首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of γ-chymotrypsin, the monomeric form of chymotrypsin, has been determined and refined to a crystallographic R-factor of 0.18 at 1.9 Å resolution. The details of the catalytic triad involving Asp102, His57 and Ser195 agree well with the results found for trypsin (Chambers & Stroud, 1979) and Streptomyces griseus protease A (Sielecki et al., 1979). As in many of the other serine proteases, the Oγ of Ser195 does not appear to be hydrogen-bonded to His57.The three-dimensional structures of γ- and α-chymotrypsin (Birktoft & Blow, 1972) are closely similar. The largest backbone differences occur in the “calcium binding loop” (residues 75 to 78) and in the “autolysis loop” (residues 146, 149 and 150). Ala149 and Asn150 are disordered in γ-chymotrypsin, whereas they are stabilized by intermolecular interactions in α-chymotrypsin. The conformation of Ser218 is also different, presumably the indirect result of the dimeric interactions of α-chymotrypsin. These results are discussed in terms of the slow, pH-dependent interconversion of α- and γ-chymotrypsin.  相似文献   

2.
The complex formed by porcine pancreatic kallikrein A with the bovine pancreatic trypsin inhibitor (PTI) has been crystallized at pH 4 in tetragonal crystals of space group P41212 with one molecule per asymmetric unit. Its crystal structure has been solved applying Patterson search methods and using a model derived from the bovine trypsin-PTI complex (Huber et al., 1974) and the structure of porcine pancreatic kallikrein A (Bode et al., 1983). The kallikrein-PTI model has been crystallographically refined to an R-value of 0·23 including X-ray data to 2·5 Å.The root-mean-square deviation, including all main-chain atoms, is 0·45 Å and 0·65 Å for the PTI and for the kallikrein component, respectively, compared with the refined models of the free components. The largest differences are observed in external loops of the kallikrein molecule surrounding the binding site, particularly in the C-terminal part of the intermediate helix around His172. Overall, PTI binding to kallikrein is similar to that of the trypsin complex. In particular, the conformation of the groups at the active site is identical within experimental error (in spite of the different pH values of the two structures). Ser195 OG is about 2·5 Å away from the susceptible inhibitor bond Lys15 C and forms an optimal 2·5 Å hydrogen bond with His57 NE.The PTI residues Thr11 to Ile18 and Val34 to Arg39 are in direct contact with kallikrein residues and form nine intermolecular hydrogen bonds. The reactive site Lys15 protrudes into the specificity pocket of kallikrein as in the trypsin complex, but its distal ammonium group is positioned differently to accommodate the side-chain of Ser226. Ser226 OG mediates the ionic interaction between the ammonium group and the carboxylate group of Asp189. Model-building studies indicate that an arginine side-chain could be accommodated in this pocket. The PTI disulfide bridge 14–38 forces the kallikrein residue Tyr99 to swing out of its normal position. Model-building experiments show that large hydrophobic residues such as phenylalanine can be accommodated at this (S2) site in a wedge-shaped hydrophobic cavity, which is formed by the indole ring of Trp215 and by the phenolic side-chain of Tyr99, and which opens towards the bound inhibitor/substrate chain. Arg17 in PTI forms a favorable hydrogen bond and van der Waals' contacts with kallikrein residues, whereas the additional hydrogen bond formed in the trypsin-PTI complex between Tvr39 OEH and Ile19 N is not possible The kallikrein binding site offers a qualitative explanation of the unusual binding and cleavage at the N-terminal Met-Lys site of kininogen. Model-building experiments suggest that the generally restricted capacity of kallikrein to bind protein inhibitors with more extended binding segments might be explained by steric hindrance with some extruding external loops surrounding the kallikrein binding site (Bode et al., 1983).  相似文献   

3.
《Gene》1988,69(2):237-244
A 1.7-kb EcoRI fragment containing the structural gene for α-lytic protease has been cloned from Lysobacter enzymogenes 495 chromosomal DNA: the first example of a gene cloned from this organism. The protein sequence deduced from the nucleotide sequence encoding this serine protease matches the published amino acid sequence [Olson et al., Nature 228 (1970) 438–442] precisely. Sequence analysis and S 1 mapping indicate that, like subtilisin [e.g. Wells et al., Nucleic Acids Res. 11 (1983) 7911–7925] α-lytic protease is synthesized as a pre-pro protein (41 kDa) that is subsequently processed to its mature extracellular form (20 kDa). This first finding of a large N-terminal protease precursor in a Gram-negative bacterial protease strengthens the hypothesis that large precursors may be a general property of extracellular bacterial proteases, and suggests that the N- or C-terminal location of the precursor segment may be significant.  相似文献   

4.
Panning of a substrate phage library with an α-lytic protease mutant showed that substrate phage display can be used to isolate sequences with improved protease sensitivity even for proteases of relatively broad specificity. Two panning experiments were performed with an engineered α-lytic protease mutant known to have a preference for cleavage after His or Met residues. Both experiments led to the isolation of protease-sensitive phage containing linker sequences in which His and Met residues were enriched compared with the initial library. Despite the relatively hydrophobic substrate binding site of the enzyme, the predominant protease-sensitive sequence isolated from the second library panning had the sequence Asp-Ser-Thr-Met. Kinetic studies showed that this sequence was cleaved up to 4.5-fold faster than rationally designed positive controls. Protease-resistant phage particles were also selected and characterized, with the finding that Gly and Pro appeared frequently at the putative P4 positions, whereas Asp dominated the putative P1 position.  相似文献   

5.
The crystal structure of the extracellular bacterial serine protease α-lytic protease (αLP) has been solved at 0.83 Å resolution at pH 8. This ultra-high resolution structure allows accurate analysis of structural elements not possible with previous structures. Hydrogen atoms are visible, and confirm active-site hydrogen-bonding interactions expected for the apo enzyme. In particular, His57 Nδ1 participates in a normal hydrogen bond with Asp102 in the catalytic triad, with a hydrogen atom visible 0.83(±0.06) Å from the His Nδ1. The catalytic Ser195 occupies two conformations, one corresponding to a population of His57 that is doubly protonated, the other to the singly protonated His57. Based on the occupancy of these conformations, the pKa of His57 is calculated to be ∼8.8 when a sulfate ion occupies the active site. This 0.83 Å structure has allowed critical analysis of geometric distortions within the structure. Interestingly, Phe228 is significantly distorted from planarity. The distortion of Phe228, buried in the core of the C-terminal domain, occurs at an estimated energetic cost of 4.1 kcal/mol. The conformational space for Phe228 is severely limited by the presence of Trp199, which prevents Phe228 from adopting the rotamer observed in many other chymotrypsin family members. In αLP, the only allowed rotamer leads to the deformation of Phe228 due to steric interactions with Thr181. We hypothesize that tight packing of co-evolved residues in this region, and the subsequent deformation of Phe228, contributes to the high cooperativity and large energetic barriers for folding and unfolding of αLP. The kinetic stability imparted by the large, cooperative unfolding barrier plays a critical role in extending the lifetime of the protease in its harsh environment.  相似文献   

6.
Structure and refinement of penicillopepsin at 1.8 A resolution   总被引:15,自引:0,他引:15  
Penicillopepsin, the aspartyl protease from the mould Penicillium janthinellum, has had its molecular structure refined by a restrained-parameter least-squares procedure at 1.8 Å resolution to a conventional R-factor of 0.136. The estimated co-ordinate accuracy for the majority of the 2363 atoms of the enzyme is better than 0.12 Å. The average atomic thermal vibration parameter, B, for the atoms of the enzyme is 14.5 Å2. One determining factor of this low average B value is the large central hydrophobic core, in which there are two prominent clusters of aromatic residues, one of nine, the other of seven residues. The N and C-terminal domains of penicillopepsin display an approximate 2-fold symmetry: 70 residue pairs are topologically equivalent, related by a rotation of 177 ° and a translation of 1.2 Å. The analysis of the secondary structural features of the molecule reveals non-linear hydrogen bonding. In penicillopepsin, there is no difference in the mean hydrogen-bond parameters for the elements of α-helix, parallel or antiparallel β-pleated sheet. The mean values for these structural elements are: NO, 2.90 Å; NHO, 1.95 Å; N?O, 160 °. The average hydrogen-bond parameters of the reverse β-turns and the 310 helices are distinctly different from the above values. The analysis of sidechain conformational angles χ1 and χ2 penicillopepsin and other enzyme structures refined in this laboratory shows much narrower distributions as compared with those compiled from unrefined protein structures. The close proximity of the carboxyl groups of Asp33 and Asp213 suggests that they share a proton in a tight hydrogen-bonded environment (Asp33OD2 to Asp213OD1 is 2.87 Å). There are several solvent molecules in the active site region and, in particular, O39 forms hydrogen-bonded interactions with both aspartate residues. The disposition of the two carboxyl groups suggests that neither is likely to be involved in a direct nucleophilic attack on the scissile bond of a substrate. The average atomic B-factors of the residues in this region of the molecule are between 5 and 8 Å2, confirming the proposal that conformational mobility of the active site residues has no role in the enzymatic mechanism. However, conformational mobility of neighbouring regions of the molecule e.g. the “flap” containing Tyr75, is verified by the high B-factors for those residues. The positions of 319 solvent sites per asymmetric unit have been selected from difference electron density maps and refined. Thirteen have been classified as internal, and several of these may have key roles during catalysis. The positively charged Nζ atom of Lys304 forms hydrogen bonds to the carboxylate of Asp14 (internal ion pair) and to two internal water molecules O5 and O25. The protonated side-chain of Asp300 forms a hydrogen bond to Thr214O, 2.78 Å, and is the recipient of a hydrogen bond from a surface pocket water molecule O46. There is no possibility for direct interaction between Asp300 and Lys304 without large conformational changes of their environment. The intermolecular packing involves many protein-protein contacts (66 residues) with a large number of solvent molecules involved in bridging between polar residues at the contact surface. The penicillopepsin molecules resemble an approximate hexagonal close-packing of spheres with each molecule having 12 “nearest” neighbours.  相似文献   

7.
High resolution proton nuclear magnetic resonance has been used to observe protons at the active site of chymotrypsin Aδ and at the same region of chymotrypsinogen A. A single resonance with the intensity of one proton is located in the low field region of the nuclear magnetic resonance spectrum. This resonance is observed in H2O solutions but not in 2H2O. On going from low to high pH the resonance titrates upfield 3 parts per million in both proteins and has a pK of 7.5. The titration can be prevented by alkylating His57 with either of two active site directed chloromethyl ketones. Using these data the proton resonance has been assigned to a proton in a hydrogen bond between His57 and Asp102. Further confirmation of this assignment lies in the observation of a similar resonance in this same low field region of the nuclear magnetic resonance spectrum of trypsin, trypsinogen, subtilisin BPN′ and α-lytic protease all of which have the Asp-His-Ser triad at their active sites.This proton resonance in chymotrypsin Aδ was used as a probe to monitor the charge state of the active site upon formation of a stable acyl-enzyme analogue N2(N-acetylalanyl)-N1benzoylcarbazoyl-chymotrypsin Aδ. In this derivative the His-Asp proton resonance titrates from the same low pH end point as in the native enzyme, ?18 parts per million, to a new high pH end point of ?14.4 parts per million (versus ?15.0 parts per million in the native enzyme). The difference of 0.6 parts per million in the high pH end points between the native and acyl enzyme is interpreted as supporting the suggestion that a hydrogen bond exists between Ser195 and His57 in the native enzyme and zymogen.We conclude from these studies that the charge relay system from Asp102 across His57 to Ser195 is intact in chymotrypsin Aδ and chymotrypsinogen A, and that, in the native enzyme, it slightly polarizes Ser195.  相似文献   

8.
The crystal structure of the bacterial serine protease from Streptomyces griseus (SGPA) has been refined at 1.8 Å resolution by a restrained parameter least-squares procedure (Konnert, 1976) to a conventional R factor of 0.139 for 12662 statistically significant reflections [I > 3σ(I)]. The number of variable parameters in the final model was 5912 which included positional and individual thermal parameters of the enzyme, and positions, B factors and occupancies of 175 solvent molecules. The algorithm used for this refinement allows for the simultaneous restraint on bond distances and distances related to interbond angles, the coplanarity of atoms in planar groups, the conservation of chirality of asymmetric centres, non-bonded contact distances, conformational torsional angles and individual isotropic temperature factors.The refined structure of SGPA differs from ideal bond lengths by an overall root-mean-square deviation of 0.02 Å; the corresponding value for angle distances is 0.038 Å. Comparison of the phase angles for the shell of data, 8.0 to 2.8 Å, between the multiple isomorphous replacement phases (Brayer et al., 1978a) and the refined phases, indicates an overall difference (r.m.s.) of 56.6 °. The average conformational angle of the peptide bond (ω) is 179.7 ° (root-mean-square deviation ± 2.5 °) for the 180 peptide bonds of SGPA. Of the 175 solvent molecules included during the course of the refinement, 22 with occupancies ranging from 1.00 to 0.38 are located in the active site and the substrate binding region. It was not until these water molecules were included in the refinement process that the active Ser195 adopted its final conformation (χ1 = ?77 °). The resulting distance from Oγ of Ser195 to Nε2 of His57 is 3.1 Å, which, when taken with the observed distortion from linearity (50 °), indicates a rather weak interaction.  相似文献   

9.
Chymostatin is a naturally occurring inhibitor of serine proteases that have chymotryptic-like specificity. This tetrapeptide inhibitor is produced by various species of Streptomyces bacteria. Chymostatin reacts with the serine enzyme Streptomyces griseus protease A in the crystalline state to produce an adduct, the structure of which is in agreement with hemiacetal formation between the C-terminal l-phenylalaninal residue of the inhibitor and the Oγ atom of the active Ser195 residue of S. griseus protease A. The 2.8 Å difference electron density map of the complex is also consistent with the novel structural features previously deduced spectroscopically for chymostatin; i.e. an essential (for inhibition) aldehyde function in the C-terminal l-phenylalaninal residue, an unusual arnino acid, 2-(2-iminohexahydro-(4 S)-pyrimidyl)-(S)-glycine as the third residue from the C terminus and an N-terminal amino group blocked by a (1S)-carboxyphenylethyl-carbamoyl group. There is no significant movement of the active site residues of S. griseus protease A upon complexation with chymostatin.  相似文献   

10.
The crystal structure of a bacterial protein proteinase inhibitor (Streptomyces subtilisin inhibitor) was solved at 2·6 Å resolution. Each subunit of the dimeric inhibitor has a five-stranded antiparallel β-sheet and two short α-helices. The subunit-subunit interface formed by a stack of two β-sheets provided by the two subunits resembles the dimer-dimer interface of concanavalin A. Conformation of the reactive site around the scissible bond Met73-Val74 seems very rigid. Between bovine pancreatic trypsin inhibitor (Kunitz) and the Streptomyces inhibitor, the reactive site conformations are almost identical with each other from the P2 to P2′ residues, while between the soybean trypsin inhibitor (Kunitz) and the Streptomyces inhibitor they are similar from the P2 to P1′ residues. There are overall similarities in conformation extending from the P3 to P2′ residues between the Streptomyces inhibitor and a hypothetical substrate presumed (Robertus et al., 1972b) to be bound to subtilisin BPN′ in a productive binding mode. Apart from the reactive site, there seems to be no structural relationship among the Streptomyces, bovine pancreatic and soybean inhibitors, suggesting their convergent evolution from separate ancestral proteins.  相似文献   

11.
Cyanophycin, or poly-l-Asp-multi-l-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-Å resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a kcat of 16.5 s− 1 and a kcat/KM of 7.5 × 10− 6 M− 1 s− 1. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the β-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate β-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to β-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.  相似文献   

12.
A serine protease from Bothrops atrox (Peruvian specimen’s venom) was isolated in two chromatographic steps in LC molecular exclusion and reverse phase-HPLC. This protein was denominated Ba III-4 (33,080.265 Da determinated by MALDI-TOF mass spectrometry) and showed pI of 5.06, Km 0.2 × 10−1 M and the V máx 4.1 × 10−1 nmoles p-NA/lt/min on the synthetic substrate BapNA. Ba III-4 also showed ability to coagulate bovine fibrinogen. The serine protease was inhibited by soyben trypsin inhibitor and DA2II, which is an anti-hemorrhagic factor isolated from the opossum specie Didelphis albiventris. The primary structure of Ba III-4 showed the presence of His(44), Asp(94) and Ser(193) residues in the corresponding positions to the catalytic triad established in the serine proteases and Ser(193) are inhibited by phenylmethylsulfonylfluoride (PMSF). Amino acid analysis showed a high content of Asp, Glu, Gly, Ser, Ala and Pro, as well as 12 half-cysteine residues. Ba III-4 contained 293 amino acid residues and the primary structure of VIGGDECDIN EHPFLAFMYY SPRYFCGMTL INQEWVLTAA HCRYFCGMTL IHLGVHRESE KANYDEVRRF PKEKYFIFCD NNFTDDEVDK DIMLIRLDKP VSNSEHIAPL SLPSNPPSVG SVCRIMGWGQ TTTSPIDVLS PDEPHCANIN LFDNTVCHTA HPQVANTRTS TDTLCAGDLQ GGRDTCNGDS GGPLICNEQL HGILSWGGDP CAQPNKPAFY TKVYYFDHPW IKSIIAGNKK TVNFTCPPLR SDAKDDSTTY INQEWDWVLT AEHCDRTHMR NSFYDYSSIN SDS. Titration experiments did not show the presence of free sulfhydryl groups after 4 h incubation, nor were differences found in relation to titration kinetics in the presence of nondenaturating buffer. The isolation of this protein, Ba III-4, is of potential interest for the understanding of the pathomechanism of the snake venom action and for the identification of new blood coagulation enzymes of natural sources.  相似文献   

13.
The sugar binding site of monomeric yeast hexokinase B complexed with the competitive inhibitor o-toluoylglucosamine has been examined in the model resulting from a crystallographic refinement at 2·1 Å resolution. Difference Fourier maps calculated assuming various sugar configurations demonstrate that the o-toluoylglucosamine binds in the chair equatorial conformation with its 1-hydroxyl axial (α-anomer). The absence of a chemically derived amino acid sequence has complicated our interpretations of sugar-enzyme interactions. Nevertheless, we conclude that the carboxyl group of Asp189 is hydrogen-bonded to both the 6- and 4-hydroxyl groups. The 4-hydroxyl group is hydrogen-bonded also to Asx188 and Asx215, while the 3-hydroxyl is interacting with both Asx245 and Asx 188, consistent with the enzyme's observed sugar specificity. The carboxyl group of Asp 189 is excluded from solvent in the presence of glucose and may be acting as a general base to enhance the nucleophilicity of the 6-hydroxyl group and thereby promote its attack on the γ-phosphate of ATP.Glucose is shown to bind to the enzyme in the same orientation and conformation as the sugar moiety of o-toluoylglucosamine, so that the 6-hydroxyl group and the carboxyl of Asp 189 are in identical positions in complexes with these two sugars. The fact that o-toluoylglucosamine is not a substrate must be explained by two observations. First, the binding of glucose results in one lobe rotating by 12 ° relative to the other lobe, thereby closing off the slit into which the sugar has bound (Bennett &; Steitz, unpublished results). Second, o-toluoylglucosamine does not produce this conformational change, because the bulky toluoyl group prevents the closing of this slit between the two lobes. We conclude, therefore, that the large glucose-induced conformational change must be essential for subsequent catalytic steps.It appears unlikely from this study that thiols play any direct role in catalysis or in substrate binding. One thiol group, however, lies 5·5 Å from the 3-hydroxyl and is hydrogen-bonded to three of the Asx groups that are binding the sugar. Chemical modification of this buried thiol would disrupt the glucose binding site, which could account for the observation (Otieno et al., 1977) that cyanylation of one of the enzyme's thiols abolishes enzymatic activity.A sulfate molecule is bound to the enzyme by two serine side-chains and its sulfur atom is 5·5 Å from the 6-hydroxyl group of glucose. If the γ-phosphate of ATP binds to this sulfate binding site, it would still be a little too far from the 6-hydroxyl for direct phosphoryl transfer.  相似文献   

14.
The complex formed by bovine trypsinogen and the pancreatic trypsin inhibitor crystallizes in large crystals isomorphous with trypsin-PTI2 complex crystals Rühlmann et al. 1973. X-ray diffraction data to 1.9 Å resolution were collected in the absence and presence of Ile-Val dipeptide. Both trypsinogen complex structures have been crystallographically refined, using the refined trypsin-PTI complex Huber et al. 1974a as a starting model. The final R values are 0.25 and 0.26, respectively. The mean main-chain atom deviations between the three complex structures are about 0.15 Å. In contrast, the mean deviation between the complexed and the free trypsinogen Fehlhammer et al. 1977 is 0.28 Å, reflecting the influence of crystal packing and complexation. The trypsinogen component adopts a trypsin-like conformation upon PTI binding: The Asp194 side-chain turns around and the activation domain becomes rigid, forming the specificity pocket and the Ile16 binding cleft. The specific interactions between PTI and trypsin are also observed in the trypsinogen complex. As in free trypsinogen, the N-terminus including residues Val10 to Gly18 is mobile and sticks out into solution. Apart from the different arrangement of the N-termini in the two complexes, the only significant, but minor structural difference is the enhanced thermal mobility of the autolysis loop in the trypsinogen complex. Upon binding of the Ile-Val dipeptide, the autolysis loop becomes fixed as in the trypsin complex. The Ile-Val position is identical in the ternary and the trypsin complex.  相似文献   

15.
A novel cold-adapted lipolytic enzyme gene, est97, was identified from a high Arctic intertidal zone sediment metagenomic library. The deduced amino acid sequence of Est97 showed low similarity with other lipolytic enzymes, the maximum being 30 % identity with a putative lipase from Vibrio caribbenthicus. Common features of lipolytic enzymes, such as the GXSXG sequence motif, were detected. The gene product was over-expressed in Escherichia coli and purified. The recombinant Est97 (rEst97) hydrolysed various ρ-nitrophenyl esters with the best substrate being ρ-nitrophenyl hexanoate (K m and k cat of 39 μM and 25.8 s?1, respectively). This esterase activity of rEst97 was optimal at 35 °C and pH 7.5 and the enzyme was unstable at temperatures above 25 °C. The apparent melting temperature, as determined by differential scanning calorimetry was 39 °C, substantiating Est97 as a cold-adapted esterase. The crystal structure of rEst97 was determined by the single wavelength anomalous dispersion method to 1.6 Å resolution. The protein was found to have a typical α/β-hydrolase fold with Ser144-His226-Asp197 as the catalytic triad. A suggested, relatively short lid domain of rEst97 is composed of residues 80–114, which form an α-helix and a disordered loop. The cold adaptation features seem primarily related to a high number of methionine and glycine residues and flexible loops in the high-resolution structures.  相似文献   

16.
We previously reported purification and characterization of a 90k serine protease with pI 3.9 from Bacillus subtilis (natto) No. 16 [Kato et al. 1992 Biosci Biotechnol Biochem 56:1166]. The enzyme showed different and unique substrate specificity towards the oxidized B-chain of insulin from those of well-known bacterial serine proteases from Bacillus subtilisins. The structural gene, hspK, for the 90k serine protease was cloned and sequenced. The cloned DNA fragment contained a single open reading frame of 4302 bp coding a protein of 1433 amino acid residues. The deduced amino acid sequence of the 90k-protease indicated the presence of a typical signal sequence of the first 30 amino acids region and that there was a pro-sequence of 164 amino acid residues after the signal sequence. The mature region of the 90k-protease started from position 195 of amino acid residue, and the following peptide consisted of 1239 amino acid residues with a molecular weight of 133k. It might be a precursor protein of the 90k-protease, and the C-terminal region of 43k might be degraded to a mature protein from the precursor protein. The catalytic triad was thought to consist of Asp33, His81, and Ser259 from comparison of the amino acid sequence of the 90k-protease with those of the other bacterial serine proteases. The high-molecular-weight serine protease, the 90k-protease, may be an ancient form of bacterial serine proteases.  相似文献   

17.
Beta-turns in proteins   总被引:40,自引:0,他引:40  
The X-ray atomic co-ordinates from 29 proteins of known sequence and structure were utilized to elucidate 459 β-turns in regions of chain reversals. Tetrapeptides whose αCiαC(i + 3) distances were below 7 Å and not in a helical region were characterized as β-turns. In addition, β-turns were considered to have hydrogen bonding if their computed O(i)N(i + 3) distances were ≤3.5 Å. The torsion angles of 26 proteins containing 421 β-turns were examined and classified into 11 bend types based on the (φ, ψ) dihedral angles of the i + 1 and i + 2 bend residues. The average frequency of β-turns is 32% as compared to the 38% helices and 20% β-sheets in the 29 proteins. The most frequently occurring bend residues are Asn, Cys, Asp in the first position, Pro, Ser, Lys in the second position, Asn, Asp, Gly in the third position, and Trp, Gly, Tyr in the fourth position. Residues with the highest β-turn potential in all four positions are Pro, Gly, Asn, Asp, and Ser with the most hydrophobic residues (i.e. Val, IIe, and Leu) showing the lowest bend potential. However, in the region just beyond the β-turns, hydrophobic residues occur with greater frequency than do hydrophilic residues. An environmental analysis of β-turn neighboring residues shows that reverse chain folding is stabilized by anti-parallel β-sheets as well as helix-helix and α-β interactions. The β-turn potential at the 12 positions adjacent to and including the bend were plotted for the 20 amino acids and showed dramatic positional preferences, which may be classified according to the nature of the side-chains. An examination of the 27 β-turns in elastase showed that 21 were found in identical positions as those in α-chymotrypsin. However, only 37 of the 84 bend residues were conserved, indicating that structural similarity may persist despite differences in sequence homology. A survey of residues occupying bend types I′, II′ and III′ showed that Gly appeared most frequently in the third position in bend types I′ and III′ as well as in the second position in bend types II′ and III′. Fourteen hydrogenbonded type II bends were found without a Gly at the third position, contrary to the energy calculations. Eight type VI bends with a cis Pro at the third position were also elucidated.  相似文献   

18.
The crystal structure of bovine pancreatic phospholipase A2 has been refined to 1.7 Å resolution. The starting model for this refinement was the previously published structure at a resolution of 2.4 Å (Dijkstra et al., 1978). This model was adjusted to the multiple isomorphous replacement map with Diamond's real space refinement program (Diamond, 1971,1974) and subsequently refined using Agarwal's least-squares method (Agarwal, 1978). The final crystallographic R-factor is 17.1% and the estimated root-mean-square error in the positional parameters is 0.12 Å. The refined model allowed a detailed survey of the hydrogen-bonding pattern in the molecule. The essential calcium ion is located in the active site and is stabilized by one carboxyl group as well as by a peptide loop with many residues unvaried in all known phospholipase A2 sequences. Five of the oxygen ligands octahedrally surround the ion. The sixth octahedral position is shared between one of the carboxylate oxygens of Asp49 and a water molecule. The entrance to the active site is surrounded by residues involved in the binding of micelle substrates. The N-terminal region plays an important role here. Its α-NH+3 group is buried and interacts with Gln4, the carbonyl oxygen of Asn71 and a fully enclosed water molecule, which provides a link between the N terminus and several active site residues. A total of 106 water molecules was located in the final structure, most of them in a two-layer shell around the protein molecule. The mobility in the structure was derived from the individual atomic temperature factors. Minimum mobility is found for the main chain atoms in the central part of the two long α-helices. The active site is rather rigid.  相似文献   

19.
The N-terminal segment of the Semliki Forest virus polyprotein is an intramolecular serine protease that cleaves itself off after the invariant Trp267 from a viral polyprotein and generates the mature capsid protein. After this autoproteolytic cleavage, the free carboxylic group of Trp267 interacts with the catalytic triad (His145, Asp167 and Ser219) and inactivates the enzyme. We have deleted the last 1-7 C-terminal residues of the mature capsid protease to investigate whether removal of Trp267 regenerates enzymatic activity. Although the C-terminally truncated polypeptides do not adopt a defined three-dimensional structure and show biophysical properties observed in natively unfolded proteins, they efficiently catalyse the hydrolysis of aromatic amino acid esters, with higher catalytic efficiency for tryptophan compared to tyrosine esters and kcat/KM values up to 5 × 105 s−1 M−1. The enzymatic mechanism of these deletion variants is typical of serine proteases. The pH enzyme activity profile shows a pKa1 = 6.9, and the Ser219Ala substitution destroys the enzymatic activity. In addition, the fast release of the first product of the enzymatic reaction is followed by a steady-state second phase, indicative of formation and breakdown of a covalent acyl-enzyme intermediate. The rates of acylation and deacylation are k2 = 4.4±0.6 s−1 and k3 = 1.6±0.5 s−1, respectively, for a tyrosine derivative ester substrate, and the amplitude of the burst phase indicates that 95% of the enzyme molecules are active. In summary, our data provide further evidence for the potential catalytic activity of natively unfolded proteins, and provide the basis for engineering of alphavirus capsid proteins towards hydrolytic enzymes with novel specificities.  相似文献   

20.
The bacterial serine protease, SGPB, was inhibited by two specific tripeptide chloromethyl ketones, N-t-butyloxycarbonyl-l-alanylglycyl-l-phenylalanine chloromethyl ketone (BocAGFCK) and N-t-butyloxycarbonyl-glycyl-l-leucyl-l-phenylalanine chloromethyl ketone (BocGLFCK). Crystals of the inhibited complexes were grown and examined by X-ray crystallographic methods. The peptide backbone of each inhibitor is bound by three hydrogen bonds to the main chain of residues Ser214 to Gly216. There are two well-characterized hydrophobic pockets, S1 and S2, on the surface of SGPB which accommodate the P1 and P2 side-chains of the BocGLFCK inhibitor. A conformational change of Tyr171 is induced by the binding of this inhibitor. Both inhibitors make two covalent bonds to the SGPB enzyme. The imidazole ring of His57 is alkylated at the N?2 atom and Oγ of Ser195 forms a hemiketal bond with the carbonyl-carbon atom of the inhibitor. Comparison of the binding modes of the two tripeptides in conjunction with the differences in their inhibition constants (KI) allows one to estimate the binding energy of the leucyl side-chain as ?2.6 kcal mol?1. The importance of an electrophilic component in the serine protease mechanism, which involves the polarization of the susceptible carbonyl bond of a substrate or inhibitor by the peptide NH groups of Gly193 and Ser195 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号