首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane phospholipids represent a potential influence on the enzymatic properties of the Na,K-ATPase. Little is known concerning the effects of the fatty acid environment surrounding the enzyme on the kinetic properties of the Na,K-ATPase. We used the most obvious difference among the α isoforms of rat, their affinities for digitalis glycosides, to examine the relationship between the lipid environment and the Na,K-ATPase. Specific membrane environments that differ in their fatty acid composition were produced by drug-induced diabetes, as well as variations in diet. The α1 isoforms in various tissues were then characterized by their resistance to ouabain in Na,K-ATPase-enriched membrane microsomal fractions. The Na,K-ATPase activity in nerves and hearts were altered by diabetes and partially restored in nerves after a fish oil diet. Evaluation of enzyme kinetics (dose-response curves for ouabain) in membrane preparations allowed us to correlate the ouabain affinity of α1 isoform with fatty acid composition. The affinity of the α1 isoform for ouabain was significantly increased with accretions in the total amount of fatty acids of the n-6 series (P < 0.0001). Our observations provide a partial explanation for the observed difference in isoform properties among tissues. Moreover, these results underline the interaction between membrane fatty acids and the glycoside binding site of the Na,K-ATPase α1 subunit. Received: 15 June 1998/Revised: 18 November 1998  相似文献   

2.
Rat pups deficient in n-3 fatty acids received an oral administration of docosahexaenoic acid (DHA)-rich, eicosapentaenoic acid (EPA)-free microalgal oil (DMO) or fish oil (FO). DMO administration almost restored liver EPA to the level of the control diet-fed dam’s pups, but FO administration did not. This suggests that EPA could be recovered in the liver, even though EPA-free DMO was supplemented.  相似文献   

3.
The localization of the Na,K-ATPase isoenzymes in sciatic nerve remains controversial, as well as diabetes-induced changes in Na,K-ATPase isoforms. Some of these changes could be prevented by fish oil therapy. The aim of this study was to determine by confocal microscopy the distribution of Na,K-ATPase isoforms (alpha1, alpha2, alpha3, beta1, and beta2) in the sciatic nerve, the changes induced by diabetes, and the preventive effect of fish oil in diabetic neuropathy. This study was performed in three groups of rats. In the first two groups, diabetes was induced by streptozotocin and rats were supplemented daily with fish oil or olive oil at a dosage of 0.5 g/kg of body weight. The third one was a control group that was supplemented with olive oil. Five antibodies against specific epitopes of Na,K-ATPase isoenzymes were applied to stained dissociated nerve fibers with fluorescent secondary antibodies. The five isoenzymes were documented in nonspecific regions, Schwann cells (myelin), and the node of Ranvier. The localization of the alpha1, alpha2, and beta1 isoenzymes was not affected by diabetes. In contrast, diabetes induced a decrease of the alpha2 subunit (p < 0.05) and an up-regulation of the beta2 subunit (p < 0.05). These modifications were noted in both regions for alpha2 and were localized at the myelin domain only for the beta2. Fish oil supplementation prevented the diabetes-induced changes in the alpha2 subunit with an additional up-regulation. The beta2 subunit was not modified. A phenotypic change similar to nerve injury was induced by diabetes. Fish oil supplementation partially prevented some of these changes.  相似文献   

4.
Summary Regulation of Na,K-ATPase mRNA isoform and mRNA expression by thyroid hormone (T3) in neonatal rat myocardium was examined. In euthyroid neonates between ages of 2 and 5 days, mRNA1, mRNA3, and mRNA1 abundances were nearly constant while mRNA2 was undetectable. During the interval between postnatal days 5 and 15, mRNA3 decreased to negligible levels and mRNA2 became expressed and increased in abundance to account for 20% of the mRNA pool by the 15th postnatal day. To examine the effect of T3 on this developmental program, neonates were injected with 75 g T3/100 g body weight or diluent alone on the second and third postnatal days and myocardial Na,K-ATPase subunit-mRNA abundances were determined on the third and fourth postnatal days. Because T3 treatment increased the RNA/DNA ratios of myocardial tissue, the subunit-mRNA abundances were normalized per unit DNA. Following 24 and 48 hr of T3 treatment, the abundances of mRNA1, mRNA3, and mRNA1 increased, while mRNA2 continued to remain undetectable during the 2-day interval between the second to fourth postnatal days. It is concluded that T3 augments the abundance of Na,K-ATPase subunit mRNAs that are already being expressed in the neonatal rat myocardium. The results further suggest that T3 does not act as a molecular switch in the developmental expression of the mRNA isoforms in rat myocardium during the first four postnatal days.  相似文献   

5.
目的:观察高饱和脂肪酸及n-3多不饱和脂肪酸饮食后对自发性高血压大鼠血压、静息心率、体重、血脂、血糖及游离脂肪酸谱的影响。方法:选择8周龄雄性自发性高血压大鼠(SHR)30只和同龄对照大鼠(WKY)30只,随机分为6组:SHR、WKY普通饲料组各10只,SHR、WKY高脂组各10只,SHR、WKY高脂加鱼油饮食组各10只,持续喂养至16周龄。干预期间每两周测定血压和体重,干预前后测定静息心率、血脂、血糖及血浆游离脂肪酸谱。结果:(1)血压和静息心率的变化:SHR大鼠高脂饮食组较普食组血压水平显著性增高,而高脂加鱼油饮食组较高脂饮食组血压水平显著性减低;WKY大鼠高脂饮食组较普食组血压水平显著性增高,而高脂加鱼油饮食组较高脂饮食组血压水平显著性减低;SHR大鼠高脂饮食组较普食组静息心率显著性增高(P=0.007),而高脂加鱼油饮食组较高脂饮食组静息心率有下降趋势,但差异无显著性(P=0.125),WKY大鼠静息心率各组间无明显差异。(2)血浆游离脂肪酸谱:与WKY大鼠比较,SHR大鼠中亚麻酸(Linolenic acid,ALA)、花生四烯酸(Linoleic Acid,AA)与n-6多不饱和脂肪酸(n-6 polyunsaturated fatty acids,n-6PUFA含量增高,高脂饮食增加了饱和脂肪酸(Saturated fatty acid,SFA),有显著差异(P0.05),高脂鱼油组二十二碳六烯酸(Docosahexaenoic acid,DHA)及二十碳五烯酸(Docosapentaenoic acid,EPA)增加导致n-3多不饱和脂肪酸(n-3 polyunsaturated fatty acids,n-3PUFA)含量增加(P0.05),SHR大鼠高脂鱼油组亚油酸(Linoleic Acid,LA)、AA含量减低(P0.05)。结论:膳食补充n-3PUFA可能通过影响交感神经活性和血浆脂肪酸谱的组成而改善高饱和脂肪酸所致SHR大鼠的血压升高。  相似文献   

6.
Abstract: Endogenous inhibitors of Na,K-ATPase and ouabain-binding were partially purified from bovine central nervous system, and some of their properties were studied. They were eluted as low-molecular-weight fractions by gel filtration. They could be adsorbed by both Amberlite IR 120 and Amberlite IRA 400 at acidic and basic pH, respectively, indicating that they could act as both anions and cations at different pH. These inhibitors of ouabain-binding appeared to affect specific binding of ouabin, and Scatchard plot analysis showed that the in hibition was competitive, suggesting that they could bind to the same site as ouabain, presumably to Na,K-ATPase itself. The inhibitory activities were heat stable, but charring inactivated them completely.  相似文献   

7.
Na,K-ATPase is a crucial enzyme for ion homeostasis in human tissues. Different isozymes are produced by assembly of four alpha- and three beta-subunits. The expression of the alpha3/beta1 isozyme is confined to brain and heart. Its heterologous production has so far never been attempted in a lower eukaryote. In this work we explored whether the methylotrophic yeast Pichia pastoris is capable of expressing the alpha3/beta1 isoform of human Na,K-ATPase. cDNAs encoding the alpha(3) and the beta(1)-subunits were cloned under the control of the inducible promoter of Pichia pastoris alcohol oxidase 1. Pichia pastoris could express the single alpha3- and beta1-subunits and even coexpress them after methanol induction. beta1-subunit was produced as a major 44-kDa glycosylated polypeptide and alpha3 as a 110-kDa unglycosylated polypeptide. Expression at the plasma membrane was limited in shaking flask cultures but by cultivating P. pastoris cells in a fermenter there was a 10-fold increase of the number of ouabain binding sites per cell. The exported enzyme was estimated to be about 0.230 mg L(-1) at the end of a bioreactor run. Na,K-ATPase proved active and the dissociation constant of the recombinant enzyme-ouabain interaction was determined.  相似文献   

8.
Nucleotide binding affinity to Na,K-ATPase is reduced by a number of anions such as nitrate and perchlorate in comparison with affinity in the presence of chloride (all with sodium as the cation). The reduction correlates with the position of these anions in the Hofmeister series. Transient kinetic experiments using the fluorescent dye eosin—which binds to the nucleotide site of the Na,K-ATPase—show that simultaneous anion binding, exemplified with nitrate, and eosin binding is possible. The effect of nitrate on eosin binding is reflected in a decreased binding-rate constant and an increased dissociation rate constant, leading to a decreased equilibrium binding constant for eosin. Since eosin binding is analogous with nucleotide binding to Na,K-ATPase, the results suggest the simultaneous presence of nucleotide and anion binding sites.Abbreviations E1 the protein conformation in Na+ - E2 the enzyme conformation in K+ - Eo eosin (tetrabromofluorescein) - F fluorescence - I ionic strength - ki rate constant - Ki equilibrium dissociation constant - Ki,0 equilibrium dissociation constant at zero ionic strength - N nitrate - zi net charge - charge product zi·zj  相似文献   

9.
Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acidsodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.  相似文献   

10.
Proteins interacting with 11-type of Na,K-ATPase were revealed in pig kidney outer medulla and duck salt glands using three different methods (immunoprecipitation, protein overlay, and chemical cross-linking). Immunoprecipitation was performed after solubilization of protein homogenate with Triton X-100 so that both membrane and cytosol proteins bound to Na,K-ATPase could be revealed. Two other methods were used to study the interaction of cytosol proteins with purified Na,K-ATPase. The sets of proteins revealed by each method in outer medulla of pig kidney were different. Proteins interacting with Na,K-ATPase that have molecular masses 10, 15, 70, 75, 105, 120, and 190 kD were found using the immunoprecipitation method. The chemical cross-linking method revealed proteins with molecular masses 25, 35, 40, 58, 68-70, and 86-88 kD. The protein overlay method revealed in the same tissue proteins with molecular masses 38, 42, 43, 60, 62, 66, 70, and 94 kD.  相似文献   

11.
Abstract: The influence of dietary (n-3) fatty acids (such as eicosapentaenoic and docosahexaenoic acids) as found in fish oil on Na+ sensitivity and ouabain affinity of Na+, K+-ATPase isoenzymes (α1, α2, α3) was studied in whole brain membranes from weaned and adult rats fed diets for two generations. The long chain (n-3) fatty acids supplied by fish oil decreased the fatty acids of the (n-6) series compared with the standard diet, resulting in a decrease in the (n-6)/(n-3) molar ratio in both 21 - and 60-day- old rats. On the basis of ouabain titration, three inhibitory processes with markedly different affinities were associated with isoenzymes, i.e., low affinity (α1), high affinity (α2), and very high affinity (α3). It appears that the fish oil diet, in part via the modification of membrane fatty acid composition, altered the proportion and ouabain affinity of isoenzymes. Na+ sensitivity is the best criterion of physiologic change induced by fish oil diet. We calculated the Na+ activation for each isoenzyme and found one Na+ sensitivity and two Na+ sensitivities per isoenzyme in weanling and adult rats fed different diets, respectively. In contrast to α2 and α3, α1 appears insensitive to membrane change induced by fish oil diet. Fish oil diet, which is known to confer cardioprotection, induced significant modulation of Na+, K+-ATPase isoenzymes at the brain level.  相似文献   

12.
Abstract: Age-related changes in the expression of Na,K-ATPase α1- and α3-isoform mRNAs were analyzed by in situ hybridization in the Fischer-344 rat hippocampus. Quantification of signal density with cRNA probes in rat hippocampus at 3 months of age showed (a) α1 content is 1.5 times higher in granule than in pyramidal cell layers, whereas α3 content shows the opposite ratio and (b) α3 label is found in large clusters related to mossy cells and basket cells and in medium clusters corresponding to interneurons within the dendritic fields of CA1–3. In the 24-month-old rats as compared with the young animals, the α1 signal is increased more than sevenfold in the dendritic fields and is not significantly changed in perikaryal layers. The α3 signal is reduced about threefold ( p < 0.0001, ANOVA, n = 6) in perikaryal layers, is almost completely absent over the interneurons, basket cells, and mossy cells, and is not significantly changed in dendritic fields. These data indicate age-related, cell- and isoform-specific alterations in pretranslational regulation of Na,K-ATPase α isoforms. The striking changes in the dendritic fields, mossy cells, and GABAergic basket cells and interneurons may constitute early and sensitive markers for age-related alterations in hippocampal function, before cell loss.  相似文献   

13.
Na,K-ATPase is a ubiquitous multifunctional protein that acts both as an ion pump and as a signal transducer. The signaling function is activated by ouabain in non-toxic concentrations. In epithelial cells the ouabain-bound Na,K-ATPase connects with the inositol 1,4,5-trisphosphate receptor via a short linear motif to activate low frequency Ca2+ oscillations. Within a couple of minutes this ouabain mediated signal has resulted in phosphorylation or dephosphorylation of 2580 phospho-sites. Proteins that control cell proliferation and cell adhesion and calmodulin regulated proteins are enriched among the ouabain phosphor-regulated proteins. The inositol 1,4,5-trisphosphate receptor and the stromal interaction molecule, which are both essential for the initiation of Ca2+ oscillations, belong to the ouabain phosphor-regulated proteins. Downstream effects of the ouabain-evoked Ca2+ signal in epithelial cells include interference with the intrinsic mitochondrial apoptotic process and stimulation of embryonic growth processes.The dual function of Na,K-ATPase as an ion pump and a signal transducer is now well established and evaluation of the physiological and pathophysiological consequences of this universal signal emerges as an urgent topic for future studies.  相似文献   

14.
Rats were fed a semisynthetic diet containing either sunflower oil or soya oil. Half the litter fed with sunflower oil diet was changed to a soya oil diet when the pups were 15 days old (during active myelination). Fatty acid analysis was then performed on subcellular fractions of the animals fed (a) soya oil, (b) sunflower oil, and (c) soya oil replacing sunflower oil from the 15th day, to determine the speed of the recovery. All material from animals fed sunflower oil showed an important reduction in docosahexaenoic acid (22:6 n-3), compensated by an increase in docosapentaenoic acid (22:5 n-6), whereas arachidonic acid (20:4 n-6) was not affected. In all fractions examined, when sunflower oil was replaced by soya oil in 15-day-old pups the recovery started from the very first day but lasted more than 2 months (this recovery was determined by the increase of 22:6 n-3 up to the normal value and decrease of the 22:5 n-6). In addition a delay was found for myelin recovery, starting only from the 25th day.  相似文献   

15.
Non-alcoholic fatty liver disease (NAFLD) affects 25% of adults and at present no licensed medication has been approved. Despite its complex patho-physiology, dietary strategies aiming at delaying or preventing NAFLD have taken a reductionist approach, examining the impact of single components. Accumulating evidence suggests that n-3 LC-PUFAs are efficacious in regulating lipogenesis and fatty acid oxidation. In addition, plant derived flavonoids are also emerging as a dietary strategy for NAFLD prevention, with efficacy attributed to their insulin sensitising and indirect antioxidant effects. Based on knowledge of their complementary molecular targets, we aimed to demonstrate that the combination of n-3 LC-PUFA (n-3) and flavan-3-ols (FLAV) prevents NAFLD. In a high-fat high-fructose (HF/HFr) fed C57Bl/6 J mouse model, the independent and interactive impact of n-3 and FLAV on histologically defined NAFLD, insulin sensitivity, weight gain, intestinal and hepatic gene expression, intestinal bile acids were examined. Only the combination of FLAV and n-3 (FLAVn-3) prevented steatosis as evidenced by a strong reduction in hepatocyte ballooning. While FLAV reduced body (? 28–30%), adipose tissue (? 45–50%) weights and serum insulin (? 22–25%) as observed following an intra-peritoneal glucose tolerance test, n-3 downregulated the expression of Srebf1 and the lipogenic genes (Acaca, Fasn). Significant impacts of interventions on intestinal bile acid metabolism, farnesoid X receptor (Fxr) signalling in the intestine and liver, and hepatic expression of fatty acid transporters (Fabp4, Vldlr, Cd36) were also evident. FLAVn-3 may be a novel intervention for NAFLD. Future research should aim to demonstrate its efficacy in the prevention and treatment of human NAFLD.  相似文献   

16.
Lymphocytes are primordial immune cells with variable life times. Besides genetic programming, extracellular factors interacting with cell surface receptors might alter cell survival. We investigated whether the activity of the membrane-embedded Na,K-ATPase (EC 3.6.1.37) or sodium pump (NKA) plays a role for cell survival since this ubiquitous system establishes the vital transmembrane Na and K gradients as well as the resulting high intracellular K/Na ratio required for macromolecule synthesis; furthermore, the system exposes an extracellular inhibitory receptors for cardioactive steroids and palytoxin. Isolated human lymphocytes were incubated in vitro and their viability assessed by exclusion of trypan blue. Various incubation conditions were compared; in RPMI-1640 medium cell viability was preserved for 30 h at 37 °C. Externally added ouabain, a hydrophilic cardioactive steroid, blocked the [86Rb]potassium uptake at nanomolar concentrations. Despite pump inhibition ouabain did not alter lymphocyte survival, even at 10 mM for 30 h. By contrast, the hydrophilic toxin palytoxin, the most potent animal poison described so far, killed all cells within 2 h at 10 nM; this toxin is known to act via the sodium pump and to provoke deadly cation-leaks by unmasking a channel component. Intracellular Na increased and K decreased as measured by atomic absorption spectrometry in presence of palytoxin; cell swelling was seen by electron microscopy. Ouabain protected the cells from the toxic effect of palytoxin. The results reveal a pivotal role of NKA integrity for lymphocyte survival.Abbreviations BCA bicinchonic acid - D-PBS Dulbecco's Phosphate Buffered Saline - HBSS Hanks' Balanced Salt Solution - PYX palytoxin (used in figures only) - NKA Na,K-ATPase  相似文献   

17.
Abstract: Rats were fed through four generations with a semisynthetic diet containing 1.0% sunflower oil (6.7 mg/ g n-6 fatty acids, 0.04 mg/g n-3 fatty acids). Ten days before mating, half of the animals received a diet in which sunflower was replaced by soya oil (6.6 mg/g n-6 fatty acids, 0.8 mg/g n-3 fatty acids) and analyses were performed on their pups. Fatty acid analysis in isolated cellular and subcellular material from sunflower-fed animals showed that the total amount of unsaturated fatty acids was not reduced in any cellular or subcellular fraction (except in 60-day-old rat neurons). All material from animals fed with sunflower oil showed an important reduction in the docosahexaenoic acid content, compensated (except in 60-day-old rat neurons) by an increase in the n-6 fatty acids (mainly C22:5 n-6). When comparing 60-day-old animals fed with soya oil or sunflower oil, the n-3/n-6 fatty acid ratio was reduced 16-fold in oligodendrocytes, 12-fold in myelin, twofold in neurons, sixfold in synaptosomes, and threefold in astrocytes. No trienes were detected. Saturated and monounsaturated fatty acids were hardly affected. This study provides data on the fatty acid composition of isolated brain cells.  相似文献   

18.
FXYD1 (phospholemman) is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the Na,K-ATPase enzyme complex in specific tissues and specific physiological states. In heart and skeletal muscle sarcolemma, FXYD1 is also the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinase A and by protein kinase C, which phosphorylate the protein at conserved Ser residues in its cytoplasmic domain, altering its Na,K-ATPase regulatory activity. FXYD1 adopts an L-shaped α-helical structure with the transmembrane helix loosely connected to a cytoplasmic amphipathic helix that rests on the membrane surface. In this paper we describe NMR experiments showing that neither PKA phosphorylation at Ser68 nor the physiologically relevant phosphorylation mimicking mutation Ser68Asp induces major changes in the protein conformation. The results, viewed in light of a model of FXYD1 associated with the Na,K-ATPase α and β subunits, indicate that the effects of phosphorylation on the Na,K-ATPase regulatory activity of FXYD1 could be due primarily to changes in electrostatic potential near the membrane surface and near the Na+/K+ ion binding site of the Na,K-ATPase α subunit.  相似文献   

19.
Summary To characterize the molecular properties conveyed by the isoforms of the subunit of Na,K-ATPase, the two major transepithelial transporting organs in the brine shrimp (Artemia salina), the salt glands and intestines, were isolated in pure form. The isoforms were quantified by ATP-sensitive fluorescein isothiocyanate (FITC) labeling. The salt gland enzyme exhibits only the 1 isoform, whereas the intestinal enzyme exhibits both the 1 and the 2 isoforms. After 32 hours of development, Na,K-ATPase activity [in mol Pi/mg protein/hr (1u)] in whole homogenates was 32±6 in the salt glands and 12±3 in the intestinal preparations (mean±sem). The apparent half-maximal activation constants (K 1/2) of the salt gland enzyme as compared to the intestinal enzyme were 3.7±0.6mm vs. 23.5±4mm (P<0.01) for Na+, 16.6±2.2mm vs. 8.29±1.5mm for K+ (P<0.01), and 0.87±0.8mm vs. 0.79±1.1mm for ATP (NS). The apparentK i's for ouabain inhibition were 1.1×10–4 m vs. 2×10–5 m, respectively. Treatment of whole homogenates with deoxycholic acid (DOC) produced a maximal Na,K-ATPase activation of 46% in the salt gland as compared to 23% in the intestinal enzyme. Similar differences were found with sodium dodecyl sulfate (SDS). The two distinct forms of Na,K-ATPase isolated from the brine shrimp differed markedly in three kinetic parameters as well as in detergent sensitivity. The differences inK 1/2 for Na+ and K+ are more marked than those reported for the mammalian Na,K-ATPase isoforms. These differences may be attributed to the relative abundances of the subunit isoforms; other potential determinants (e.g. differences in membrane lipids), however, have not been investigated.During the tenure of an Educational Commission For Foreign Medical Graduates Visiting Associate Professorship.  相似文献   

20.
The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K(+)·P(i) with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na(+), after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na(+) demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号