首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germline mutation induction at mouse repeat DNA loci by chemical mutagens   总被引:4,自引:0,他引:4  
Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of male mice exposed to two monofunctional alkylating agents, ethylnitrosourea (ENU) and isopropyl methanesulfonate (iPMS), and a topoisomerase II inhibitor, etoposide. Pre-meiotic exposure to the alkylating agents resulted in a highly significant increase in ESTR mutation rate, but did not alter post-meiotically exposed cells. Pre-meiotic mutation induction by ENU and iPMS was linear within the interval of doses from 12.5 to 25mg/kg and reached a plateau at higher concentrations. Paternal exposure to etoposide resulted in ESTR mutation induction at meiotic stages but did not affect post- or pre-meiotic cells. The pattern of ESTR mutation induction after pre-meiotic and meiotic exposure to chemical mutagens was similar to that previously obtained by various traditional approaches for monitoring germline mutation in mice. The results of this study show that ESTR loci provide a new efficient experimental system for monitoring the genetic effects of chemical mutagens, capable of detecting increases in mutation rates at low doses of exposure.  相似文献   

2.
Expanded simple tandem repeat (ESTR) loci include some of the most unstable DNA in the mouse genome and have been extensively used in pedigree studies of germline mutation. We now show that repeat DNA instability at the mouse ESTR locus Ms6-hm can also be monitored by single molecule PCR analysis of genomic DNA. Unlike unstable human minisatellites which mutate almost exclusively in the germline by a meiotic recombination-based process, mouse Ms6-hm shows repeat instability both in germinal (sperm) DNA and in somatic (spleen, brain) DNA. There is no significant variation in mutation frequency between mice of the same inbred strain. However, significant variation occurs between tissues, with mice showing the highest mutation frequency in sperm. The size spectra of somatic and sperm mutants are indistinguishable and heavily biased towards gains and losses of only a few repeat units, suggesting repeat turnover by a mitotic replication slippage process operating both in the soma and in the germline. Analysis of male mice following acute pre-meiotic exposure to X-rays showed a significant increase in sperm but not somatic mutation frequency, though no change in the size spectrum of mutants. The level of radiation-induced mutation at Ms6-hm was indistinguishable from that established by conventional pedigree analysis following paternal irradiation. This confirms that mouse ESTR loci are very sensitive to ionizing radiation and establishes that induced germline mutation results from radiation-induced mutant alleles being present in sperm, rather than from unrepaired sperm DNA lesions that subsequently lead to the appearance of mutants in the early embryo. This single molecule monitoring system has the potential to substantially reduce the number of mice needed for germline mutation monitoring, and can be used to study not only germline mutation but also somatic mutation in vivo and in cell culture.  相似文献   

3.
The long-term genetic effects of maternal irradiation remain poorly understood. To establish the effects of radiation exposure on mutation induction in the germline of directly exposed females and the possibility of transgenerational effects in their non-exposed offspring, adult female BALB/c and CBA/Ca mice were given 1Gy of acute X-rays and mated with control males. The frequency of mutation at expanded simple tandem repeat (ESTR) loci in the germline of directly exposed females did not differ from that of controls. Using a single-molecule PCR approach, ESTR mutation frequency was also established for both germline and somatic tissues in the first-generation offspring of irradiated parents. While the frequency of ESTR mutation in the offspring of irradiated males was significantly elevated, maternal irradiation did not affect stability in their F(1) offspring. Considering these data and the results of our previous study, we propose that, in sharp contrast to paternal exposure to ionising radiation, the transgenerational effects of maternal high-dose acute irradiation are likely to be negligible.  相似文献   

4.
Mouse expanded simple tandem repeat (ESTR) loci are the most unstable loci in the mouse genome. Despite the fact that over the last decade these loci have been extensively used for studying germline mutation induction in mice, to date little is known about the mechanisms underlying spontaneous and induced ESTR mutation. Here we used flow cytometry and single-molecule PCR to compare the frequency of ESTR mutation in four flow-sorted fractions of the mouse male germ cells – spermatogonia, spermatocytes I, round and elongated spermatids. The frequency and the spectrum of ESTR mutation did not significantly differ between different stages of mouse spermatogenesis. Considering these data and the results of other publications, we propose that spontaneous ESTR mutation is mostly attributed to replication slippage in spermatogonia and these loci may be regarded as a class of expanded microsatellites.  相似文献   

5.
Somers CM 《Mutation research》2006,598(1-2):35-49
Expanded simple tandem repeat (ESTR) DNA loci that are unstable in the germline have provided the most sensitive tool ever developed for investigating low-dose heritable mutation induction in laboratory mice. Ionizing radiation exposures have shown that ESTR mutations occur mainly in pre-meiotic spermatogonia and stem cells. The average spermatogonial doubling dose is 0.62-0.69 Gy for low LET, and 0.18-0.34 Gy for high LET radiation. Chemical alkylating agents also cause significant ESTR mutation induction in pre-meiotic spermatogonia and stem cells, but are much less effective per unit dose than radiation. ESTR mutation induction efficiency is maximal at low doses of radiation or chemical mutagens, and may decrease at higher dose ranges. DNA repair deficient mice (SCID and PARP-1) with elevated levels of single and double-strand DNA breaks have spontaneously elevated ESTR mutation frequencies, and surprisingly do not show additional ESTR mutation induction following irradiation. In contrast, ESTR mutation induction in p53 knock-outs is indistinguishable from that of wild-type mice. Studies of sentinel mice exposed in situ to ambient air pollution showed elevated ESTR mutation frequencies in males exposed to high levels of particulate matter. These studies highlight the application of the ESTR assay for assessing environmental hazards under real-world conditions. All ESTR studies to date have shown untargeted mutations that occur at much higher frequencies than predicted. The mechanism of this untargeted mutation induction is unknown, and must be elucidated before we can fully understand the biological significance of ESTR mutations, or use these markers for formal risk assessment. Future studies should focus on the mechanism of ESTR mutation induction, refining dose responses, and developing ESTR markers for other animal species.  相似文献   

6.
The spectra and dose response for mutations at expanded simple tandem repeat (ESTR) loci in the germline of male mice acutely exposed to low-LET X or gamma rays at pre-meiotic stages of spermatogenesis were compared in five strains of laboratory mice. Most mutation events involved the gain or loss of a relatively small number of repeat units, and the distributions of length changes were indistinguishable between the exposed and control males. Overall, a significant bias toward gains of repeats was detected, with approximately 60% of mutants showing gains. The values for ESTR mutation induction did not differ substantially between strains. The highest values of doubling dose were obtained for two genetically related strains, BALB/c and C.B17 (mean value 0.98 Gy). The estimates of doubling dose for three other strains (CBA/H, C57BL/6 x CBA/H F1 and 129SVJ x C57BL/6) were lower, with a mean value of 0.44 Gy. The dose response for ESTR mutation across all five strains was very close to that for the specific loci (Russell 7-locus test). The mechanisms of ESTR mutation induction and applications of this system for monitoring radiation-induced mutation in the mouse germline are discussed.  相似文献   

7.
Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of DNA polymerase kappa (Polkappa(-/-)) deficient mice. The spontaneous mutation rate in homozygous Polkappa(-/-) males was significantly higher than in isogenic wild-type mice (Polkappa(+/+)), but the ESTR mutation spectrum in Polkappa(-/-) animals did not differ from that in Polkappa(+/+) males. We suggest that compromised translesion synthesis in Polkappa(-/-) mice may result in replication fork pausing which, in turn, may affect ESTR mutation rate.  相似文献   

8.
Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of non-exposed and irradiated severe combined immunodeficient (scid) and poly(ADP-ribose) polymerase (PARP-1-/-) deficient male mice. Non-exposed scid and PARP-/- male mice showed considerably elevated ESTR mutation rates, far higher than those in wild-type isogenic mice and other inbred strains. The irradiated scid and PARP-1-/- male mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated wild-type isogenic males. ESTR mutation spectra in the scid and PARP-1-/- strains did not differ from those in the isogenic wild-type strains. Considering these data and the results of previous studies, we propose that a delay in repair of DNA damage in scid and PARP-1-/- mice could result in replication fork pausing which, in turn, may affect ESTR mutation rate in the non-irradiated males. The lack of mutation induction in irradiated scid and PARP-1-/- can be explained by the high cell killing effects of irradiation on the germline of deficient mice.  相似文献   

9.
Sensitive and precise models are needed to identify potential genotoxicity at environmentally relevant doses of mutagens. The size length alterations in expanded simple tandem repeat (ESTR) loci have been used as a biomarker of genetic instability caused by a variety of agents in the mouse germline. The mechanisms operating in both spontaneous and induced instability are poorly understood. We have developed a single-molecule polymerase chain reaction (SM-PCR) method to investigate mutation at the mouse ESTR locus Ms6-hm in the murine C3H/10T1/2 embryonic cell line. Growth of cells to levels of high cell density induced increased ESTR instability, with mutation frequencies 5.1-fold (+/-2.8) over sub-confluent cultures. Accordingly, cell cultures were maintained at sub-confluent levels for further investigations of the induction of ESTR mutation by genotoxic agents. Treatment with the DNA alkylating agent N-nitroso-N-ethylurea (ENU) resulted in a 1.94-fold (+/-1.1) increase in mutation frequency, similar to responses measured previously in the germline in vivo. Therefore, mutagen exposure can also affect somatic (non-meiotic) rapidly dividing mouse cells. This SM-PCR approach eliminates the requirement of sub-cloning individual treated cells, thereby, reducing the time needed to screen for ESTR mutation, and will be a very useful tool for future investigations into the mechanisms involved in ESTR mutation.  相似文献   

10.
The induction of inherited DNA sequence mutations arising in the germline (i.e., sperm or egg) of mice exposed in utero to diesel exhaust particles (DEPs) via maternal inhalation compared to unexposed controls was investigated in this study. Previous work has shown that particulate air pollutants (PAPs) from industrial environments cause DNA damage and mutations in the sperm of adult male mice. Effects on the female and male germline during critical stages of development (in utero) are unknown. In mice, previous studies have shown that expanded simple tandem repeat (ESTR) loci exhibit high rates of spontaneous mutation, making this endpoint a valuable tool for studying inherited mutation and genomic instability. In the present study, pregnant C57Bl/6 mice were exposed to 19mg/m(3) DEP from gestational day 7 through 19, alongside air exposed controls. Male and female F1 offspring were raised to maturity and mated with control CBA mice. The F2 descendents were collected and ESTR germline mutation rates were derived from full pedigrees (mother, father, offspring) of F1 male and female mice. We found no evidence for increased ESTR mutation rates in females exposed in utero to DEP relative to control females. In contrast, a statistically significant increase in the mutation frequency of male mice exposed in utero to DEP was observed (2-fold; Fisher's exact p<0.05). Thus, maternal exposure to DEP results in increased mutation in sperm during development.  相似文献   

11.
Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of mismatch repair deficient Msh2 knock-out mice. Spontaneous mutation rates in homozygous Msh2(-/-) males were significantly higher than those in isogenic wild-type (Msh2(+/+)) and heterozygous (Msh2(+/-)) mice. In contrast, the irradiated Msh2(-/-) mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated Msh2(+/+) and Msh2(+/-) animals. Considering these data and the results of other publications, we propose that the Msh2-deficient mice possess a mutator phenotype in their germline and somatic tissues while the loss of a single Msh2 allele does not affect the stability of heterozygotes.  相似文献   

12.
Germline mutation at eight minisatellite loci has been studied among the irradiated families from the Techa River population and non-exposed families from the rural area of the Chelyabinsk and Kurgan Oblasts. The groups were matched by ethnicity, parental age, occupation and smoking habit. A statistically significant 1.7-fold increase in mutation rate was found in the germline of irradiated fathers, whereas maternal germline mutation rate in the exposed families was not elevated. Most of the minisatellite loci showed an elevated paternal mutation rate in the exposed group, indicating a generalised increase in minisatellite germline mutation rate in the Techa River population. These data suggest that the elevated minisatellite mutation rate can be attributed to radioactive exposure. The spectra of paternal mutation seen in the unexposed and exposed families were indistinguishable.  相似文献   

13.
Marcus JM 《Genetics》2003,163(2):591-597
P-element transposons in the Drosophila germline mobilize only in the presence of the appropriate transposase enzyme. Sometimes, instead of mobilizing completely, P elements will undergo site-specific recombination with the homologous chromosome. Site-specific recombination is the basis for male recombination mapping, since the male germline does not normally undergo recombination. Site-specific recombination also takes place in females, but this has been difficult to study because of the obscuring effects of meiotic recombination. Using map functions, I demonstrate that it is possible to employ female site-specific transposase-induced recombination (FaSSTIR) to map loci on the X chromosome and predict that FaSSTIR mapping should be more efficient than meiotic mapping over short genetic intervals. Both FaSSTIR mapping and meiotic mapping were used to fine map the crossveinless locus on the X chromosome. Both techniques identified the same 10-kb interval as the probable location of the crossveinless mutation. Over short intervals (< approximately 7.6 cM), FaSSTIR produces more informative recombination events than does meiotic recombination. Over longer intervals, FaSSTIR is not always more efficient than meiotic mapping, but it produces the correct gene order. FaSSTIR matches the expectations suggested by the map functions and promises to be a useful technique, particularly for mapping X-linked loci.  相似文献   

14.
Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently--the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.  相似文献   

15.
T Inukai  A Sako  H Y Hirano  Y Sano 《Génome》2000,43(4):589-596
In plant genomes as well as other eukaryotic genomes, meiotic recombination does not occur uniformly. At the level of the gene, high recombination frequencies are often observed within genetic loci in maize, but this feature of intragenic recombination is not seen at the csr1 locus in Arabidopsis. These observations suggest that meiotic recombination in plant genomes varies considerably among species. In the present study we investigated meiotic recombination at the wx locus in rice. The mutation sites of wx mutants induced by ethyl methanesulfonate (EMS) treatment or gamma-ray irradiation and a spontaneous wx mutant were physically characterized, and the genetic distances between those wx mutation sites were estimated by pollen analysis. Based on these results, the recombination frequency at the wx locus in rice was estimated as 27.3 kb/cM, which was about 10 times higher than the average for the genome, suggesting that there was a radically different rate of meiotic recombination for intra- and intergenic regions in the rice genome.  相似文献   

16.
Expanded simple tandem repeat (ESTR) sequences have proven useful biomarkers to detect genotoxicity in vivo. Their high sensitivity has been used to assess environmentally relevant doses of mutagens such as ionizing radiation, DNA alkylating agents and airborne particulate pollution, for germline mutations in mouse assays. The mutagenic response involves size alteration of these ESTR loci induced by agents causing a variety of cellular damage. The mechanistic aspects of this induced instability remain unclear and have not been studied in detail. Mechanistic knowledge is important to help understand the relevance of increased ESTR mutation frequencies. In this study, we applied a murine cell culture system to examine induced response to four agents exhibiting different modes of toxic action including: N-nitroso-N-ethylurea (ENU), benzo(a)pyrene (BaP), okadaic acid and etoposide at slightly sub-toxic levels. We used single-molecule-polymerase chain reaction (SM-PCR) to assess the relative mutant frequency after 4-week chemical treatments at the Ms6-hm ESTR sequence of cultured C3H/10T1/2 cells (a mouse embryonic cell line). Increased mutation was observed with both 0.64 mM ENU (1.95-fold increase, P<0.0001), 1 microM benzo(a)pyrene (1.87-fold increase, P=0.0006) and 3 nM etoposide (1.89-fold increase, P=0.0003). The putative ESTR mutagen okadaic acid (1.27-fold increase, P=0.2289), administered at 0.5 nM, did not affect the C3H/10T1/2 Ms6-hm locus. Therefore, agents inducing small and bulky adducts, and indirectly causing strand breaks through inhibition of topoisomerase, caused similar induction of instability at an ESTR locus at matched toxicities. As size spectra for induced mutations were identical, the data indicate that although these chemicals exhibit distinct modes of action, a similar indirect process is influencing ESTR instability. In contrast, a potent tumour promoter that is a kinase inhibitor does not contribute to induced ESTR instability in cell culture.  相似文献   

17.
Radiation has been shown to increase mutation frequencies at tandem repeat loci by indirect interactions of radiation with DNA. We studied germline mutations in chronically exposed Japanese medaka (Oryzias latipes) using microsatellite loci. After screening 26 randomly selected loci among unirradiated parents and their 200 offspring, we selected seven highly mutable loci (0.5-1.0 x 10(-2) mutants per locus per gamete) and two bonus loci for further study. To determine if radiation exposure increases mutation frequencies in these loci, medaka were chronically irradiated from subadults through maturation at relatively low dose rates of 68 mGy/d. Total doses for males and females were 10.4 and 3 Gy, respectively. The mean number of mutations for the offspring of exposed families (0.149+/-0.044) was significantly higher (P=0.018) than for control families (0.080+/-0.028), indicating induction of germline mutations from chronic irradiation. This increase in the microsatellite mutation rate is greater than expected from direct interaction of radiation with DNA, suggesting indirect, untargeted mechanism(s) for mutations. This study identified microsatellite loci with a high mutational background in medaka, variation among loci and families as important variables, and demonstrated the usefulness of this fish model for studying radiation-induced germline mutations.  相似文献   

18.
The results of recent human and animal studies have provided strong evidence for the epigenetic effects of a dietary deficiency of methyl donors such as folate, choline and methionine on cancer risk and some other common diseases. However, the mechanisms underlying the links between epigenetic alterations and disease remain elusive. To establish whether a methyl-donor deficient diet can result in long-term changes in mutation rate in treated animals and their offspring, BALB/c male mice were maintained for 8 weeks, from 4 weeks of age, on a synthetic diet lacking in choline and folic acid. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in sperm samples of treated males, as well as in sperm and brain of their first-generation offspring. ESTR mutation frequency in the germline of males sacrificed immediately after treatment or sampled 6 and 10 weeks after the end of dietary restriction did not significantly differ from that in age-matched control groups. The frequency of ESTR mutation in DNA samples extracted from sperm and brain of the first-generation offspring of treated mice was also similar to that in controls. The results of our study suggest that the effects of a methyl-donor deficient diet on mutation induction and transgenerational instability in mice are likely to be negligible.  相似文献   

19.
An interspecific backross was used to define a high resolution linkage map of mouse Chromosome (Chr) 1 and to analyze the segregation of the generalized lymphoproliferative disease (gld) mutation. Mice homozygous for gld have multiple features of autoimmune disease. Analysis of up to 428 progeny from the backcross [(C3H/HeJ-gld x Mus spretus)F1 x C3H/HeJ-gld] established a map that spans 77.6 cM and includes 56 markers distributed over 34 ordered genetic loci. The gld mutation was mapped to a less than 1 cM segment on distal mouse Chr 1 using 357 gld phenotype-positive backcross mice. A second backcross, between the laboratory strains C57BL/6J and SWR/J, was examined to compare recombination frequency between selected markers on mouse Chr 1. Significant differences in crossover frequency were demonstrated between the interspecific backcross and the inbred laboratory cross for the entire interval studied. Sex difference in meiotic crossover frequency was also significant in the laboratory mouse cross. Two linkage groups known to be conserved between segments of mouse Chr 1 and the long arm of human Chrs 1 and 2 where further defined and a new conserved linkage group was identified that includes markers of distal mouse Chr 1 and human Chr 1, bands q32 to q42.  相似文献   

20.
Bisphenol A (BPA) and other endocrine disrupting chemicals have been reported to induce negative effects on a wide range of physiological processes, including reproduction. In the female, BPA exposure increases meiotic errors, resulting in the production of chromosomally abnormal eggs. Although numerous studies have reported that estrogenic exposures negatively impact spermatogenesis, a direct link between exposures and meiotic errors in males has not been evaluated. To test the effect of estrogenic chemicals on meiotic chromosome dynamics, we exposed male mice to either BPA or to the strong synthetic estrogen, ethinyl estradiol during neonatal development when the first cells initiate meiosis. Although chromosome pairing and synapsis were unperturbed, exposed outbred CD-1 and inbred C3H/HeJ males had significantly reduced levels of crossovers, or meiotic recombination (as defined by the number of MLH1 foci in pachytene cells) by comparison with placebo. Unexpectedly, the effect was not limited to cells exposed at the time of meiotic entry but was evident in all subsequent waves of meiosis. To determine if the meiotic effects induced by estrogen result from changes to the soma or germline of the testis, we transplanted spermatogonial stem cells from exposed males into the testes of unexposed males. Reduced recombination was evident in meiocytes derived from colonies of transplanted cells. Taken together, our results suggest that brief exogenous estrogenic exposure causes subtle changes to the stem cell pool that result in permanent alterations in spermatogenesis (i.e., reduced recombination in descendent meiocytes) in the adult male.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号