首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gel filtration was employed to estimate the molecular weights and to determine possible physical aggregation of enzymes [5-dehydroquinate synthase (DHQ synthase), 5-dehydroquinase (DHQase, EC 4.2.1.10), shikimate: NADP oxidoreductase (EC 1.1.1.25), shikimate kinase (EC 2.7.1.71), 3-enolpyruvylshikimate 5-phosphate synthase (EPSP synthase)] in the shikimate pathway in eleven species of yeasts. The five enzymes were not aggregated in extracts of Hansenula henricii, H. fabianii, H. anomala, Candida utilis, Pichia guilliermondii, and Lodderomyces elongisporus. Two enzymes (DHQase and shikimate:NADP oxidoreductase) were not separable by this method and by ion exchange chromatography, and we conclude that they exist as an aggregate in these yeasts. Evidence is presented for an enzyme aggregate containing five activities, with a molecular weight of approximately 280,000 in Rhodosporidium spaerocarpum, Rh. toruloides, Rhodotorula rubra, Saccharomycopsis lipolytica, and Saccharomyces cerevisiae. Similarities between the enzymes in the shikimate pathway of plants, bacteria, and other fungi and those of investigated yeasts are discussed.  相似文献   

2.
The biosynthetic shikimate pathway consists of seven enzymes that catalyze sequential reactions to generate chorismate, a critical branch point in the synthesis of the aromatic amino acids. The third enzyme in the pathway, dehydroquinate dehydratase (DHQD), catalyzes the dehydration of 3-dehydroquinate to 3-dehydroshikimate. We present three crystal structures of the type I DHQD from the intestinal pathogens Clostridium difficile and Salmonella enterica. Structures of the enzyme with substrate and covalent pre- and post-dehydration reaction intermediates provide snapshots of successive steps along the type I DHQD-catalyzed reaction coordinate. These structures reveal that the position of the substrate within the active site does not appreciably change upon Schiff base formation. The intermediate state structures reveal a reaction state-dependent behavior of His-143 in which the residue adopts a conformation proximal to the site of catalytic dehydration only when the leaving group is present. We speculate that His-143 is likely to assume differing catalytic roles in each of its observed conformations. One conformation of His-143 positions the residue for the formation/hydrolysis of the covalent Schiff base intermediates, whereas the other conformation positions the residue for a role in the catalytic dehydration event. The fact that the shikimate pathway is absent from humans makes the enzymes of the pathway potential targets for the development of non-toxic antimicrobials. The structures and mechanistic insight presented here may inform the design of type I DHQD enzyme inhibitors.  相似文献   

3.
4.
5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.19), 3-dehydroquinate dehydratase (EC 4.2.1.10) and shikimate: NADP+ oxidoreductase (EC 1.1.1.25) were present in intact chloroplasts and root plastids isolated from pea seedling extracts by sucrose and modified-silica density gradient centrifugation. In young (approx. 10-d-old) seedling shoots the enzymes were predominantly chloroplastic; high-performance anion-exchange chromatography resolved minor isoenzymic activities not observed in density-gradientpurified chloroplasts. The initial enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) was also associated with intact density-gradient-purified chloroplasts. 3-Dehydroquinate synthase (EC 4.6.1.3) and shikimate kinase (EC 2.7.1.71) were detected together with the other pathway enzymes in stromal preparations from washed chloroplasts. Plastidic EPSP synthase was inhibited by micromolar concentrations of the herbicide glyphosate.Abbreviations DAHP 3-deoxy-d-arabino-heptulosonate 7-phosphate - DEAE diethylaminoethyl - DHQase 3-dehydroquinate dehydratase - DTT dithiothreitol - EPSP 5-enolpyruvylshikimate 3-phosphate - SORase shikimate:NADP+ oxidoreductase  相似文献   

5.
Due to the emergence of resistance toward current antibiotics, there is a pressing need to develop the next generation of antibiotics as therapeutics against infectious and opportunistic diseases of microbial origins. The shikimate pathway is exclusive to microbes, plants and fungi, and hence is an attractive and logical target for development of antimicrobial therapeutics. The Gram-positive commensal microbe, Enterococcus faecalis, is a major human pathogen associated with nosocomial infections and resistance to vancomycin, the “drug of last resort”. Here, we report the identification of several polyketide-based inhibitors against the E. faecalis shikimate pathway enzyme, 3-dehydroquinate dehydratase (DHQase). In particular, marein, a flavonoid polyketide, both inhibited DHQase and retarded the growth of Enterococcus faecalis. The purification, crystallization and structural resolution of recombinant DHQase from E. faecalis (at 2.2 Å resolution) are also reported. This study provides a route in the development of polyketide-based antimicrobial inhibitors targeting the shikimate pathway of the human pathogen E. faecalis.  相似文献   

6.
Non-green plastids (leucoplasts) isolated from pea roots are shown to be considerably active in forming aromatic amino acids by the shikimate pathway which, in contrast to the chloroplast pathway, is independent of light. Supply of phosphoenolpyruvate and 3-dehydroquinate, 3-dehydroshikimate, shikimate and quinate effectively enhances the formation of aromatic amino acids suggesting an intra- or/and intercellular intermediate transport.  相似文献   

7.
The AROM locus of Aspergillus nidulans specifies a pentafunctional polypeptide catalysing five consecutive steps leading to the production of 5-enolpyruvylshikimate 3-phosphate in the shikimate pathway. Aided by oligonucleotide-mediated site-directed mutagenesis, the whole AROM locus and various overlapping subfragments from within it have been fused to the powerful hybrid trc promoter in the Escherichia coli plasmid pKK233-2. Expression of these subfragments in appropriate aro mutants of E. coli has (a) allowed the delineation of functional domains within the arom polypeptide, (b) shown that the arom polypeptide falls in two independently folding and functioning regions, the N-terminal half specifying 3-dehydroquinate (DHQ) synthase and EPSP synthase and the C-terminus specifying shikimate kinase, biosynthetic 3-dehydroquinase (DHQase) and shikimate dehydrogenase, and (c) strongly suggested an interaction between the DHQ synthase and EPSP synthase domains to stabilise the EPSP synthase activity. In addition an isoenzyme of biosynthetic DHQase, catabolic DHQase, encoded by the QUTE gene of A. nidulans has been transcribed from the trc promoter and upon isopropyl-thio-beta-D-galactoside induction produces up to 20% of the total soluble cell protein.  相似文献   

8.
White RH 《Biochemistry》2004,43(23):7618-7627
No orthologs are present in the genomes of the archaea encoding genes for the first two steps in the biosynthesis of the aromatic amino acids leading to 3-dehydroquinate (DHQ). The absence of these genes prompted me to examine the nature of the reactions involved in the archaeal pathway leading to DHQ in Methanocaldococcus jannaschii. Here I report that 6-deoxy-5-ketofructose 1-phosphate and l-aspartate semialdehyde are precursors to DHQ. The sugar, which is derived from glucose 6-P, supplies a "hydroxyacetone" fragment, which, via a transaldolase reaction, undergoes an aldol condensation with the l-aspartate semialdehyde to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid. Despite the fact that both hydroxyacetone and hydroxyacetone-P were measured in the cell extracts and confirmed to arise from glucose 6-P, neither compound was found to serve as a precursor to DHQ. This amino sugar then undergoes a NAD dependent oxidative deamination to produce 3,7-dideoxy-d-threo-hept-2,6-diulosonic acid which cyclizes to 3-dehydroquinate. The protein product of the M. jannaschii MJ0400 gene catalyzes the transaldolase reaction and the protein product of the MJ1249 gene catalyzes the oxidative deamination and the cyclization reactions. The DHQ is readily converted into dehydroshikimate and shikimate in M. jannaschii cell extracts, consistent with the remaining steps and genes in the pathway being the same as in the established shikimate pathway.  相似文献   

9.
The shikimate pathway is essential in Mycobacterium tuberculosis and its absence from humans makes the enzymes of this pathway potential drug targets. In the present paper, we provide structural insights into ligand and inhibitor binding to 3-dehydroquinate dehydratase (dehydroquinase) from M. tuberculosis (MtDHQase), the third enzyme of the shikimate pathway. The enzyme has been crystallized in complex with its reaction product, 3-dehydroshikimate, and with six different competitive inhibitors. The inhibitor 2,3-anhydroquinate mimics the flattened enol/enolate reaction intermediate and serves as an anchor molecule for four of the inhibitors investigated. MtDHQase also forms a complex with citrazinic acid, a planar analogue of the reaction product. The structure of MtDHQase in complex with a 2,3-anhydroquinate moiety attached to a biaryl group shows that this group extends to an active-site subpocket inducing significant structural rearrangement. The flexible extensions of inhibitors designed to form π-stacking interactions with the catalytic Tyr24 have been investigated. The high-resolution crystal structures of the MtDHQase complexes provide structural evidence for the role of the loop residues 19-24 in MtDHQase ligand binding and catalytic mechanism and provide a rationale for the design and efficacy of inhibitors.  相似文献   

10.
The stroma of chloroplasts is probably the sole site of the shikimate pathway enzymes shikimate oxidoreductase/dehydroquinate hydrolyase (SORase/DHQase) in spinach leaves. (a) The chromatographic behavior of the bifunctional protein SORase/DHQase on several separation materials with extracts from stroma compared with leaf extracts showed only one peak of enzymic activity originating from the stroma. (b) Polyacrylamide gel electrophoresis (PAGE) of these extracts followed by specific staining resulted in the same pattern without a band of extraplastidic enzyme. (c) In protoplast fractionation experiments it was shown that SORase/DHQase was present only in the soluble chloroplast protein fraction.

An improved purification procedure for SORase/DHQase from stroma of chloroplasts, yield 40%, 1600 times as pure, gave essentially one protein band on sodium dodecyl sulfate-PAGE. Our results demonstrate that both enzyme functions are carried out by a single polypeptide. Nondenaturing PAGE exhibited a pattern of four bands with SORase/DHQase showing that they differ in charge but not in their molecular weight. Molecular weight was determined to be 67 kilodaltons (gel filtration) and 59 kilodaltons (PAGE) for all four forms. It was proven they were not due to artifacts. The four forms show similar kinetic properties, their Km and pH optima differing only very slightly. Response to some metabolites is reported.

  相似文献   

11.
The membrane fraction of Gluconobacter oxydans IFO 3244, involving membrane-bound quinoprotein quinate dehydrogenase and 3-dehydroquinate dehydratase, was immobilized into Ca-alginate beads. The Ca-alginate-immobilized bacterial membrane catalyzed a sequential reaction of quinate oxidation to 3-dehydroquinate and its spontaneous conversion to 3-dehydroshikimate under neutral pH. An almost 100% conversion rate from quinate to 3-dehydroshikimate was observed. NADP-Dependent cytoplasmic enzymes from the same organism, shikimate dehydrogenase and D-glucose dehydrogenase, were immobilized together with different carriers as an asymmetric reduction system forming shikimate from 3-dehydroshikimate. Blue Dextran 2000, Blue Dextran-Sepharose-4B, DEAE-Sephadex A-50, DEAE-cellulose, and hydroxyapatite were effective carriers of the two cytoplasmic enzymes, and the 3-dehydroshikimate initially added was converted to shikimate at 100% yield. The two cytoplasmic enzymes showed strong affinity to Blue Dextran 2000 and formed a soluble form of immobilized catalyst having the same catalytic efficiency as that of the free enzymes. This paper may be the first one on successful immobilization of NAD(P)-dependent dehydrogenases.  相似文献   

12.
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) constitute the small enzyme family of enolpyruvyl transferases, which catalyze the chemically unusual reaction of enolpyruvyl transfer. MurA catalyzes the first step in the biosynthesis of the bacterial cell wall; AroA is the sixth enzyme of the shikimate pathway leading to the synthesis of aromatic compounds in numerous microorganisms and plants. Because both metabolic pathways are absent from mammals but essential for the growth of microorganisms, MurA and AroA are attractive targets for the development of novel antimicrobial drugs. We have determined the x-ray structures of the D305A mutant of Enterobacter cloacae MurA and the D313A mutant of Escherichia coli AroA, both of which crystallized in the presence of their substrates. The structures depict the tetrahedral reaction intermediate states of the enzymes and prove that, without the aspartate side chain, the overall addition-elimination reaction in both enzymes is halted after the addition step. The presented structures lead to a new view of the catalytic mechanism and, moreover, provide an ideal starting point for the rational design of potent inhibitors of MurA and AroA.  相似文献   

13.
The membrane fraction of Gluconobacter oxydans IFO 3244, involving membrane-bound quinoprotein quinate dehydrogenase and 3-dehydroquinate dehydratase, was immobilized into Ca-alginate beads. The Ca-alginate-immobilized bacterial membrane catalyzed a sequential reaction of quinate oxidation to 3-dehydroquinate and its spontaneous conversion to 3-dehydroshikimate under neutral pH. An almost 100% conversion rate from quinate to 3-dehydroshikimate was observed. NADP-Dependent cytoplasmic enzymes from the same organism, shikimate dehydrogenase and D-glucose dehydrogenase, were immobilized together with different carriers as an asymmetric reduction system forming shikimate from 3-dehydroshikimate. Blue Dextran 2000, Blue Dextran-Sepharose-4B, DEAE-Sephadex A-50, DEAE-cellulose, and hydroxyapatite were effective carriers of the two cytoplasmic enzymes, and the 3-dehydroshikimate initially added was converted to shikimate at 100% yield. The two cytoplasmic enzymes showed strong affinity to Blue Dextran 2000 and formed a soluble form of immobilized catalyst having the same catalytic efficiency as that of the free enzymes. This paper may be the first one on successful immobilization of NAD(P)-dependent dehydrogenases.  相似文献   

14.
Two associated enzymes, 3-dehydroquinate hydro-lyase (EC 4.2.1.10) and shikimate:NADP+ oxidoreductase (EC 1.1.1.25), have been purified from Phaseolus mungo seedlings. These enzymes were purified 6900- and 9700-fold, respectively, but they were not separable. Moreover, two activity bands of the shikimate:NADP+ oxidoreductase were detected after polyacrylamide gel electrophoresis and the two peaks also have 3-dehydroquinate hydro-lyase activity. The two forms of the associated enzymes showed only small differences in molecular weight, Km value, pH optimum and the responses to some inhibitors.  相似文献   

15.
16.
3-Dehydroquinate production from quinate by oxidative fermentation with Gluconobacter strains of acetic acid bacteria was analyzed for the first time. In the bacterial membrane, quinate dehydrogenase, a typical quinoprotein containing pyrroloquinoline quinone (PQQ) as the coenzyme, functions as the primary enzyme in quinate oxidation. Quinate was oxidized to 3-dehydroquinate with the final yield of almost 100% in earlier growth phase. Resting cells, dried cells, and immobilized cells or an immobilized membrane fraction of Gluconobacter strains were found to be useful biocatalysts for quinate oxidation. 3-Dehydroquinate was further converted to 3-dehydroshikimate with a reasonable yield by growing cells and also immobilized cells. Strong enzyme activities of 3-dehydroquinate dehydratase and NADP-dependent shikimate dehydrogenase were detected in the soluble fraction of the same organism and partially fractionated from each other. Since the shikimate pathway is remote from glucose in the metabolic pathway, the entrance into the shikimate pathway from quinate to 3-dehydroquinate looks advantageous to produce metabolic intermediates in the shikimate pathway.  相似文献   

17.
The shikimate pathway leads to the biosynthesis of aromatic amino acids essential for protein biosynthesis and the production of a wide array of plant secondary metabolites. Among them, quinate is an astringent feeding deterrent that can be formed in a single step reaction from 3-dehydroquinate catalyzed by quinate dehydrogenase (QDH). 3-Dehydroquinate is also the substrate for shikimate biosynthesis through the sequential actions of dehydroquinate dehydratase (DQD) and shikimate dehydrogenase (SDH) contained in a single protein in plants. The reaction mechanism of QDH resembles that of SDH. The poplar genome encodes five DQD/SDH-like genes (Poptr1 to Poptr5), which have diverged into two distinct groups based on sequence analysis and protein structure prediction. In vitro biochemical assays proved that Poptr1 and -5 are true DQD/SDHs, whereas Poptr2 and -3 instead have QDH activity with only residual DQD/SDH activity. Poplar DQD/SDHs have distinct expression profiles suggesting separate roles in protein and lignin biosynthesis. Also, the QDH genes are differentially expressed. In summary, quinate (secondary metabolism) and shikimate (primary metabolism) metabolic activities are encoded by distinct members of the same gene family, each having different physiological functions.  相似文献   

18.
The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.  相似文献   

19.
The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes.  相似文献   

20.
The association of two enzymes involved in the shikimate pathway,3-dehydroquinate hydro-lyase (EC 4.2.1.10 [EC] ) and shikimate: NADPoxidoreductase (EC 1.1.1.25 [EC] ), was studied with shoots of etiolated4-day-old Phaseolus mungo seedlings. The enzymes were not separableby ammonium sulfate fractionation, sucrose density gradientcentrifugation, polyacrylamide gel electrophoresis and chromatographyon Sephadex G-100 and DEAE-Sephadex A-50. The results are discussedin relation to the channelling function of metabolites in thealicyclic acid metabolism in higher plants. (Received October 28, 1975; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号