of the plasmid-cured mutants. We concluded that the plasmids from the various strains studied encode a regulatory ability to derepress phosphoribulokinase and ribulosebisphosphate carboxylase under heterotrophic growth conditions.Abbreviations PRK phosphoribulokinase - RuBPC ribulosebisphosphate carboxylase - Hox ability to oxidize hydrogen - Cfx ability to fix carbon dioxide autotrophically Dedicated to Prof. Dr. H. G. Schlegel on the occasion of his 60th birthday  相似文献   

20.
1. In epididymal adipose tissue synthesizing fatty acids from fructose in vitro, addition of insulin led to a moderate increase in fructose uptake, to a considerable increase in the flow of fructose carbon atoms to fatty acid, to a decrease in the steady-state concentration of lactate and pyruvate in the medium, and to net uptake of lactate and pyruvate from the medium. It is concluded that insulin accelerates a step in the span pyruvate-->fatty acid. 2. Mitochondria prepared from fat-cells exposed to insulin put out more citrate than non-insulin-treated controls under conditions where the oxaloacetate moiety of citrate was formed from pyruvate by pyruvate carboxylase and under conditions where it was formed from malate. This suggested that insulin treatment of fat-cells led to persistent activation of pyruvate dehydrogenase. 3. Insulin treatment of epididymal fat-pads in vitro increased the activity of pyruvate dehydrogenase measured in extracts of the tissue even in the absence of added substrate; the activities of pyruvate carboxylase, citrate synthase, glutamate dehydrogenase, acetyl-CoA carboxylase, NADP-malate dehydrogenase and NAD-malate dehydrogenase were not changed by insulin. 4. The effect of insulin on pyruvate dehydrogenase activity was inhibited by adrenaline, adrenocorticotrophic hormone and dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate). The effect of insulin was not reproduced by prostaglandin E(1), which like insulin may lower the tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate) and inhibit lipolysis. 5. Adipose tissue pyruvate dehydrogenase in extracts of mitochondria is almost totally inactivated by incubation with ATP and can then be reactivated by incubation with 10mm-Mg(2+). In this respect its properties are similar to that of pyruvate dehydrogenase from heart and kidney where evidence has been given that inactivation and activation are catalysed by an ATP-dependent kinase and a Mg(2+)-dependent phosphatase. Evidence is given that insulin may act by increasing the proportion of active (dephosphorylated) pyruvate dehydrogenase. 6. Cyclic AMP could not be shown to influence the activity of pyruvate dehydrogenase in mitochondria under various conditions of incubation. 7. These results are discussed in relation to the control of fatty acid synthesis in adipose tissue and the role of cyclic AMP in mediating the effects of insulin on pyruvate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号