首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid and cholesterol contents of tissue membranes are the determinants of membrane stability and functionality. This study was designed to evaluate the influence of a high monounsaturated fatty acid diet on the fatty acid composition of rat liver microsomes and on their cholesterol and lipid phosphorus content. Weanling animals were fed for 5 weeks with high fat diets containing olive oil or corn oil. Saturated fatty acids were increased and oleic acid decreased in microsomal total phospholipids and in the three major phosphoglycerides, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI), of rats fed corn oil as compared to the olive oil group. The percentage of linoleic acid was higher in the corn oil group, but only for total phospholipids and PC. Linoleic and alpha-linolenic metabolites were significantly increased in total phospholipids of olive oil-fed animals with respect to those fed corn oil. These changes were responsible for the low unsaturation index found in microsomal phospholipids of the corn oil group. The diet did not affect the microsome cholesterol or the lipid phosphorus content. These results show that, in olive oil-fed rats, the cholesterol content and the degree of unsaturation of liver microsomes was similar to that observed in weanling animals; this probably suggests an adequate maintenance of functionality of membranes in olive oil-fed animals.  相似文献   

2.
Male Sprague Dawley rats were fed a butter-enriched diet (50% fat) for 2 weeks and then supplemented orally with either 90 mg of ethyl arachidonate or ethyl linoleate daily for 2 weeks. For comparative reasons, one group of animals was fed standard laboratory rat chow for 4 weeks. Aortic prostacyclin (PGI2) production, platelet aggregation and thromboxane A2 (TXA2) production and plasma and aortic phospholipid (PL) fatty acids were measured. When compared to butter-fed rats, aortic PGI2 production, collagen-induced platelet aggregation and TXA2 production were significantly increased in rats supplemented with ethyl arachidonate to levels similar to those seen in chow-fed rats. Ethyl linoleate supplementation also tended to increase aortic PGI2 production, collagen-induced platelet aggregation and TXA2, but not to the same extent. These changes were accompanied by increases in the level of arachidonic acid and linoleic acid in aortic and plasma PL and a decrease in the level of eicosapentaenoic acid (EPA) and docsahexaenoic acid (DHA). These data indicate that supplementation with small doses of preformed arachidonic acid was more effective than supplementation with its precursor, linoleic acid, in reversing the effects on prostanoid production and phospholipid fatty acid composition in rats fed diets enriched with butter.  相似文献   

3.
The effect of the degree of dietary fat saturation on the hepatic expression of apolipoprotein A-I mRNA was studied in male rats. Animals were maintained for two months on a high fat diet (40% w/w) containing 0.1% cholesterol. Two groups of control animals received either chow diet or chow plus 0.1% cholesterol, while experimental groups received their fat supplement as coconut, corn or olive oil respectively. Dietary cholesterol did not affect apolipoprotein A-I mRNA levels as compared to control animals. Corn oil fed animals had significantly higher levels of hepatic apolipoprotein A-I mRNA than those receiving cholesterol, or coconut oil plus cholesterol. Olive oil fed animals had significantly higher levels of hepatic apolipoprotein A-I mRNA when compared to all other dietary groups. Our data indicate that monounsaturated fatty acids supplied as olive oil play a major role in regulating the hepatic expression of apolipoprotein A-I in male rats.  相似文献   

4.
Diets with a higher proportion of polyunsaturated fatty acids (i.e., linoleic acid) have decreased iron absorption and utilization compared with diets containing a higher proportion of the saturated fatty acid stearic acid (e.g., beef tallow). However, less is known regarding the influence of other polyunsaturated or monounsaturated fatty acids, along with higher dietary iron, on iron absorption and utilization. The present study was conducted to compare the effects of dietary fat sources known to vary in (n-3), (n-6), and (n-9) fatty acids on iron utilization and liver mineral concentrations. Male weanling rats were fed a diet containing 10, 35, or 100 μg/g iron in combination with saffower oil, flaxseed oil, olive oil, or beef tallow for 8 wk. Indicators of iron status, iron utilization, and liver iron concentrations were unaffected by an interaction between the fat source and iron concentration. Plasma copper was the only variable affected by an interaction between the fat source and dietary iron. Findings of this study demonstrate that flaxseed oil and olive oil may alter tissue minerals and affect iron utilization. Further studies should be conducted to establish the effect of varying (n-3), (n-6), and (n-9) fatty acids on trace mineral status and iron utilization. Data were presented in part at Experimental Biology 2000 as a poster session. A. D. Shotton and E. A. Droke, Dietary fat and iron modify immune function, FASEB J. 14, A239 (2000).  相似文献   

5.
Effect of ingestion of unsaturated fat on lipolytic activity of rat tissues   总被引:1,自引:0,他引:1  
Homogenates of some rat tissues, incubated in Tris-maleate buffer containing bovine serum albumin, olive oil emulsion, heparin, and serum, liberated free fatty acids. The total lipolytic activity in tissues of rats fed a low fat, 20% lard, or 20% corn oil diet for 6 wk was measured. Similar activities were found in all the livers, but there was a significant increase in the total lipolytic activity of the mucosa, epididymal fat, and mesenteric tissues after ingestion of an unsaturated fat diet as compared with that containing a more saturated fat. From measurements of the lipolytic activity in the presence of 1 M NaCl or 0.2 M NaF and in the absence and presence of heparin and serum, the conclusion is drawn that more lipoprotein lipase was present in adipose tissue of rats on unsaturated fat diets. An increase in available lipoprotein lipase after unsaturated fat diets may aid in clearing lipids from the blood of these rats and thus in producing the lower blood lipid levels obtained.  相似文献   

6.
We studied the effect of dietary fat type, varying in polyunsaturated-to-saturated fatty acid ratios (P/S), on development of metabolic syndrome. C57Bl/6J mice were fed purified high-fat diets (45E% fat) containing palm oil (HF-PO; P/S 0.4), olive oil (HF-OO; P/S 1.1), or safflower oil (HF-SO; P/S 7.8) for 8 wk. A low-fat palm oil diet (LF-PO; 10E% fat) was used as a reference. Additionally, we analyzed diet-induced changes in gut microbiota composition and mucosal gene expression. The HF-PO diet induced a higher body weight gain and liver triglyceride content compared with the HF-OO, HF-SO, or LF-PO diet. In the intestine, the HF-PO diet reduced microbial diversity and increased the Firmicutes-to-Bacteroidetes ratio. Although this fits a typical obesity profile, our data clearly indicate that an overflow of the HF-PO diet to the distal intestine, rather than obesity itself, is the main trigger for these gut microbiota changes. A HF-PO diet-induced elevation of lipid metabolism-related genes in the distal small intestine confirmed the overflow of palm oil to the distal intestine. Some of these lipid metabolism-related genes were previously already associated with the metabolic syndrome. In conclusion, our data indicate that saturated fat (HF-PO) has a more stimulatory effect on weight gain and hepatic lipid accumulation than unsaturated fat (HF-OO and HF-SO). The overflow of fat to the distal intestine on the HF-PO diet induced changes in gut microbiota composition and mucosal gene expression. We speculate that both are directly or indirectly contributive to the saturated fat-induced development of obesity and hepatic steatosis.  相似文献   

7.
The effects of dietary n-6 polyunsaturated fatty acids and replacement with saturated fat or fish oil on the prostaglandin outflow from perfused mesenteric vasculature in rats were studied. Seventy-two weanling male rats were fed ad libitum a semi-synthetic diet supplemented with 10% by weight of oil, composed wholly of n-6 fatty acid-rich evening primrose oil, or replaced partly or completely (25, 50, 75 or 100%) by n-6 fatty acid-deficient fish oil or hydrogenated coconut oil for 8 weeks. The outflows of 6-keto-PGF1 alpha, thromboxane B2, and prostaglandin E from the perfused mesenteric vasculature were measured at 60 min-time point after starting the perfusion. In general, the release of prostanoids from the mesenteric vasculature was significantly reduced in rats fed a diet in which evening primrose oil was partly or completely replaced by either hydrogenated coconut or fish oil. This was probably due to the insufficient conversion of linoleic acid to arachidonic acid. The extent of reduction was greater in fish oil-fed than in hydrogenated coconut oil-fed rats, while the levels of arachidonic acid in aortic phospholipids were similar between these two groups. This result implies that the greater reduction of prostaglandin synthesis in rats fed fish oil was due to the inhibitory effect of eicosapentaenoic and docosahexaenoic acids in fish oil on the conversion of arachidonate to eicosanoids.  相似文献   

8.
Rats fed dietary fats rich in 20- and 22-carbon polyenoic fatty acids deposit less fat and expend more energy at rest than rats fed other types of fats. We hypothesized that this decrease in energetic efficiency was the product of: (a) enhanced peroxisomal fatty acid oxidation and/or (b) the up-regulation of genes encoding proteins that were involved with enhanced heat production, i.e. mitochondrial uncoupling proteins (UCP-2, UCP-3) and peroxisomal fatty acid oxidation proteins. Two groups of male Fisher 344 rats 3-4 week old (n=5 per group) were pair fed for 6 weeks a diet containing 40% of its energy fat derived from either fish oil or corn oil. Epididymal fat pads from rats fed the fish oil diet weighed 25% (P < 0.05) less than those found in rats fed corn oil. The decrease in fat deposition associated with fish oil ingestion was accompanied by a significant increase in the abundance of skeletal muscle UCP-3 mRNA. The level of UCP-2 mRNA skeletal muscle was unaffected by the type of dietary oil, but the abundance of UCP-2 mRNA in the liver and heart were significantly lower (P < 0.05) in rats fed fish oil than in rats fed corn oil. In addition to inducing UCP-3 expression, dietary fish oil induced peroxisomal acyl-CoA oxidase gene expression 2-3 fold in liver, skeletal muscle and heart. These data support the hypothesis that dietary fish oil reduces fat deposition by increasing the expression of mitochondrial uncoupling proteins and increasing fatty acid oxidation by the less efficient peroxisomal pathway.  相似文献   

9.
Dietary fats affect macrophage-mediated cytotoxicity towards tumour cells   总被引:2,自引:0,他引:2  
In the present study, the effects of feeding mice diets of different fatty acid compositions on the production of TNF-alpha and nitric oxide by lipopolysaccharide-stimulated peritoneal macrophages and on macrophage-mediated cytotoxicity towards L929 and P815 cells were investigated. C57Bl6 mice were fed on a low-fat (LF) diet or on high-fat diets (21% fat by weight), which included coconut oil (CO), olive oil (OO), safflower oil (SO) or fish oil (FO) as the principal fat source. The fatty acid composition of the macrophages was markedly influenced by that of the diet fed. Lipopolysaccharide (LPS)-stimulated macrophages from FO-fed mice showed significantly lower production (up to 80%) of PGE2 than those from mice fed on each of the other diets. There was a significant positive linear correlation between the proportion of arachidonic acid in macrophage lipids and the ability of macrophages, to produce PGE2. Lipopolysaccharide-stimulated TNF-alpha production by macrophages decreased with increasing unsaturated fatty acid content of the diet (i.e. FO < SO < OO < CO < LF). Macrophages from FO-fed mice showed significantly lower production of TNF-alpha than those from mice fed on each of the other diets. Nitrite production was highest for LPS-stimulated macrophages from mice fed on the LF diet. Macrophages from FO-fed mice showed significantly higher production of nitrite than those from mice fed on the OO and SO diets. Compared with feeding the LF diet, feeding the CO, OO or SO diets significantly decreased macrophage- mediated killing of P815 cells (killed by nitric oxide). Fish oil feeding did not alter killing of P815 cells by macrophages, compared with feeding the LF diet; killing of P815 cells was greater after FO feeding than after feeding the other high fat diets. Compared with feeding the LF diet, feeding the OO or SO diets significantly decreased macrophage-mediated killing of L929 cells (killed by TNF). Coconut oil or FO feeding did not alter killing of L929 cells by macrophages, compared with feeding the LF diet. It is concluded that the type of fat in the diet affects macrophage composition and alters the ability of macrophages to produce cytotoxic and immunoregulatory mediators and to kill target tumour cells.  相似文献   

10.
The investigations previously carried out by Grataroli and colleagues (1) to elucidate the relationships between dietary fatty acids, lipid composition, prostaglandin E2 production and phospholipase A2 activity in the rat gastric mucosa are, here, extended. In the present investigations, fatty acid and prostaglandin E2 catabolizing enzymes were assayed in gastric mucosa from rats fed either a low fat diet (corn oil: 4.4% w/w) (referred as control group), a corn oil-enriched diet (17%) or a salmon oil-enriched diet (12.5%) supplemented with corn oil (4.5%) (referred as groups of treated animals) for eight weeks. Peroxisomal fatty acyl-CoA beta-oxidation was induced in the treated animals whereas the activities of catalase and mitochondrial tyramine oxidase were increased and normal, respectively. Mitochondrial acyl-CoA dehydrogenations occurred at higher rates and carnitine acyltransferase activities were enhanced. In addition, the induction of peroxisomal but not mitochondrial prostaglandoyl-E2-CoA beta-oxidation could be demonstrated. Induction of peroxisomal oxidation of fatty acids and prostaglandins is suggested to contribute to the decrease of prostaglandin E2 production in the treated animals, especially those receiving the salmon oil diet, that the above mentioned authors originally reported.  相似文献   

11.
To examine the role of metabolic signals for ventricular myosin expression and activity of the sarcoplasmic reticulum Ca2+ pump, Wistar rats were treated for 7-8 wk with 5 or 50 mg/kg etomoxir, which inhibits fatty acid utilization. The proportion of myosin V1 was increased (P less than 0.05) with 50 mg/kg etomoxir (75 +/- 5% vs. 62 +/- 6% of control rats), whereas both doses increased the rate of Ca2+ uptake. A carbohydrate-rich fat-free diet or 8% sucrose drinking solutions, however, had no effect on myosin and sarcoplasmic reticulum. When rats were fed diets with an increased content (10 or 20%) of sunflower oil, the calorie intake and myosin V1 increased (56 +/- 8 or 64 +/- 8% vs. 44 +/- 6% of control rats). Isocaloric 10% fat diets of varying fatty acid composition (coconut fat, olive oil, or mackerel oil) also induced a higher calorie intake and increased V1 (64 +/- 6, 60 +/- 9, or 65 +/- 8% for the respective oils vs. 44 +/- 6% of control rats) but did not significantly increase rate of Ca2+ uptake. We concluded that calorie-rich diets changed the myosin expression not by affecting the ratio of fatty acid to glucose utilization but via the increased calorie intake.  相似文献   

12.
13.
14.
This study investigated the release of prostacyclin (PGI2) and thromboxane A2 (TXA2) from the aortic walls of various experimental hypertensive rats, e.g. spontaneously hypertensive rats (SHR), Dahl salt-sensitive (Dahl S) rats, deoxycorticosterone (DOCA)-salt hypertensive rats and renovascular (2-kidney, 1-clip (2K1C) and 1-kidney, 1-clip (1K1C] hypertensive rats. The PGI2 generation was increased significantly in these hypertensive models, irrespective of the hypertensive mechanisms, when they developed established hypertension. Dahl S rats, having an impaired PGI2 production on a low salt diet, restored PGI2 generating capacity to the control level of Dahl salt-resistant rats when they were fed a high salt diet and developed salt-induced hypertension. On the other hand, the TXA2 generation in the vascular walls was enhanced particularly in rat models for genetic hypertension, and this system was unaltered in the models for secondary hypertension, e.g. DOCA-salt and renovascular hypertension. Thus, it is suggested that the elevation of blood pressure is associated with an increase in vascular PGI2 production, and that the increased vascular TXA2 production is a characteristic feature of genetic hypertension.  相似文献   

15.
This study was conducted to determine whether dietary ganglioside (GG) increases the content of ether phospholipids (EPL) in intestinal mucosa. Weanling Sprague-Dawley rats were fed a semipurified diet consisting of 20% fat as a control diet. Two experimental diets were formulated by adding either 0.1% (w/w fat) GGs (GG diet) or 1.0% (w/w fat) sphingomyelin (SM diet) to the control diet. Fatty acid methyl esters from the alkenylacyl, alkylacyl and diacyl subclasses of phospholipids were measured to determine total and molecular percentage of EPL comprising the choline phosphoglyceride (CPG) and ethanolamine phosphoglyceride (EPG) fraction. Animals fed the GG diet significantly increased total EPL content both in CPG (by 36%) and in EPG (by 66%), and the molecular percentage of EPL in CPG (by 76%) and in EPG (by 59%) compared to animals fed the control diet. Dietary GG-induced increase in EPL resulted in a higher level of polyunsaturated fatty acids (PUFA) specifically in 20:4n-6 and 22:6n-3 compared to control animals, leading to a decrease in the ratio of saturated fatty acids (SFA) to PUFA both in CPG and in EPG. Feeding animals the SM diet showed a higher level of EPL than control animals with a concomitant increase in 22:6n-3 in EPL. The present data demonstrate that dietary GG increases the content and composition of EPL containing PUFA in the weanling rat intestine.  相似文献   

16.
The investigations previously carried out by Grataroli and colleagues (1) to elucidate the relationships between dietary fatty acids, lipid composition, prostaglandin E2 production and phospholipase A2 activity in the rat gastric mucosa are, here, extended. In the present investigations, fatty acid and prostaglandin E2 catabolizing enzymes were assayed in gastric mucosa from rats fed either a low fat diet (corn oil: 4.4% w/w) (referred as control group), a corn oil-enriched diet (17%) or a salmon oil-enriched diet (12.5%) supplemented with corn oil (4.5%) (referred as groups of treated animals) for eight weeks.Peroxisomal fatty acyl-CoA β-oxidation was induced in the treated animals whereas the activities of catalase and mitochondrial tyramine oxidase were increased and normal, respectively. Mitochondrial acyl-CoA dehydrogenations occured at higher rates and carnitine acyltransferase activities were enhanced. In addition, the induction of peroxisomal but not mitochondrial prostaglandoyl-E2-CoA β-oxidation could be demonstrated. Induction of peroxisomal oxidation of fatty acids and prostaglandins is suggested to contribute to the decrease of prostaglandin E2 production in the treated animals, especially those receiving the salmon oil diet, that the above mentioned authors originally reported.  相似文献   

17.
Male weanling rats were fed diets containing 20% (w/w) fat differing in fatty acid composition for 24 days. Synaptic plasma membranes were isolated from the brain and the fatty acid composition of phosphatidylethanolamine and phosphatidylcholine was determined. In vitro assays of phosphatidylethanolamine methyl-transferase activity were performed on fresh membrane samples to assess effect of dietary fat on the rate of phosphatidylethanolamine methylation for phosphatidylcholine synthesis via the phosphatidylethanolamine methyltransferase pathway. Dietary level of n-6 and ratio of n-6 to n-3 fatty acids influenced membrane phospholipid fatty acid composition and activity of the lipid-dependent phosphatidylethanolamine methyltransferase pathway. Rats fed a diet rich in n-6 fatty acids produced a high ratio of n-6/n-3 fatty acids in synaptosomal membrane phosphatidylethanolamine, and elevated rates of methylation of phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine methyltransferases, suggesting that the pathway exhibits substrate selectivity for individual species of phosphatidylethanolamine containing long-chain homologues of dietary n-6 and n-3 fatty acids (20:4(n-6), 22:4(n-6), 22:5(n-6) and 22:6(n-3). It may be concluded that diet alters the membrane content of n-6, n-3 and monounsaturated fatty acids, and that change in phosphatidylethanolamine species available for methylation to phosphatidylcholine alters the rate of product synthesis in vivo by the phosphatidylethanolamine methyltransferase pathway.  相似文献   

18.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

19.
The effects of different lipid supplements on endogenous and exogenous production of eicosanoids were investigated in the rat following a 12-month pre-feeding period. The urinary excretion of tetranorprostanemonoic (TPM) and tetranorprostanedioic (TPD) acids was measured as an index of endogenous production whilst myocardial release of PGI2 and TXA2 was estimated under in vitro conditions. Compared to the reference group, n-3 PUFA rich tuna fish oil (TFO) fed rats displayed a near doubling of endogenous (TPM + TPD) synthesis; however, myocardial production was reduced by 32% (PGI2) and 55% (TXA2). Sheep fat supplementation also caused a 62% rise in urinary tetranor metabolites but in contrast to TFO feeding, myocardial production in vitro also showed a significant increase (P less than 0.05). Considerable changes in PUFA profile of plasma, heart and kidney occurred as a result of dietary lipid treatment and in addition a high tissue specificity was also noted with regard to the incorporation and conversion of dietary n-3 PUFA. For example, the heart showed a low EPA (1.2%) and high DHA (28.0%), whereas their proportions in the kidney were near equal (6-7%). As only the TFO diet exerted a significant effect on the proportion of AA, the changes in eicosanoid production cannot be fully explained on the basis of precursor/inhibitor availability. The results probably reflect the complex interactions between fatty acid substrates, release mechanisms and biosynthetic enzymes.  相似文献   

20.
We measured the interactive effects of dietary cholesterol and fat on the regulation of hepatic acyl-CoA:cholesterol acyltransferase (ACAT) activity and its relationship to hepatic microsomal lipid composition in guinea pigs fed 15 g/100 g (w/w) fat diets (corn oil, olive oil, or lard) with 0.01, 0.08, 0.17, or 0.33 g/100 g (w/w) added cholesterol. Guinea pigs exhibited a dose dependent increase in hepatic microsomal ACAT activity, with increasing levels of cholesterol intake (P < 0.001) in all dietary fat groups. Animals fed monounsaturated olive oil had the highest hepatic ACAT activity with the exception of the 0.33 g/100 g cholesterol diet (P < 0.001). There were no differences in ACAT activity with intake of polyunsaturated corn oil or saturated lard. Dietary cholesterol resulted in increased microsomal free cholesterol (FC) concentrations in a dose dependent manner but had no effects on microsomal phosphatidylcholine (PC) concentrations. Guinea pigs fed olive oil generally had the highest microsomal FC/PC molar ratios, and hepatic ACAT activities correlated significantly with this parameter. After modification of the lipid compositions of the microsomes from guinea pigs fed the 12 test diets with FC/PC liposome treatment, microsomal ACAT activities remained significantly related to the microsomal FC/PC molar ratios, and dietary fat type did not affect this correlation. Our findings do not support the hypothesis that the stimulation of hepatic ACAT activity with cholesterol intake is enhanced by polyunsaturated fat intake. The data demonstrate that although dietary fat type and cholesterol amount have differential effects on hepatic ACAT activity, substrate availability, expressed as microsomal FC/PC molar ratio, is a major regulator of hepatic microsomal ACAT activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号