首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Diatomaceous earth was modified by in situ precipitation of metallic hydroxides. Modification decreased the negative charge on the diatomaceous earth and increased its ability to adsorb viruses in water. Electrostatic interactions were more important than hydrophobic interactions in virus adsorption to modified diatomaceous earth. Filters containing diatomaceous earth modified by in situ precipitation of a combination of ferric chloride and aluminum chloride adsorbed greater than 80% of enteroviruses (poliovirus 1, echovirus 5, and coxsackievirus B5) and coliphage MS2 present in tap water at ambient pH (7.8 to 8.3), even after filtration of 100 liters of tap water. Viruses adsorbed to the filters could be recovered by mixing the modified diatomaceous earth with 3% beef extract plus 1 M NaCl (pH 9).  相似文献   

2.
Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods.  相似文献   

3.
Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods.  相似文献   

4.
Untreated cellulose filters adsorbed only small amounts of poliovirus 1, echovirus 5, coxsackievirus B5, or bacteriophage MS2 that were added to tap water or to solutions of imidazole-glycine buffer at pH 5 to 7. Modification of filters by in situ flocculation of ferric and aluminum hydroxides greatly increased the ability of the filters to adsorb viruses. Viruses adsorbed to the modified filters could be recovered by treating the filters with 3% beef extract (pH 9.5). Greater than 60% of the enteroviruses and greater than 55% of the MS2 added to tap water or buffer could be recovered in the beef extract eluate.  相似文献   

5.
Untreated cellulose filters adsorbed only small amounts of poliovirus 1, echovirus 5, coxsackievirus B5, or bacteriophage MS2 that were added to tap water or to solutions of imidazole-glycine buffer at pH 5 to 7. Modification of filters by in situ flocculation of ferric and aluminum hydroxides greatly increased the ability of the filters to adsorb viruses. Viruses adsorbed to the modified filters could be recovered by treating the filters with 3% beef extract (pH 9.5). Greater than 60% of the enteroviruses and greater than 55% of the MS2 added to tap water or buffer could be recovered in the beef extract eluate.  相似文献   

6.
A method is described for the efficient concentration of viruses from large volumes of tap water in relatively short time periods. Virus in acidified tap water in the presence of aluminum chloride is adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in series at flow rates of up to 37.8 liters/min (10 gallons/min). This filter series is capable of efficiently adsorbing virus from greater than 19,000 liters (5,000 gallons) of treated tap water. Adsorbed viruses are eluted from the filters with glycine buffer (pH 10.5) and the eluate is reconcentrated using an aluminum flocculation process. Viruses are eluted from the aluminum floc with glycine buffer (pH 11.5). Using this procedure, viruses in 1,900 liters (500 gallons) of tap water can be concentrated 100,000-fold in 3 h with an average recovery of 40 to 50%.  相似文献   

7.
A method is described for the efficient concentration of viruses from large volumes of tap water in relatively short time periods. Virus in acidified tap water in the presence of aluminum chloride is adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in series at flow rates of up to 37.8 liters/min (10 gallons/min). This filter series is capable of efficiently adsorbing virus from greater than 19,000 liters (5,000 gallons) of treated tap water. Adsorbed viruses are eluted from the filters with glycine buffer (pH 10.5) and the eluate is reconcentrated using an aluminum flocculation process. Viruses are eluted from the aluminum floc with glycine buffer (pH 11.5). Using this procedure, viruses in 1,900 liters (500 gallons) of tap water can be concentrated 100,000-fold in 3 h with an average recovery of 40 to 50%.  相似文献   

8.
Poliovirus concentration from tap water with electropositive adsorbent filters   总被引:10,自引:0,他引:10  
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

9.
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

10.
Electronegative and electropositive filters were compared for the recovery of indigenous bacteriophages from water samples, using the VIRADEL technique. Fiber glass and diatomaceous earth filters displayed low adsorption and recovery, but an important increase of the adsorption percentage was observed when the filters were treated with cationic polymers (about 99% adsorption). A new methodology of virus elution was developed in this study, consisting of the slow passage of the eluent through the filter, thus increasing the contact time between eluent and virus adsorbed on the filters. The use of this technique allows a maximum recovery of 71.2% compared with 46.7% phage recovery obtained by the standard elution procedure. High percentages (over 83%) of phage adsorption were obtained with different filters from 1-liter aliquots of the samples, except for Virosorb 1-MDS filters (between 1.6 and 32% phage adsorption). Phage recovery by using the slow passing of the eluent depended on the filter type, with recovery ranging between 1.6% for Virosorb 1-MDS filters treated with polyethyleneimine and 103.2% for diatomaceous earth filters treated with 0.1% Nalco.  相似文献   

11.
Electronegative and electropositive filters were compared for the recovery of indigenous bacteriophages from water samples, using the VIRADEL technique. Fiber glass and diatomaceous earth filters displayed low adsorption and recovery, but an important increase of the adsorption percentage was observed when the filters were treated with cationic polymers (about 99% adsorption). A new methodology of virus elution was developed in this study, consisting of the slow passage of the eluent through the filter, thus increasing the contact time between eluent and virus adsorbed on the filters. The use of this technique allows a maximum recovery of 71.2% compared with 46.7% phage recovery obtained by the standard elution procedure. High percentages (over 83%) of phage adsorption were obtained with different filters from 1-liter aliquots of the samples, except for Virosorb 1-MDS filters (between 1.6 and 32% phage adsorption). Phage recovery by using the slow passing of the eluent depended on the filter type, with recovery ranging between 1.6% for Virosorb 1-MDS filters treated with polyethyleneimine and 103.2% for diatomaceous earth filters treated with 0.1% Nalco.  相似文献   

12.
We investigated the direct and indirect effects of mono-, di-, and trivalent salts (NaCl, MgCl(2), and AlCl(3)) on the adsorption of several viruses (MS2, PRD-1, phiX174, and poliovirus 1) to microporous filters at different pH values. The filters studied included Millipore HA (nitrocellulose), Filterite (fiberglass), Whatman (cellulose), and 1MDS (charged-modified fiber) filters. Each of these filters except the Whatman cellulose filters has been used in virus removal and recovery procedures. The direct effects of added salts were considered to be the effects associated with the presence of the soluble salts. The indirect effects of the added salts were considered to be (i) changes in the pH values of solutions and (ii) the formation of insoluble precipitates that could adsorb viruses and be removed by filtration. When direct effects alone were considered, the salts used in this study promoted virus adsorption, interfered with virus adsorption, or had little or no effect on virus adsorption, depending on the filter, the virus, and the salt. Although we were able to confirm previous reports that the addition of aluminum chloride to water enhances virus adsorption to microporous filters, we found that the enhanced adsorption was associated with indirect effects rather than direct effects. The increase in viral adsorption observed when aluminum chloride was added to water was related to the decrease in the pH of the water. Similar results could be obtained by adding HCl. The increased adsorption of viruses in water at pH 7 following addition of aluminum chloride was probably due to flocculation of aluminum, since removal of flocs by filtration greatly reduced the enhancement observed. The only direct effect of aluminum chloride on virus adsorption that we observed was interference with adsorption to microporous filters. Under conditions under which hydrophobic interactions were minimal, aluminum chloride interfered with virus adsorption to Millipore, Filterite, and 1MDS filters. In most cases, less than 10% of the viruses adsorbed to filters in the presence of a multivalent salt and a compound that interfered with hydrophobic interactions (0.1% Tween 80 or 4 M urea).  相似文献   

13.
A method is described for the concentration of an enterovirus from large volumes of tap water by addition of small amounts of aluminum chloride to enhance virus removal by membrane filters. Tap water treated with 2 X 10(-5) M aluminum chloride showed a slight decrease in pH (less than 0.5), a slight increase in turbidity, and enhanced removal of poliovirus by membrane filters. Virus was quantitatively recovered by treating the filters with a basic buffer, and this eluate was reconcentrated to a small volume by adsorption to aluminum hydroxide flocs. Using these procedures, virus from 1,000 liters of water was reduced to a final eluate of 20 to 80 ml with a mean recovery of 70%.  相似文献   

14.
A method is described for the concentration of an enterovirus from large volumes of tap water by addition of small amounts of aluminum chloride to enhance virus removal by membrane filters. Tap water treated with 2 X 10(-5) M aluminum chloride showed a slight decrease in pH (less than 0.5), a slight increase in turbidity, and enhanced removal of poliovirus by membrane filters. Virus was quantitatively recovered by treating the filters with a basic buffer, and this eluate was reconcentrated to a small volume by adsorption to aluminum hydroxide flocs. Using these procedures, virus from 1,000 liters of water was reduced to a final eluate of 20 to 80 ml with a mean recovery of 70%.  相似文献   

15.
Fourteen strains of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) had mortalities ranging from 5 to 100% when exposed to diatomaceous earth at 600 ppm for seven days. The most tolerant strain had a lethal dose for 50% of the population (LD50) of 413 ppm and the most susceptible strain had a LD50 of 238 ppm. Adults of the tolerant strain were lighter (2.0 mg) than the susceptible strain (2.6 mg). Tolerant adults lost water at lower rate (6 g h–1 than susceptible adults (12 g h–1), when held in wheat treated with 600 ppm diatomaceous earth for 24 h, than held at 5% r.h. with no food. Tolerant adults that were not exposed to diatomaceous earth lost water at a lower rate (3 g h–1) than susceptible adults (5 g h–1). Both strains, exposed and not exposed to diatomaceous earth died when their water content was between 33 and 37% of their total weight. Insects taken directly from the cultures had 52% (tolerant) and 53% (susceptible) of their total weight as water. Tolerant adults moved slower through grain and across filter paper than susceptible adults. Tolerant adults avoided wheat treated with diatomaceous earth at concentrations as low as 75 ppm, whereas the adults from the susceptible strain did not avoid diatomaceous earth, even at 600 ppm. The consequences of a strain tolerant to diatomaceous earth is discussed with respect to the use of diatomaceous earth to control stored-product insect infestations.  相似文献   

16.
水体病毒浓缩方法的建立和优化研究   总被引:4,自引:0,他引:4  
采用氯化钙(CaC l2)、聚乙二醇(PEG,pH7.0)、聚乙二醇(PEG,pH11.5)、三氯化铝(A lC l3)沉淀、Am icon Utcra超滤离心装置和硝酸纤维素吸附膜6种浓缩方法,浓缩人工添加于水体的1型脊髓灰质炎疫苗病毒(PV1),并对浓缩实验条件进行选择和优化。结果表明,CaC l2和聚乙二醇(pH7.0)沉淀法适用于浓缩大容量水体中的病毒,而超滤离心管浓缩法适用于小容量水体,这3种浓缩方法的病毒回收率均达到100%。  相似文献   

17.
A virus concentration method using a cation-coated filter was developed for large-volume freshwater applications. Poliovirus type 1 (LSc 2ab Sabin strain) inoculated into 40 ml of MilliQ (ultrapure) water was adsorbed effectively to a negatively charged filter (Millipore HA, 0.45- micro m pore size) coated with aluminum ions, 99% (range, 81 to 114%) of which were recovered by elution with 1.0 mM NaOH (pH 10.8) following an acid rinse with 0.5 mM H(2)SO(4) (pH 3.0). More than 80% poliovirus recovery yields were obtained from 500-ml, 1,000-ml, and 10-liter MilliQ water samples and from tap water samples. This method, followed by TaqMan PCR detection, was applied to determine the presence of noroviruses in tap water in Tokyo, Japan. In a 14-month survey, 4 (4.1%) and 7 (7.1%) of 98 tap water samples (100 to 532 liters) contained a detectable amount of noroviruses of genotype 1 and genotype 2, respectively. This method was proved to be useful for surveying the occurrence of enteric viruses, including noroviruses, in large volumes of freshwater.  相似文献   

18.
A preliminary study was carried out on evaluating a flow-through gauze sampler for its efficiency in recovering virus from both fresh and seawater. An attenuated type 1 poliovirus was used as the working model. When tap water was sampled, the amounts of virus adsorbed by the gauze pads were very small, about 2% of the total number of virus particles flowing through the device. The virus adsorption and recovery increased to 15 to 19% when seawater was sampled. Addition of NaCl to tap water produced a much better effect on virus adsorption and recovery by this device, i.e., 47% of the total virus particles in each sample. The best viral elution from the pads was obtained by using buffer solution of pH 8.0 to 9.0 containing a small amount of animal serum. Repeated elutions from the pads were necessary to recover the most virus although the first eluate contained approximately 50% of the adsorbed virus. Further development of this device appears warranted, because of (i) the simplicity of the procedure, (ii) its capability of sampling large volume of water, (iii) the low cost of collecting samples, and (iv) the feasibility of obtaining a rough quantitative assessment of viral pollutants in water examined.  相似文献   

19.
A virus concentration method using a cation-coated filter was developed for large-volume freshwater applications. Poliovirus type 1 (LSc 2ab Sabin strain) inoculated into 40 ml of MilliQ (ultrapure) water was adsorbed effectively to a negatively charged filter (Millipore HA, 0.45-μm pore size) coated with aluminum ions, 99% (range, 81 to 114%) of which were recovered by elution with 1.0 mM NaOH (pH 10.8) following an acid rinse with 0.5 mM H2SO4 (pH 3.0). More than 80% poliovirus recovery yields were obtained from 500-ml, 1,000-ml, and 10-liter MilliQ water samples and from tap water samples. This method, followed by TaqMan PCR detection, was applied to determine the presence of noroviruses in tap water in Tokyo, Japan. In a 14-month survey, 4 (4.1%) and 7 (7.1%) of 98 tap water samples (100 to 532 liters) contained a detectable amount of noroviruses of genotype 1 and genotype 2, respectively. This method was proved to be useful for surveying the occurrence of enteric viruses, including noroviruses, in large volumes of freshwater.  相似文献   

20.
Neither solutions of salts nor solutions of detergents or of an alcohol at pH 4 are capable of eluting poliovirus adsorbed to membrane filters. However, solutions containing both a salt, such as magnesium chloride or sodium chloride, and a detergent or alcohol at pH 4 were capable of eluting adsorbed virus. The ability of ions to promote elution of virus at low pH in the presence of detergent or alcohol was dependent on the size of the ions and the ionic strength of the medium. These results suggest that both electrostatic and hydrophobic interactions are important in maintaining virus adsorption to membrane filters. Hydrophobic interactions can be disrupted by detergents or alcohols. It appears that electrostatic interactions can be disrupted by raising the pH of a solution or by adding certain salts. Disruption of either electrostatic or hydrophobic interactions alone does not permit efficient elution of the adsorbed virus at low pHs. However, when both interactions are disrupted, most of the poliovirus adsorbed to membrane filters is eluted, even at pH 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号