首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional pharmacophore hypotheses were built from a set of 43 agonists against octopamine receptor class 3 (OAR3) in locust nervous tissue. Among the 10 chemical-featured models generated by program Catalyst/Hypo, a hypothesis including hydrogen-bond acceptor (HBA), hydrophobic (Hp), and hydrophobic aliphatic (HpA1) features was considered to be important and predictive in evaluating OAR3 agonists. While the ideal and null hypotheses had a cost of 156.40 and 239.20, respectively, the 10 resulting hypotheses possessed costs from 169.89 to 175.81. The best hypothesis that was confirmed to have a 95% chance of true correlation yielded a low RMS of 0.757 and high regression r of 0.933. Active agonists mapped well onto all the features of the hypothesis such as HBA, Hp, and HpA1. On the other hand, inactive compounds were shown to be difficult to achieve the energetically favorable conformation which is found in the active molecules in order to fit the 3-D chemical feature pharmacophore models.  相似文献   

2.
Three-dimensional pharmacophore hypotheses were built from a set of 36 octopamine (OA)/tyramine (TA) agonists responsible for the inhibition of sex-pheromone production in Plodia interpunctella. Among the ten chemical-featured models generated by a program Catalyst/Hypo, hypotheses including hydrogen-bond acceptor (HBA), hydrogen-bond acceptor aliphatic (HBAl), hydrophobic (Hp), hydrophobic aromatic (HpAr) and hydrophobic aliphatic (HpAl) features were considered to be important and predictive in evaluating OA/TA agonists. Active agonists mapped well onto all the features of the hypothesis such as HBA, HBAl, Hp, HpAr and HpAl features. On the other hand, inactive compounds were shown to be poorly capable of achieving an energetically favorable conformation shared by the active molecules in order to fit the 3-D chemical-feature pharmacophore models. Those hypotheses are considered to be used in designing new leads for hopefully more active compounds. Further research on the comparison of models from the agonists may help elucidate the mechanisms of OA/TA receptor-ligand interactions.  相似文献   

3.
Three-dimensional pharmacophore hypotheses were built from a set of 10 octopamine (OA) agonist 2-(Arylimino)imidazolidines (AIIs), 2-(Arylimino)thiazolidines (AITs) and 2-(Arylimino)oxazolidines (AIOs). Among the 10 common-featured models generated by program Catalyst/HipHop, a hypothesis including a ring aromatic (RA), a positive ionizable (PI) and three hydrophobic aliphatic (HpAl) features was considered to be important in evaluating the OA-agonist activity. Active OA agonist 2,6-Et2 AII mapped well onto all the RA, PI and HpAl features of the hypothesis. On the other hand, less active compounds were shown to be difficult to achieve the energetically favorable conformation which is found in the active molecules in order to fit the 3-D common-feature pharmacophore models. Taken together, 2,6-Et2-Ph and foramidine structures are important as OA agonists. The present studies on OA agonists demonstrate that a RA, a PI and three HpAl sites located on the molecule seem to be essential for OA-agonist activity.  相似文献   

4.
Two chemical function-based pharmacophore models of selective κ-opioid receptor agonists were generated by using two different programs: Catalyst/HypoGen and Phase. The best output hypothesis (Hypo1) of HypoGen consisted of five features: one hydrogen-bond acceptor (HA), three hydrophobic points (HY), and one positive ionizable function (PI). The highest scoring model (Hypo2) produced by Phase comprised four features: one acceptor (A), one positive ionizable function (P), and two aromatic ring features (R). These two models (Hypo1 and Hypo2) were then validated by test set prediction and enrichment factors. They were shown to be able to identify highly potent κ-agonists within a certain range, and satisfactory enrichments were achieved. The features of these two pharmacophore models were similar and consistent with experiment data. The models produced here were also generally in accord with other reported models. Therefore, our pharmacophore models were considered as valuable tools for 3D virtual screening, and could be useful for designing novel κ-agonists.  相似文献   

5.
A chemical feature based pharmacophore model was developed for alpha(1A)-adrenoceptor antagonists by HypoGen module implemented in catalyst software package. The best scoring pharmacophore hypothesis, Hypo1, consisted of four important chemical features (one positive ion, one hydrogen-bond donor, one aromatic ring, and one hydrophobic group). The results of our study provide a valuable tool in designing new leads with desired biological activity by virtual screening.  相似文献   

6.
The clinical efficacy of multiple kinase inhibitors has caught the interest of Pharmaceutical and Biotech researchers to develop potential drugs with multi-kinase inhibitory activity for complex diseases. In the present work, we attempted to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3), keys players in immune signaling, by developing ideal pharmacophores integrating Ligand-based pharmacophore models (LBPMs) and Structure-based pharmacophore models (SBPMs), thereby projecting the optimum pharmacophoric required for inhibition of both the kinases. The four point LBPM; ADPR.14 suggested the presence of one hydrogen bond acceptor, one hydrogen bond donor, one positive ionizable, and one ring aromatic feature for Syk inhibitory activity and AADH.54 proposed the necessity of two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature for JAK3 inhibitory activity. To our interest, SBPMs identified additional ring aromatic features required for inhibition of both the kinases. For Syk inhibitory activity, the hydrogen bond acceptor feature indicated by LBPM was devoid of forming hydrogen bonding interaction with the hinge region amino acid residue (Ala451). Thus merging the information revealed by both LBPMs and SBPMs, ideal pharmacophore models i.e. ADPRR.14 (Syk) and AADHR.54 (JAK3) were generated. These models after rigorous statistical validation were used for screening of Asinex database. The systematic virtual screening protocol, including pharmacophore and docking-based screening, ADME property, and MM-GBSA energy calculations, retrieved final 10 hits as dual inhibitors of Syk and JAK3. Final 10 hits thus obtained can aid in the development of potential therapeutic agents for autoimmune disorders. Also the top two hits were evaluated against both the enzymes.  相似文献   

7.
Phosphoinositide 3-kinases (PI3Ks) family has emerged as promising targets for novel therapeutic agents against neoplastic diseases. Pharmacophore and 3D-quantitative structure–activity relationship modelling were applied to study the structure–activity relationship of PI3K inhibitors. The best HypoGen pharmacophore hypothesis Hypo1 with a correlation coefficient of 0.961 consists of one hydrogen-bond acceptor, one hydrogen-bond donor and two hydrophobic features, whereas the best phase hypothesis AADRRR.378 with favourable statistics (q2 = 0.7368, r2 = 0.9863) has two hydrogen-bond acceptors, one hydrogen-bond donor and three ring aromatic features. Multiple methods, such as Fischer validation, molecular docking and mapping of test set molecules, were carried out to validate these pharmacophore models. Furthermore, a comparative molecular similarity indices analysis candidate hypothesis model was generated as a supplement of pharmacophore hypothesis. Detailed protein–ligand binding information obtained by Glide was utilised in compound optimisation and virtual screening. A molecular database of 133 known inhibitors and 6179 decoys was built for a screening test to quantitatively analyse various hypotheses and scoring parameters. Finally, we designed a workflow integrating HypoGen pharmacophore searching, phase pharmacophore searching and molecular docking for screening the database. With an improved criterion of enrichment factor (EF = 17.43) and ROC curve (AUC = 0.946), this workflow would provide us an original method for novel PI3K inhibitors.  相似文献   

8.
Predictive pharmacophore models were developed for a large series of I(Kr) potassium channel blockers as class III antiarrhythmic agents using HypoGen in Catalyst software. The pharmacophore hypotheses were generated using a training set consisting of 34 compounds carefully selected from documents. Their biological data, expressed as IC(50), spanned from 1.5 nM to 2.8 mM with 7 orders difference. The most predictive hypothesis (Hypo1), consisting of four features (one positive ionizable feature, two aromatic rings and one hydrophobic group), had a best correlation coefficient of 0.825, a lowest rms deviation of 1.612, and a highest cost difference (null cost-total cost) of 77.552, which represents a true correlation and a good predictivity. The hypothesis Hypo1 was then validated by a test set consisting of 21 compounds and by a cross-validation of 95% confidence level with randomizing the data using CatScramble program. Accordingly, our model has strong predictivity to identify structural diverse I(Kr) potassium channel blockers with desired biological activity by virtual screening  相似文献   

9.
Human leukocyte antigen-related (PTP-LAR) is a receptor-like transmembrane phosphatase and a potential target for diabetes, obesity and cancer. In the present study, a sequence of in silico strategies (pharmacophore mapping, a 3D database searching, SADMET screening, and docking and toxicity studies) was performed to identify eight novel nontoxic PTP-LAR inhibitors. Twenty different pharmacophore hypotheses were generated using two methods; the best (hypothesis 2) consisted of three hydrogen-bond acceptor (A), one ring aromatic (R), and one hydrophobic aliphatic (Z) features. This hypothesis was used to screen molecules from several databases, such as Specs, IBS, MiniMaybridge, NCI, and an in-house PTP inhibitor database. In order to overcome the general bioavailability problem associated with phosphatases, the hits obtained were filtered by Lipinski’s rule of five and SADMET properties and validated by molecular docking studies using the available crystal structure 1LAR. These docking studies suggested the ligand binding pattern and interactions required for LAR inhibition. The docking analysis also revealed that sulfonylurea derivatives with an isoquinoline or naphthalene scaffold represent potential LAR drugs. The screening protocol was further validated using ligand pharmacophore mapping studies, which showed that the abovementioned interactions are indeed crucial and that the screened molecules can be presumed to possess potent inhibitory activities.  相似文献   

10.
Cyclooxygenase (COX) enzymes catalyse the biosynthesis of prostaglandins and thromboxane from arachidonic acid (AA). We summarize in this paper, the development of pharmacophores of a dataset of inhibitors for COX-2 by using the Catalyst/Hypogen module using six chemically diverse series of compounds. Training set consisting of 24 compounds was carefully selected. The activity spread of the training set molecules was from 0.1 to 10000 nM. The most predictive pharmacophore model (hypothesis 1), consisting of four features, namely, one hydrogen bond donor, one hydrogen bond acceptor, one hydrophobic aliphatic and one ring aromatic feature, had a correlation (r) of 0.954 and a root mean square deviation of 0.894. The entropy (configuration cost) value of the hypotheses was 16.79, within the allowed range. The difference between the null hypothesis and the fixed cost and between the null hypothesis and the total cost of the best hypothesis (hypothesis 1) was 88.37 and 78.51, respectively. The model was validated on a test set consisting of six different series of structurally diverse 22 compounds and performed well in classifying active and inactive molecules correctly. This validation approach provides confidence in the utility of the predictive pharmacophore model developed in this work as a 3D query tool in the virtual screening of drug like molecules to retrieve new chemical entities as potent COX-2 inhibitors. The model can also be used to predict the biological activities of compounds prior to their costly and time-consuming synthesis. Figure 3D Pharmacophore model generated using structurally diverse COX-2 inhibitors  相似文献   

11.
To reveal novel insights into the inhibition of BCR-ABL tyrosine kinase, pharmacophore mapping studies were performed for a series of phenylaminopyrimidine-based (PAP) derivatives, including imatinib (Gleevec). A seven-point pharmacophore model with one hydrophobic group (H), two hydrogen bond donors (D) and four aromatic rings (R) was developed using phase (pharmacophore alignment & scoring engine). The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a correlation coefficient of 0.886 and a survival score of 4.97 for training set molecules. The model showed excellent predictive power, with a correlation coefficient of Q2 = 0.768 for an external test set of ten molecules. The results obtained from our studies provide a valuable tool for designing new lead molecules with potent activity.  相似文献   

12.
13.
14.
Three-dimensional pharmacophore models were generated for retinoid X receptor (RXRγ) agonists using quantitative approach (CATALYST HypoRefine). One optimal pharmacophore model for selective RXRγ agonists was determined through careful validation processes. The best quantitative model (Hypo-1) had five features and five excluded volumes: three hydrophobic aliphatic groups (HAL1, HAL2, and HAL3), one hydrophobic aromatic ring (HAR), and one hydrogen bond acceptor (HBA). The model was validated using a wide range of test molecules. It could predict agonist activity and identify highly potent molecules. The present results are valuable to discover and develop specific RXRγ agonists with desired biological activities.  相似文献   

15.
Chemical features based 3D pharmacophore model for REarranged during Transfection (RET) tyrosine kinase were developed by using a training set of 26 structurally diverse known RET inhibitors. The best pharmacophore hypothesis, which identified inhibitors with an associated correlation coefficient of 0.90 between their experimental and estimated anti-RET values, contained one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic, and one ring aromatic features. The model was further validated by a testing set, Fischer’s randomization test, and goodness of hit (GH) test. We applied this pharmacophore model to screen NCI database for potential RET inhibitors. The hits were docked to RET with GOLD and CDOCKER after filtering by Lipinski’s rules. Ultimately, 24 molecules were selected as potential RET inhibitors for further investigation.  相似文献   

16.
Pharmacophore mapping studies were undertaken for a series of molecules belonging to pyrrolopyrimidines, indolopyrimidines and their congeners as multidrug resistance-associated protein (MRP1) modulators. A five-point pharmacophore with two hydrogen bond acceptors (A), one lipophilic/hydrophobic group (H), one positive ionic feature (P) and one aromatic ring (R) as pharmacophoric features was developed. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a correlation coefficient of r 2 = 0.799 for training set molecules. The model generated showed excellent predictive power, with a correlation coefficient Q 2 = 0.679 for an external test set of 20 molecules. The pharmacophore was further validated using four structurally diverse compounds with MRP1 modulatory activity. These compounds mapped well onto four of the five features of the pharmacophore. The pharmacophore proposed here was then utilised for the successful retrieval of active molecules with diverse chemotypes from database search. The geometry and features of pharmacophore are expected to be useful for the design of selective MRP1 inhibitors. Figure Alignment of multidrug resistance-associated protein (MRP1) inhibitors with the developed pharmacophore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Mesenchymal epithelial transition factor (c-Met) is an attractive target for cancer therapy. Three-dimensional pharmacophore hypotheses were built based on a set of known structurally diverse c-Met inhibitors. The best pharmacophore model, which identified inhibitors with an associated correlation coefficient of 0.983 between their experimental and estimated IC(50) values, consisted of two hydrogen-bond acceptors, one hydrophobic, and one ring aromatic feature. The highly predictive power of the model was rigorously validated by test set prediction and Fischer's randomization method. The high values of enrichment factor and receiver operating characteristic (ROC) score indicated the model performed fairly well at distinguishing active from inactive compounds. The model was then applied to screen compound database for potential c-Met inhibitors. A filtering protocol, including druggability and molecular docking, were also applied in hits selection. The final 38 molecules, which exhibited good estimated activities, desired binding mode and favorable drug likeness were identified as potential c-Met inhibitors. Their novel backbone structures could be served as scaffolds for further study, which may facilitate the discovery and rational design of potent c-Met kinase inhibitors.  相似文献   

18.
Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to N-methyl pyrimidones as HIV-1 integrase inhibitors. Based on the ligand-based pharmacophore model, we got 5-point pharmacophore model AADDR, with two hydrogen bond acceptors (A), two hydrogen bond donors (D) and one aromatic ring (R). The generated pharmacophore-based alignment was used to derive a predictive atom-based 3D-QSAR model for the training set (r(2)?=?0.92, SD?=?0.16, F?=?84.8, N?=?40) and for test set (Q(2)?=?0.71, RMSE?=?0.06, Pearson R?=?0.90, N?=?10). From these results, AADDR pharmacophore feature was selected as best common pharmacophore hypothesis, and atom-based 3D-QSAR results also support the outcome by means of favourable and unfavourable regions of hydrophobic and electron-withdrawing groups for the most potent compound 30. These results can be useful for further design of new and potent HIV-1 IN inhibitors.  相似文献   

19.
Three-dimensional pharmacophore models of human adenosine receptor A2A antagonists were developed based on 23 diverse compounds selected from a large number of A2A antagonists. The best pharmacophore model, Hypo1, contained five features: one hydrogen bond donor , three hydrophobic points and one ring aromatic. Its correlation coefficient, root mean square deviation, and cost difference values were 0.955, 0.921 and 84.4, respectively, suggested that the Hypo1 model was reasonable and reliable. This model was validated by three methods: a test set of 106 diverse compounds, a simulated virtual screening, and superimposition with the crystal structure of A2A receptor. The results showed that Hypo1 was not only in agreement with the A2A crystal structure and literature reports, but also well identified active A2A antagonists from the virtual database. This methodology provides helpful information and a robust tool for the discovery of potent A2A antagonists.  相似文献   

20.
Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R2?=?.9949), cross validation coefficient (Q2?=?.7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R2 value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU–ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号