首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The occurrence of substance P (SP) in the neuroendocrine population of human lungs was investigated by immunohistochemical methods. All individuals studied (n = 16) had SP-like immunoreactive cells, being more numerous in lungs of fetuses and newborn infants than in adults. These cells, both solitary and forming neuroepithelial bodies, were found at all levels of the respiratory mucosa. Solitary neuroendocrine cells and neuroepithelial bodies were found in the bronchial and bronchiolar mucosa, while at the alveolar level neuroepithelial bodies were also seen. A more intense SP-like immunoreactivity was found in the basal cytoplasm of these cells. Occasionally they show cytoplasmic prolongations which interdigitate with neighboring epithelial cells. These facts suggest that SP-like immunoreactive cells may have a paracrine or local secretion function, acting over surrounding epithelial cells or structures situated in the lamina propria. The evidence of great numbers of SP-like immunoreactive neuroendocrine cells in fetuses and infants might be the expression of a functional role of SP in lung development.  相似文献   

2.
N.S. Track  E. Cutz 《Life sciences》1982,30(18):1553-1556
Bombesin-like immunoreactivity (BLI) was detected by a specific radioimmunoassay in extracts of 15 human lungs from fetuses, neonates, infants and children. A higher concentration of lung BLI was found in the fetal/neonatal group (2053.2 ± 316.3 ng bombesin/g protein, n=6) compared to the infant/children group (416.3 ± 64.3 ng/g, n=9). The peaking of BLI in lungs during the fetal/neonatal period suggests an important function for this peptide in intrauterine life and neonatal adaptation.  相似文献   

3.
Chintagari NR  Jin N  Gao L  Wang Y  Xi D  Liu L 《PloS one》2010,5(11):e14171
Fluid accumulation is critical for lung distension and normal development. The multi-subunit γ-amino butyric acid type A receptors (GABAA) mainly act by mediating chloride ion (Cl-) fluxes. Since fetal lung actively secretes Cl--rich fluid, we investigated the role of GABAA receptors in fetal lung development. The physiological ligand, GABA, and its synthesizing enzyme, glutamic acid decarboxylase, were predominantly localized to saccular epithelium. To examine the effect of activating GABAA receptors in fetal lung development in vivo, timed-pregnant rats of day 18 gestation underwent an in utero surgery for the administration of GABAA receptor modulators into the fetuses. The fetal lungs were isolated on day 21 of gestation and analyzed for changes in fetal lung development. Fetuses injected with GABA had a significantly higher body weight and lung weight when compared to phosphate-buffered saline (control)-injected fetuses. GABA-injected fetal lungs had a higher number of saccules than the control. GABA increased the number of alveolar epithelial type II cells as indicated by surfactant protein C-positive cells. However, GABA decreased the number of α-smooth muscle actin-positive myofibroblasts, but did not affect the number of Clara cells or alveolar type I cells. GABA-mediated effects were blocked by the GABAA receptor antagonist, bicuculline. GABA also increased cell proliferation and Cl- efflux in fetal distal lung epithelial cells. In conclusion, our results indicate that GABAA receptors accelerate fetal lung development, likely through an enhanced cell proliferation and/or fluid secretion.  相似文献   

4.
Cell populations dissociated from fetal rabbit lungs were analyzed by laser flow cytometry for the presence of type II pneumocytes. These cells are distinguishable by the staining of their lamellar bodies with the fluorescent lipophilic dye, phosphine-3R and by their intensity of low-angle light scatter. Lung cells were obtained by enzymatic dissociation from fetal rabbits at gestational ages of 24 d, 27 d, and from 2-d newborn rabbits. Flow cytometric analysis was sufficiently sensitive to discriminate between fetuses. Quantitative analysis of type II pneumocytes showed that newborn rabbits had a distinct cell subpopulation in a region of low-angle light scatter and phosphine-3R fluorescence intensity similar to that previously reported on type II cells from adult rabbits. By contrast, 24-d gestation rabbits had a negligible type II cell subpopulation. Fetuses of 27 and 30 d gestation showed a slow but progressive increase in the numbers of cells in the type II region. Mathematical analyses of light scatter and fluorescence intensity distributions were used to define statistically significant (P less than .05) boundaries that characterize the development of the type II cell subpopulation in fetal rabbit lung. The methods employed offer new possibilities for quantification of developing lung cell subpopulations of particular interest to the problem of respiratory distress syndrome in human neonates.  相似文献   

5.
Oligohydramnios (OH) retards fetal lung growth by producing less lung distension than normal. To examine effects of decreased distension on fetal lung development, we produced OH in rats by puncture of uterus and fetal membranes at 16 days of gestation; fetuses were delivered at 21 or 22 days of gestation. Controls were position-matched littermates in the opposite uterine horn. OH lungs had lower weights and less DNA, protein, and water, but no differences in saturated phosphatidylcholine, surfactant proteins (SP)-A and -B, and mRNA for SP-A, -B, -C, and -D. To evaluate effects on epithelial differentiation, we used RTI(40) and RTII(70), proteins specific in lung to luminal surfaces of alveolar type I and II cells, respectively. At 22 days of gestation, OH lungs had less RTI(40) mRNA (P < 0.05) and protein (P < 0.001), but RTII(70) did not differ from controls. With OH, type I cells (in proportion to type II cells) covered less distal air space perimeter (P < 0.01). We conclude that OH, which retards lung growth, has little effect on surfactant and impedes formation of type I cells relative to type II cells.  相似文献   

6.
Lung development is associated with increases in specific phospholipids and proteins that function as critical pulmonary surfactant components. Attempts to characterize the pattern of surfactant development in fetal rat lungs have been hampered by the lack of a micromethod which will permit quantitative isolation of surface active components from small tissue specimens. As part of studies designed to elucidate the metabolic regulation of lung development in the rat, we developed sucrose density gradient centrifugation procedures to separate pulmonary phospholipids and proteins into a presumed surfactant (S) fraction and a residual (R) fraction. Electron microscopy of S pellets from mature fetuses identified predominant lamellar bodies and minimal contamination; incubation with 5 mM CaCl2 induced the appearance of tubular myelin figures, implying functional potential. This was confirmed by demonstrating low surface tension (less than 1 dyn/cm) in S, but not R, fractions at term gestation (21.5 days) and in 1-day-old neonatal lung isolates, based on dynamic measurements using the oscillating bubble technique. Surface activity was also high in the S pellets from fetuses at 20.5 days of gestation; however, at 19.5 days, minimum surface tension values of at least 19 dyne/cm were seen. These results correlated directly with biochemical analyses which indicated striking increases in three surfactant-associated proteins (SP-A, SP-B, and SP-C) after 19.5 days of gestation; a finding in agreement with previously reported data on the developmental increase of disaturated phosphatidylcholine in fetal rat lung. We conclude that isolation of S fraction components is valuable for demonstrating maturation of the fetal rat lung and may provide a useful tool for the study of regulatory mechanisms influencing surfactant production and function.  相似文献   

7.
Congenital diaphragmatic hernia (CDH) may be an ideal candidate disease for in utero gene therapy as disrupted fetal lung growth plays a significant role in disease outcome. We previously demonstrated that transient in utero overexpression of CFTR during fetal development resulted in lung epithelial proliferation and differentiation. We hypothesized that gene therapy with CFTR would improve the pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH). CDH was induced by the herbicide 2,4-dichlorophenyl-4-nitrophyl ether (nitrofen) following maternal ingestion at either 10 or 13 days gestation. In utero gene transfer of the CFTR gene was subsequently performed at 16 days gestation. Examination of the fetuses at 22 days gestation revealed little improvement in the CFTR-treated lungs following induction of hernias with nitrofen at 10 days gestation. However, the CFTR gene treatment significantly improved internal surface area, saccular density, overall saccular number, and amount of saccular air space in the lungs that were treated with nitrofen at 13 days gestation. RT-PCR demonstrated that gene transfer occurred following treatment at 13 days gestation but not in the lungs treated with nitrofen at 10 days gestation, despite gene transfer at the same gestational age (16 days) in both groups. As disruption of lung development correlates with the gestational stage at which nitrofen exposure occurs, these results confirmed previous findings that in utero gene transfer efficiency depends on the stage of lung development. Lung development may be significantly delayed in human CDH to allow for successful gene transfer later in gestation, providing a substantial therapeutic window.  相似文献   

8.
To understand the control mechanisms involved in the regulation of fetal glycogen, we have studied the effect of in utero fetal decapitations on glycogen metabolism in rabbit fetal heart, lung, and liver. In utero fetal decapitations were performed between days 18 and 21 of gestation. Two to four fetuses on one side of the horn were decapitated. Fetuses were delivered between days 23 and 26 or between days 28 and 30 of gestation. Fetal heart, lungs, and liver were analyzed for DNA, protein, glycogen, glycogen synthase (I and D forms), glycogen phosphorylase (a and b forms), phosphofructokinase, pyruvate kinase, and lactic dehydrogenase. In fetal heart and lung, no difference was observed in any of the above measurements in the intact and decapitated fetuses. In contrast, fetal liver does not appear to develop the glycogen system as indicated by the very low levels of glycogen (0.02 mg/mg DNA) in decapitated fetuses as compared with intact fetuses (0.4 mg/mg DNA). Similarly the levels of glycogen synthase and phosphorylase were two to three times lower in livers from decapitated fetuses as compared with the livers from intact fetuses. The three enzymes phosphofructokinase, pyruvate kinase, and lactic dehydrogenase were not affected by fetal decapitation in all three tissues. These results indicate that the fetal hypothalamic-pituitary-adrenal (thyroid) axis is not required at least after day 18 of gestation for the normal accumulation and subsequent utilization of glycogen in fetal heart and lungs, while it is an absolute requirement for the development of the fetal liver glycogen system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Previous studies have demonstrated a role for the beta-adrenergic system in the maturation of the fetal alveolar epithelium. Chronic blockade of beta-adrenergic binding sites has been shown to adversely effect physiologic and biochemical indices of fetal lung maturation. In the present study timed-pregnant female Sprague-Dawley rats were treated with a continuous 0.5 mg/hr dose of propranolol HCl, or saline, via an osmotic pump. The treatment periods were days 18-21, or 20-23 of gestation. Fetal body weights were obtained, and the morphology of the fetal lungs studied by light and electron microscopy. Cytoplasmic volume densities of lamellar inclusion bodies and glycogen within developing type II alveolar epithelial cells were also determined. In addition, total phospholipids (as phosphorus) and glycogen content were determined biochemically. The fetuses from females treated from day 20-23 demonstrated no differences between saline-treated and propranolol-treated groups, in either fetal weight or the morphologic appearance of the developing lung. In contrast, the fetuses from mothers treated from day 18-21 with propranolol were significantly smaller, and their lungs appeared less mature than saline-treated counterparts. The glycogen content of developing type II alveolar epithelial cells was significantly more abundant (as judged by stereologic and biochemical analyses) in the propranolol-treated fetuses. In addition, total phospholipids were decreased in the propranolol-treated 21-day fetuses. The results of the present study suggest that the development of the alveolar epithelium is sensitive to continuous beta-adrenergic blockade by propranolol during a critical time late in gestation.  相似文献   

10.
We compared the ability of isolated perfused lungs from previable, 26-day gestation, fetal rabbits; newborn rabbits (within 12 hours of birth) and 3 month old adult rabbits to metabolize a 20-second bolus of norepinephrine (NE). The concentration of NE infused was much below the Km for the NE uptake process to assure first order uptake kinetics. At these low concentrations no vasoactivity was observed. The retention time of a vascular marker dye was monitored as an index of pulmonary vascular surface area. In all three sizes of lungs perfusate flow was adjusted to produce an approximately 7 second dye retention time. At these flow adult and newborn lungs inactivate about 50 to 60 percent of the infused NE. In contrast, fetal rabbit lungs inactivate about 80 percent of the infused NE. We conclude that circulating NE is most avidly taken up and metabolized during fetal lung development. The physiologic significance of this fetal NE inactivation remains unknown.  相似文献   

11.
Coordination of growth and differentiation in the fetal lung   总被引:2,自引:0,他引:2  
The male fetal lung begins to synthesize surfactant later in gestation than the female. This delay appears to be caused by androgens. We hypothesized that male fetal lung differentiation is delayed as a consequence of an extended phase of growth which is elicited by androgens. We observed that in vivo fetal lung protein synthesis relative to DNA synthesis peaked earlier in gestation in the female fetal lung and that this event was synchronous with the onset of differentiation. Pregnant rats were treated with dihydrotestosterone (DHT) during pregnancy, and fetal lung growth parameters were measured. Lung wet weight, dry weight, and DNA and protein concentrations were significantly elevated by DHT treatment. Type II cells and fibroblasts were isolated from lungs of DHT-treated fetuses. The number of total cells recovered was increased by 30%; the number of type II cells recovered was increased by 87%; and the number of fibroblasts recovered was increased by 42%. The type II cells which were recovered exhibited increased incorporation of [3H]thymidine into DNA and a reduced ratio of radiolabeled protein to radiolabeled DNA compared to that of cells from control lungs. Further studies were done in vitro with fibroblasts and type II cells isolated from untreated fetal rat lungs. Treatment of the fibroblasts with DHT during culture caused an increase in thymidine incorporation into DNA. This effect was not blocked by simultaneous treatment with cortisol, which normally causes reduced DNA synthesis and induces fibroblast differentiation. Treatment of the type II cells with DHT in culture caused a dose-dependent increase in cell number but a decrease in synthesis of disaturated phosphatidylcholine. These studies provide more direct evidence of the interrelationships between the control of growth and the control of differentiation in the fetal lung. DHT, a signal which delays the onset of expression of differentiation, also induces growth. We conclude that the controls of growth and of differentiation of the fetal lung are reciprocally linked.  相似文献   

12.
To study the effect of oligohydramnios on lung growth and biochemical lung development in fetal rabbits, amniotic fluid was drained through a tube inserted into the maternal peritoneal cavity on the 23 day of gestation. Littermate fetuses without an amniotic shunt were used as controls. The fetuses were delivered abdominally on the 28 day of gestation. In a total of 8 pregnant does, 17 fetuses underwent amniotic shunting and 22 fetuses were used as controls. The amniotic shunt produced a significant reduction in the amniotic fluid volume. There were no differences in the wet weights of the fetal body, liver or brain between the two groups. However, the amniotic shunt significantly decreased the wet weight of the fetal lung, fetal lung wet weight/body weight ratio, and protein concentration per lung as compared to the control fetuses. In the fetal liver and brain tissues, no changes were found in the concentrations of total phospholipids, phosphatidylcholine (PC) or disaturated phosphatidylcholine (DSPC, the main component of lung surfactant) per g of wet tissue and per mg of protein. However, the lungs of the fetuses with amniotic shunts contained significantly more PC and DSPC, and the L/S ratio was higher than in the control fetuses. These results suggest that the oligohydramnios produced by an amniotic shunt causes pulmonary hypoplasia, but raises the pulmonary surfactant content of fetal rabbit lung.  相似文献   

13.
The influence of streptozotocin-induced maternal diabetes on choline phosphate cytidylyltransferase activity (EC.2.7.7.15) glycogen content and disaturated phosphatidyl choline in fetal lung was studied between 19 and 21 days of gestation. In this experimental model, induction of maternal diabetes two days after mating, resulted in fetal hyperglycemia and hyperinsulinemia; the fetuses were neither macrosomic nor showed any evidence of fetal growth retardation. The glycogen content of lungs on days 19 and 20, but not on day 21 of gestation was significantly higher in fetuses of diabetic rats than in controls. The pulmonary cytosol cytidylyltransferase activity was similar in the two groups of fetuses on days 19 and 20. On day 21 of gestation the enzyme activity was significantly lower in fetuses of diabetic rats than in those of controls. On day 21 of gestation and in newborns of diabetic mothers, although there was no difference in the total pulmonary phospholipids, the levels of disaturated phosphatidyl cholines were significantly lower than in controls.  相似文献   

14.
Summary Calcitonin gene-related peptide-immunoreactive cells were identified within the epithelium of distal conducting airways in the human fetus and infant. Several peptides and amines, including calcitonin, have been identified previously within a specific population of airway epithelial cells. These cells, referred to as pulmonary neuroendocrine cells, are postulated to be airway chemoreceptors responsible for changes in ventilation and perfusion in response to changes in airway gas composition. Calcitonin gene-related peptide immunoreactive cells could be identified throughout the period of development studies (20 weeks gestation to 3 months of age), but were present in only limited numbers in less than 50% of individuals (n=23). In contrast, large numbers of calcitonin gene-related peptide immunoreactive cells were identified in 100% of infants (1–3 months, n=5) with bronchopulmonary dysplasia. The differential processing of mRNA transcribed from the calcitonin gene in neural and non-neural tissue suggests that calcitonin, rather than calcitonin gene-related peptide, is the primary product of translation in pulmonary neuroendocrine cells. However, considering the potent vasodilatory and bronchoconstrictive effects of calcitonin gene-related peptide, its presence in pulmonary neuroendocrine cells, even in small amounts, may be important in controlling pulmonary vaso- and/or bronchomotor tone. The presence of large numbers of calcitonin gene-related peptide immunoreactive cells in infants with bronchopulmonary dysplasia suggests that calcitonin gene-related peptide may be one further agent contributing to the pulmonary pathophysiology seen in this disease.  相似文献   

15.
To investigate the increased incidence of respiratory distress syndrome (RDS) that occurs in infants of diabetic mothers (IDM) with poor maternal glucose homeostasis, we infused glucose intravenously at a rate of 14 +/- 2 (SD) mg.kg-1.min-1 into eight twin and four singleton chronically catheterized fetal lambs from 112 days (0.77) gestation onward. Twelve catheterized and seven uncatheterized fetuses served as controls, including the eight twins of the glucose-treated fetuses. Glucose infusion resulted in a twofold elevation in fetal serum glucose levels and a 2.2-fold elevation in fetal serum insulin levels. Before 113 days (0.9) gestation, pulmonary disaturated phosphatidylcholine (DSPC) content was 1.5-fold higher in the glucose-infused fetuses than in the controls. However, after 0.9 gestation, pulmonary DSPC content increased 2.2-fold in the controls but did not increase significantly in the glucose-infused fetuses. In addition, the DSPC content of lung lavage was 5.0-fold higher in the controls and lung stability to air inflation was 2.0-fold greater and to deflation was 2.2-fold greater than in the glucose-infused fetuses. Pulmonary adenosine 3',5'-cyclic monophosphate-dependent protein kinase activity was also 1.5-fold higher, and pulmonary protein kinase C activity was 1.3-fold higher in the controls than in the glucose-infused fetuses. In contrast, glucose infusion was associated with a 1.8-fold increase in pulmonary glycogen content and with increased activities of glycogen phosphorylase kinase and glycogen phosphorylase. We conclude that the effects of chronic glucose infusion on fetal lamb lung DSPC and lung stability are compatible with a predisposition of the fetus to develop RDS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To test the hypothesis that endogenous opioids modulate fetal lung development, separate groups of pregnant rabbits received daily injections of saline, morphine (1 mg/kg body wt), or the opioid antagonist naloxone (0.4 and 5.0 mg) for 10 days during their last trimester of pregnancy. The corresponding groups of fetuses were then delivered prematurely on day 28 of gestation (term approximately 31 days) and evaluated with respect to differences in body weight, lung weight, and the ratios of wet to dry lung weight and lung dry weight to body weight, the static inflation and deflation air and saline pressure-volume (P-V) characteristics of the lungs, and lung morphology. Mean values for body weight, lung weight, and the ratios of lung wet to dry weight and lung dry weight to body weight were not significantly different among the saline control (C), morphine (M)-, and naloxone (NLX)-treated fetuses. On the other hand, the fetal air P-V curves varied significantly (P less than 0.001), wherein the M-treated group depicted increased lung distensibility and alveolar stability on lung deflation, whereas the opposite was obtained in the NLX-treated fetuses. Moreover, morphometric analyses demonstrated that the mean alveolar air space-to-tissue ratio in lungs from M-treated fetuses were significantly greater than that observed either in C or in NLX-treated fetuses (P less than 0.05); however, the air space-to-tissue ratio did not significantly vary between the C and NLX-treated animals. These observations provide new evidence that endogenous opioids enhance fetal lung maturation.  相似文献   

17.
Summary The presence of bombesin (gastrin-releasing peptide, GRP)-like immunoreactivity in mucosal endocrine cells of human fetal lung is well established. In this study we have investigated the localisation of pro-GRP mRNA and GRP gene products and compared the distribution and levels of extractable GRP-and C-terminal flanking peptide of human pro-GRP-like immunoreactivity in order to verify synthesis and to investigate their coexistence and molecular forms. Human fetal lungs (14 to 23 weeks gestation) were immunostained, and extracts were assayed using regionspecific antisera to pro-GRP. Additional antisera to chromogranin and protein gene product 9.5 (PGP 9.5) were used for immunostaining by the peroxidase anti-peroxidase technique and for double immunofluorescence staining using antisera raised in two species. Immunoreactivity for both bombesin (GRP) and flanking peptide was seen mainly in the same endocrine cells, but more cells were stained with antisera to flanking peptide than with antiserum to bombesin (GRP). In situ hybridisation showed that pro-GRP mRNA was present and thus synthesis of the peptides was taking place. Endocrine cells and nerve fibres were PGP 9.5-immunoreactive, and a subset of cells was immunoreactive for bombesin gene products. Radioimmunoassay and chromatography show that pro-GRP is present in both the uncleaved and cleaved forms, and, in agreement with immunocytochemistry results, that an excess of C-terminal peptide of pro-GRP is detectable. It is therefore concluded that GRP-like peptides and flanking peptide are co-local-ised in human pulmonary endocrine cells, but the latter is found in larger concentrations than free GRP. Thus GRP-like peptides may be secreted separately from the flanking peptide(s) of pro-GRP. Furthermore PGP 9.5 appears to be a useful marker for endocrine cells in the respiratory epithelium of human fetal lung.  相似文献   

18.
The effects of hydrocortisone on lung structure in fetal lambs   总被引:1,自引:0,他引:1  
The effect of cortisol infusion on fetal lung development was studied in lambs. Changes were compared with those of control groups of saline-infused fetuses of the same age (day 132) and normal late gestation fetuses (142 +/- 4.6 days). Cortisol was infused into five fetal lambs at 129 days of gestation at a rate of 17.0 mg/day. Four fetuses were delivered by hysterotomy at the onset of labour-like uterine activity (58 +/- 3 h). In cortisol-infused fetuses the concentration of cortisol in fetal plasma and tracheal fluid rose to levels similar to those in normal fetuses during the last week of gestation. Progesterone concentration in maternal plasma declined at about 48 h after the start of treatment. Cortisol-infused lambs showed increases in fixed lung volume, specific lung volume, absolute volume of both parenchyma and non-parenchyma and the proportion of the parenchyma which was potential airspace and a decrease in the proportion of parenchyma. For cortisol-infused lambs Type II cell size and the abundance of lamellar bodies, and the volume fraction of cell occupied by the nucleus were similar to the 142 day group, whereas Golgi apparatus and RER were closer to age matched saline-infused (day 132) controls. Glycogen content was midway between the two control groups. We conclude that infusion of cortisol for about 60 h at physiological levels, beginning at 0.85 of gestation, accelerates many, but not all aspects of pulmonary parenchymal maturation, expressed in terms either of morphogenesis of the gas exchange area or differentiation of Type II alveolar cells.  相似文献   

19.
Out of 360 lungs or lobes surgically removed, 13 non neoplastic specimens and 16 neuroendocrine (NE) tumours are investigated with immunohistochemical methods, in order to evaluate the presence of NE structures in normal and pathological human lungs. The markers used are neuron specific enolase (NSE), chromogranin (CG) and the 80 kd antigen (80 kdAg) of NE secretory granules detected by the new monoclonal Phe-5 antibody. In non-neoplastic lung specimens, clearcut immunoreactivity for all three markers appears in NE cells, neuroepithelial bodies (NEB), NE cell-hyperplasias and dysplasias. In the same specimens 4 tumourlets with analogous clearcut immunoreactivities were also observed. The NE tumours show distinct immunoreactivity for all three antisera in the 8 well differentiated cases. The 8 poorly differentiated tumours are variably immunoreactive for NSE and present low to nil staining with antisera to CG and 80 kdAg. The immunohistochemical data are interpreted according to current views about a possible relationship between NE tumours and parent normal NE lung structures.  相似文献   

20.
The maturation of the adenosine 3',5'-cyclic monophosphate-(cAMP) dependent pathway controlling fetal lung liquid secretion was examined in experiments in which the lungs of chronically catheterized fetal lambs (123-141 days gestational age) were exposed to dibutyryl cAMP (DBcAMP, 10(-4) M). The effect of DBcAMP was markedly gestation dependent, with the greatest effect observed in the most mature fetuses. In immature fetuses (less than 130 days, mean age 125 days) DBcAMP caused slowing of secretion, with maximal effect at 5 h. With increasing maturity the effect of DBcAMP was more pronounced and occurred earlier so that in mature fetuses (mean age 140 days) lung liquid absorption took place, with maximal effect at 2 h. Changes in lung liquid volume flow induced by DBcAMP could be blocked by addition of 10(-4) M amiloride to lung liquid. It is concluded that 1) DBcAMP induces a change in lung liquid secretion that, like epinephrine, is mediated via an increase in Na+ permeability of the apical membrane of the lung epithelium and 2) the rate-limiting step in the maturation of this process must lie beyond the generation of intracellular cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号