首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A mutation in human DFNA5 is associated with autosomal dominant nonsyndromic hearing impairment. The function of DFNA5 protein remains unknown and no experimental model has been described so far. Here we describe fission yeast Schizosaccharomyces pombe as a model organism for studying the function of heterologously expressed DFNA5. We have expressed wild-type as well as mutant DFNA5 alleles under control of regulatable nmt1 promoter. Yeast cells tolerated expression of wild-type DFNA5, while expression of the mutant DFNA5 allele, which is responsible for nonsyndromic autosomal dominant hearing impairment, led to cell cycle arrest. We identified new rat and horse DFNA5 homologues and we describe a domain of homology shared between DFNA5 and the Mcm10 family of DNA replication proteins. Genetic interactions between heterologously expressed DFNA5 and a fission yeast cdc23 (mcm10) mutant support a possible link between DFNA5 and Mcm10 proteins.  相似文献   

2.
Tectorial membrane, an extracellular matrix of the cochlea, plays a crucial role in the transmission of sound to the sensory hair cells. Alpha-tectorin is the most important noncollagenous component of the tectorial membrane and the otolith membrane in the maculae of the vestibular system. Defects in TECTA, the gene encodes alpha-tectorin, are cause of both dominant (DFNA8/12) and recessive (DFNB21) forms of deafness. Here, we report a three-generation Chinese family characterized by prelingual progressive sensorineural hearing impairment. We mapped the disease locus to chromosome 11q23-24 region, overlapping with the DFNA8/12 locus. Sequencing of candidate gene TECTA revealed a heterozygous c.5945C>A substitution in exon 19, causing amino acid substitution of Ala to Asp at a conservative position 1982. The A1982D substitution is consistent with hearing loss in this Chinese family and has not been found in 200 random control chromosomes. To our knowledge, this is the first TECTA mutation identified in Chinese population. Our data provides additional molecular and clinical information for establishing a better genotype–phenotype understanding of DFNA8/12.  相似文献   

3.
The COCH gene mutated in DFNA9, an autosomal dominant hereditary sensorineural hearing loss and vestibular disorder, encodes Cochlin. Previously, we reported three bovine Cochlin isoforms, p63s, p44s, and p40s, which exhibit significant molecular heterogeneity in vivo. Here we have characterized Cochlin isoforms by generating four isoform-specific anti-Cochlin antibodies. The same three Cochlin isoforms, p63s, p44s, and p40s, were detected in human and cow inner ear tissue; however, p44s and p40s were not detected in perilymph. We identified a novel short 16kDa isoform in human perilymph and a 18-23kDa isoform in cow perilymph, named Cochlin-tomoprotein (CTP), corresponding to the N-terminus of full-length Cochlin (p63s) and the LCCL domain. Notably, CTP contains all of the known mutation sites associated with DFNA9. The pathogenesis of DFNA9 is not fully clarified as yet, and this novel perilymph-associated CTP isoform might provide mechanistic clues to how mutations in the COCH gene damage the inner ear function.  相似文献   

4.
Myosin VIIA is an unconventional myosin that has been implicated in Usher syndrome type 1B, atypical Usher syndrome, non-syndromic autosomal recessive hearing impairment (DFNB2) and autosomal dominant hearing impairment (DFNA11). Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles the previously published DFNA11 family. The affected family members show a flat audiogram at young ages and only modest progression, most clearly at the high frequencies. In addition, they suffer from minor vestibular symptoms. Linkage analysis yielded a maximum two-point lodscore of 3.43 for marker D11S937 located within 1 cM of the myosin VIIA gene. The myosin VIIA gene was sequenced and 11 nucleotide variations were found. Ten nucleotide changes represent benign intronic variants, silent exon mutations or non-pathologic amino acid substitutions. One variant, a c.1373AT transversion that is heterozygously present in all affected family members and absent in 300 healthy individuals, is predicted to result in an Asn458Ile amino acid substitution. Asn458 is located in a region of the myosin VIIA motor domain that is highly conserved in different classes of myosins and in myosins of different species. To evaluate whether the Asn458Ile mutation was indeed responsible for the hearing impairment, a molecular model of myosin VIIA was built based on the known structure of the myosin II heavy chain from Dictyostelium discoideum. In this model, conformational changes in the protein caused by the amino acid substitution Asn458Ile are predicted to disrupt ATP/ADP binding and impair the myosin power-stroke, which would have a severe effect on the function of the myosin VIIA protein.  相似文献   

5.
6.
Sagong B  Park HJ  Lee KY  Kim UK 《Gene》2012,492(1):239-243
Mutations of the TECTA gene, which encodes alpha-tectorin, are associated with both dominant (DFNA8/A12) and recessive (DFNB 21) modes of inherited nonsyndromic sensorineural hearing loss, respectively. Although clinical data and genetic analysis for TECTA gene have been reported from different groups, there is no report that compound heterozygous mutations in the TECTA gene result in nonsyndromic sensorineural hearing loss. Here, we identified a missense mutation (p.C1691F) and a splicing mutation (c.6162 + 3insT), one in each TECTA allele, in the patient with hearing loss. Also, we demonstrated that the splicing mutation results in the abnormal skipping of an exon, which leads to a truncated protein as determined by exon-trapping analysis. To the best of our knowledge, this is the first report of an in vitro functional study of splice site mutations in the TECTA gene.  相似文献   

7.
Hereditary hearing impairment is an extremely heterogeneous trait, with more than 70 identified loci. Only two of these loci are associated with an auditory phenotype that predominantly affects the low frequencies (DFNA1 and DFNA6/14). In this study, we have completed mutation screening of the WFS1 gene in eight autosomal dominant families and twelve sporadic cases in which affected persons have low-frequency sensorineural hearing impairment (LFSNHI). Mutations in this gene are known to be responsible for Wolfram syndrome or DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness), which is an autosomal recessive trait. We have identified seven missense mutations and a single amino acid deletion affecting conserved amino acids in six families and one sporadic case, indicating that mutations in WFS1 are a major cause of inherited but not sporadic low-frequency hearing impairment. Among the ten WFS1 mutations reported in LFSNHI, none is expected to lead to premature protein truncation, and nine cluster in the C-terminal protein domain. In contrast, 64% of the Wolfram syndrome mutations are inactivating. Our results indicate that only non-inactivating mutations in WFS1 are responsible for non-syndromic low-frequency hearing impairment.  相似文献   

8.
DFNA23, a novel locus for autosomal dominant nonsyndromic hearing loss, was identified in a Swiss German kindred. DNA samples were obtained from 22 family members in three generations: 10 with hearing impairment caused by the DFNA23 locus, 8 unaffected offspring, and 4 spouses of hearing-impaired pedigree members. In this kindred, the hearing-impaired family members have prelingual bilateral symmetrical hearing loss. All audiograms from hearing-impaired individuals displayed sloping curves, with hearing ability ranging from normal hearing to mild hearing loss in low frequencies, normal hearing to profound hearing loss in mid frequencies, and moderate to profound hearing loss in high frequencies. A conductive component existed for 50% of the hearing-impaired family members. The majority of the hearing-impaired family members did not display progression of hearing loss. The DFNA23 locus maps to 14q21-q22. Linkage analysis was carried out under a fully penetrant autosomal dominant mode of inheritance with no phenocopies. A maximum multipoint LOD score of 5.1 occurred at Marker D14S290. The 3.0-LOD unit support interval is 9.4 cM and ranged from marker D14S980 to marker D14S1046.  相似文献   

9.
Usher syndrome (USH) is an autosomal recessive disorder associated with sensorineural hearing impairment and progressive visual loss attributable to retinitis pigmentosa. This syndrome is both clinically and genetically heterogeneous. Three clinical types have been described of which type I (USH1) is the most severe. Six USH1 loci have been identified. We report a Palestinian consanguineous family from Jordan with three affected children. In view of the combination of profound hearing loss, vestibular dysfunction, and retinitis pigmentosa in the patients, we classified the disease as USH1. Linkage analysis excluded the involvement of any of the known USH1 loci. A genome-wide screening allowed us to map this novel locus, USH1G, in a 23-cM interval on chromosome 17q24-25. The USH1G interval overlaps the intervals for two dominant forms of isolated hearing loss, namely DFNA20 and DFNA26. Since several examples have been reported of syndromic and isolated forms of deafness being allelic, USH1G, DFNA20, and DFNA26 might result from alterations of the same gene. Finally, a mouse mutant, jackson shaker ( js), with deafness and circling behavior has been mapped to the murine homologous region on chromosome 11.  相似文献   

10.
Gasdermin (Gsdm) was originally identified as a candidate causative gene for several mouse skin mutants. Several Gsdm-related genes sharing a protein domain with DFNA5, the causative gene of human nonsyndromic hearing loss, have been found in the mouse and human genomes, and this group is referred to as the DFNA5-Gasdermin domain family. However, our current comparative genomic analysis identified several novel motifs distinct from the previously reported domain in the Gsdm-related genes. We also identified three new Gsdm genes clustered on mouse chromosome 15. We named these genes collectively the Gsdm family. Extensive expression analysis revealed exclusive expression of Gsdm family genes in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Further database searching revealed the presence of other related genes with a similar N-terminal motif. These results suggest that the Gsdm family and related genes have evolved divergent epithelial expression profiles.  相似文献   

11.
Mutations in the transmembrane channel-like gene 1 (TMC1) can cause both DFNA36 and DFNB7/11 hearing loss. More than thirty DFNB7/11 mutations have been reported, but only three DFNA36 mutations were reported previously. In this study, we found a large Chinese family with 222 family members showing post-lingual, progressive sensorineural hearing loss which were consistent with DFNA36 hearing loss. Auditory brainstem response (ABR) test of the youngest patient showed a special result with nearly normal threshold but prolonged latency, decreased amplitude, and the abnormal waveform morphology. Exome sequencing of the proband found four candidate variants in known hearing loss genes. Sanger sequencing in all family members found a novel variant c.1253T>A (p.M418K) in TMC1 at DFNA36 that co-segregated with the phenotype. This mutation in TMC1 is orthologous to the mutation found in the hearing loss mouse model named Bth ten years ago. In another 51 Chinese autosomal dominant hearing loss families, we screened the segments containing the dominant mutations of TMC1 and no functional variants were found. TMC1 is expressed in the hair cells in inner ear. Given the already known roles of TMC1 in the mechanotransduction in the cochlea and its expression in inner ear, our results may provide an interesting perspective into its function in inner ear.  相似文献   

12.
DFNA10 originally was mapped to the long arm of chromosome 6 in a large American family segregating for autosomal dominant progressive nonsyndromic hearing impairment. By extending this American family, we have reduced the original DFNA10 candidate region from 13 cM to 3.7 cM. We also report a Belgian family with autosomal dominant nonsyndromic hearing impairment linked to DFNA10 and a Norwegian family with the same condition in which linkage is suggestive, although maximum lod scores are only 2.5. The hearing phenotype in all three DFNA10 families is similar, with losses beginning in the middle frequencies and involving the low and high frequencies later in life.  相似文献   

13.
14.
Nonsyndromic hearing loss is one of the most genetically heterogeneous traits known. A total of 30 autosomal dominant nonsyndromic hearing-loss loci have been mapped, and 11 genes have been isolated. In the majority of cases, autosomal dominant nonsyndromic hearing loss is postlingual and progressive, with the exception of hearing impairment in families in which the impairment is linked to DFNA3, DFNA8/12, and DFNA24, the novel locus described in this report. DFNA24 was identified in a large Swiss German kindred with a history of autosomal dominant hearing loss that dates back to the middle of the 19th century. The hearing-impaired individuals in this kindred have prelingual, nonprogressive, bilateral sensorineural hearing loss affecting mainly mid and high frequencies. The DFNA24 locus maps to 4q35-qter. A maximum multipoint LOD score of 11.6 was obtained at 208.1 cM at marker D4S1652. The 3.0-unit support interval for the map position of this locus ranges from 205.8 cM to 211.7 cM (5.9 cM).  相似文献   

15.
The human alpha-tectorin (TECTA) gene has recently been cloned and proposed to be involved in autosomal dominant non-syndromic hearing impairment (NSHI) in two families linked to the DFNA12 locus. We have studied a Swedish pedigree with autosomal dominant NSHI with possible digenic inheritance of the disease, involving locus DFNA12 in chromosome 11 and locus DFNA2 in chromosome 1. Mutation analysis of the TECTA gene in this family has identified eight nucleotide substitutions indicating that TECTA is highly polymorphic. One of the changes results in a cysteine to serine (C 1057 S) mutation, in the zonadhesin domain of TECTA; this segregates with the disease haplotype on chromosome 11 and is not present in a control population. The mutation results in the replacement of a cysteine in one of the repeats of the zonadhesin/Von Willebrand domain of the protein and might cause a change in the crosslinking of the polypeptide. These findings add support to the involvement of TECTA in hearing disabilities. However, the three families carrying different TECTA mutations also show phenotypic differences: the hearing loss ranges from prelingual to progressive with late onset. The explanation for the different phenotypes and some clues regarding the functions of TECTA may lie in the localization of the mutations in the different modules of the protein. Another possibility is that the phenotype in the Swedish family is the result of two defective genes.  相似文献   

16.
DFNA16 is a form of autosomal dominant non-syndromic hearing loss (ADNSHL) characterized by fluctuating progressive hearing impairment. Earlier, we mapped the deafness-causing gene to chromosome 2q23-24.3. In this paper, we describe fine mapping results using additional markers tightly linked to the DFNA16 candidate region. Critical recombinants at markers D2S354 and D2S124 define a 3.5-cM interval that contains the DFNA16 gene. Positional candidate genes include two members of the voltage-gated sodium channel family, the type 2 alpha subunit (SCN2A) and the type 3 alpha subunit (SCN3A). After showing that SCN2A is expressed in human fetal cochlea, we determined its genomic structure to facilitate mutation screening in our DFNA16 kindred. We also determined the genomic structure of SCN3A. These two genes are oriented head-to-head, with their 5' ends separated by approximately 40 kb; their homology is 82% at the nucleotide level, and 85% for identities and 90% for positives at the amino acid level. They share similar genomic structures and have alternative splice isoforms that are developmentally regulated and highly conserved between species. Although no DFNA16-causing mutations were found in either gene, haplotype analysis with polymorphic markers in SCN2A introns further narrowed the candidate gene interval to the region flanked by D2S354 and STS SHGC-82894.  相似文献   

17.
The tilted (tlt) mouse carries a recessive mutation causing vestibular dysfunction. The defect in tlt homozygous mice is limited to the utricle and saccule of the inner ear, which completely lack otoconia. Genetic mapping of tlt placed it in a region orthologous with human 4p16.3-p15 that contains two loci, DFNA6 and DFNA14, responsible for autosomal dominant, nonsyndromic hereditary hearing impairment. To identify a possible relationship between tlt in mice and DFNA6 and DFNA14 in humans, we have refined the mouse genetic map, assembled a BAC contig spanning the tlt locus, and developed a comprehensive comparative map between mouse and human. We have determined the position of tlt relative to 17 mouse chromosome 5 genes with orthologous loci in the human 4p16.3-p15 region. This analysis identified an inversion between the mouse and human genomes that places tlt and DFNA6/14 in close proximity.  相似文献   

18.
常染色体显性遗传非综合征型耳聋致病基因定位研究   总被引:1,自引:0,他引:1  
耳聋具有高度的遗传异质性, 迄今已定位了51个常染色体显性遗传非综合征型耳聋(autosomal dominant non-syndromic sensorineural hearing loss, DFNA)基因位点, 20个DFNA相关基因被克隆.文章收集了一个DFNA巨大家系, 家系中有血缘关系的家族成员共170人, 对73名家族成员进行了详细的病史调查、全身检查和耳科学检查, 提示39人有不同程度的迟发性感音神经性听力下降, 未见前庭及其他系统的异常.应用ABI公司382个常染色体微卫星多态标记进行全基因组扫描连锁分析, 将该家系致聋基因定位于14q12-13处D14S1021-D14S70之间约7.6 cM (3.18 Mb)的区域, 最大LOD值为6.69 (D14S1040), 与已知DFNA9位点有4.7 cM (2.57 Mb)的重叠区, DFNA9致病基因COCH位于重叠区域内.下一步拟进行COCH基因的突变筛查, 以揭示该家系耳聋的分子致病机制.  相似文献   

19.
孙乔  张令强  贺福初 《遗传》2006,28(5):596-600

GSDMDC家族是近年来发现的一个全新的含有Gasdermin结构域的蛋白超家族,包括DFNA5、DFNA5L、GSDM、 GSDML 和 MLZE五个成员。研究表明GSDMDC家族可能与组织器官发育以及肿瘤,耳聋和脱发等遗传疾病相关,因而具有重要生理功能。其中,对该家族的DFNA5基因研究报道相对较多,它是常染色体显性非综合征性耳聋致病基因之一,并可能与黑色素瘤和乳腺癌相关。但对DFNA5基因在细胞和分子水平作用机制仍不清楚。对Gasdermin结构域的空间结构、特点、相互作用蛋白和生理功能也知之甚少。将来的研究将揭示此家族各成员的确切生理功能及其与疾病相关性。

  相似文献   

20.
Co-occurrence of double pathogenic mtDNA mutations with different claimed pathological roles in one mtDNA is infrequent. It is tentative to believe that each of these pathogenic mutations would have its own deleterious effect. Here we reported one three-generation Chinese family with a high penetrance of LHON (78.6%). Analysis of the complete mitochondrial genome in the proband revealed the presence of the LHON primary mutation G11778A in the NADH dehydrogenase 4 (ND4) gene and a deafness-associated mutation A1555G in the 12S rRNA gene. The other mtDNA variants in this family suggested a haplogroup status G2b. Although A1555G has long been confirmed to be a primary mutation for aminoglycoside-induced and non-syndromic hearing loss, none of the maternally related members in this family showed hearing impairment. It thus seems that the occurrence of A1555G in this family had no pathological manifestation. However, whether A1555G has a synergistic effect with G11778A and contribute to the high penetrance of LHON remained an open question. To our knowledge, this is the first report that identified the co-existence of a deafness mutation A1555G and a primary LHON mutation G11778A in one family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号