首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative phosphorylation in Escherichia coli membrane vesicles with a right-side-out orientation and loaded with ADP was investigated. Substrates of the electron transport chain could energize the phosphorylation of ADP, with the order of effectiveness being D-lactate greater than reduced phenazinemethosulfate greater than succinate greater than reduced nicotinamide adenine dinucleotide. Inhibitors of D-lactate oxidation, proton conductors, and inhibitor of the Mg2+ATPase (EC 3.6.1.3) all inhibited oxidative phosphorylation when coupled to D-lactate oxidation. ATP synthesis was absent in membrane vesicles prepared from a mutant strain lacking the Mg2+ATPase. Valinomycin or nigericin partially inhibited oxidative phosphorylation in the presence of potassium. Valinomycin plus nigericin completely inhibited ATP synthesis. The effect of various agents on the respiration-dependent establishment of a transmembrane pH gradient was also examined. NaCN and carbonyl cyanide p-trifluoromethoxyphenylhydrazone inhibited the establishment of a pH gradient while dicyclohexylcarbodiimide had no effect. These results are in good agreement with a chemiosmotic model for oxidative phosphorylation.  相似文献   

2.
3.
A series of uncouplers and inhibitors of oxidative phosphorylation have been studied with regard to their effect on the hydrolytic activity of the reduced and oxidized forms of isolated or membrane-bound mitochondrial ATPase. Uncouplers (2,4-dinitrophenol, dicoumarol), which are also activators of the hydrolytic activity of ATPase, were more potent activators on the oxidized form of the enzyme. Inhibitors of oxidative phosphorylation (oligomycin, azide and amytal) had a more potent inhibitory effect on the hydrolytic activity of ATPase in its reduced form. Purified F1-ATPase, oligomycin insensitive in the oxidized form of the enzyme, became sensitive to oligomycin in the reduced form. An interpretation of the results suggests the presence of a mechanism that unifies the action of these different compounds on the synthesis and hydrolysis of ATP catalyzed by mitochondrial ATPase.  相似文献   

4.
Reduced sulfur compound oxidation by Thiobacillus caldus.   总被引:7,自引:0,他引:7       下载免费PDF全文
The oxidation of reduced inorganic sulfur compounds was studied by using resting cells of the moderate thermophile Thiobacillus caldus strain KU. The oxygen consumption rate and total oxygen consumed were determined for the reduced sulfur compounds thiosulfate, tetrathionate, sulfur, sulfide, and sulfite in the absence and in the presence of inhibitors and uncouplers. The uncouplers 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl-hydrazone had no affect on the oxidation of thiosulfate, suggesting that thiosulfate is metabolized periplasmically. In contrast, the uncouplers completely inhibited the oxidation of tetrathionate, sulfide, sulfur, and sulfite, indicating that these compounds are metabolized in the cytoplasm of T. caldus KU. N-Ethylmaleimide inhibited the oxidation of tetrathionate and thiosulfate at the stage of elemental sulfur, while 2-heptyl-4-hydroxyquinoline-N-oxide stopped the oxidation of thiosulfate, tetrathionate, and elemental sulfur at the stage of sulfite. The following intermediates in the oxidation of the sulfur compounds were found by using uncouplers and inhibitors: thiosulfate was oxidized to tetrathionate, elemental sulfur was formed during the oxidation of tetrathionate and sulfide, and sulfite was found as an intermediate of tetrathionate and sulfur metabolism. On the basis of these data we propose a model for the metabolism of the reduced inorganic sulfur compounds by T. caldus KU.  相似文献   

5.
Submitochondrial particles subjected to an artificially imposed electrochemical proton gradient consisting of a pH gradient (acid to base transition) and membrane potential (low to high K-+ transition in the presence of valinomycin) catalyzed the net synthesis of 2.5 nmol of [-32P]ATP per mg of protein from ADP and 32-Pi. Optimal reaction conditions included incubation of submitochondrial particles in malonate at pH 5.0 with valinomycin in the absence of added K-+, followed by a rapid transition to pH 7.5 and 100 mM K-+. ATP synthesis continued for about 6 s and was sensitive to uncouplers or oligomycin but insensitive to inhibitors of electron transport. Lower amounts of ATP were formed by either the pH gradient (25%) of K-+ gradient (15%) alone. These results demonstrate that an electrochemical gradient of protons can drive the synthesis of ATP by reversal of the proton-translocating ATPase independent of electron transport.  相似文献   

6.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

7.
Pig heart mitochondrial membranes depleted of F1 and OSCP by various treatments were analyzed for their content in alpha and beta subunits of F1 and in OSCP using monoclonal antibodies. Membrane treatments and conditions of rebinding of F1 and OSCP were optimized to reconstitute efficient NADH- and ATP-dependent proton fluxes, ATP synthesis and oligomycin-sensitive ATPase activity. F1 and OSCP can be rebound independently to depleted membranes but to avoid unspecific binding of F1 to depleted membranes (ASUA) which is not efficient for ATP synthesis, F1 must be rebound before the addition of OSCP. The rebinding of OSCP to depleted membranes reconstituted with F1 inhibits the ATPase activity of rebound F1, while it restores the ATP-driven proton flux measured by the quenching of ACMA fluorescence. The rebinding of OSCP also renders the ATPase activity of bound F1 sensitive to uncouplers. The rebinding of OSCP alone or F1 alone, does not modify the NADH-dependent proton flux, while the rebinding of both F1 and OSCP controls this flux, inducing an inhibition of the rate of NADH oxidation. Similarly, oligomycin, which seals the F0 channel even in the absence of F1 and OSCP, inhibits the rate of NADH oxidation. OSCP is required to adjust the fitting of F1 to F0 for a correct channelling of protons efficient for ATP synthesis. All reconstituted energy-transfer reactions reach their optimal value for the same amount of OSCP. This amount is consistent with a stoichiometry of two OSCP per F1 in the F0-F1 complex.  相似文献   

8.
Hydrogenase and the adenosine 5'-triphosphate (ATP) synthetase complex, two enzymes essential in ATP generation in Methanobacterium thermoautotrophicum, were localized in internal membrane systems as shown by cytochemical techniques. Membrane vesicles from this organism possessed hydrogenase and adenosine triphosphatase (ATPase) activity and synthesized ATP driven by hydrogen oxidation or a potassium gradient. ATP synthesis depended on anaerobic conditions and could be inhibited in membrane vesicles by uncouplers, nigericin, or the ATPase inhibitor N,N'-dicyclohexylcarbodiimide. The presence of an adenosine 5'-diphosphate-ATP translocase was postulated. With fluorescent dyes, a membrane potential and pH gradient were demonstrated.  相似文献   

9.
This minireview in memory of Daniel I. Arnon, pioneer in photosynthesis research, concerns properties of the first and still only known alternative photophosphorylation system, with respect to the primary phosphorylated end product formed. The alternative to adenosine triphosphate (ATP), inorganic pyrophosphate (PPi), was produced in light, in chromatophores from the photosynthetic bacterium Rhodospirillum rubrum, when no adenosine diphosphate (ADP) had been added to the reaction mixture (Baltscheffsky H et al. (1966) Science 153: 1120–1122). This production of PPi and its capability to drive energy requiring reactions depend on the activity of a membrane bound inorganic pyrophosphatase (PPase) (Baltscheffsky M et al. (1966) Brookhaven Symposia in Biology, No. 19, pp 246–253); (Baltscheffsky M (1967) Nature 216: 241–243), which pumps protons (Moyle J et al. (1972) FEBS Lett 23: 233–236). Both enzyme and substrate in the PPase (PPi synthase) are much less complex than in the case of the corresponding adenosine triphosphatase (ATPase, ATP synthase). Whereas an artificially induced proton gradient alone can drive the synthesis of PPi, both a proton gradient and a membrane potential are required for obtaining ATP. The photobacterial, integrally membrane bound PPi synthase shows immunological cross reaction with membrane bound PPases from plant vacuoles (Nore BF et al. (1991) Biochem Biophys Res Commun 181: 962–967). With antibodies against the purified PPi synthase clones of its gene have been obtained and are currently being sequenced. Further structural information about the PPi synthase may serve to elucidate also fundamental mechanisms of electron transport coupled phosphorylation. The existence of the PPi synthase is in line with the assumption that PPi may have preceded ATP as energy carrier between energy yielding and energy requiring reactions.  相似文献   

10.
The mechanism of uncoupling of oxidative phosphorylation by carbonyl cyanide p-trifluoromethoxy)phenylhydrazone (FCCP), a typical weak acid protonophore, oleic acid, a fatty acid, and chloroform, a general anesthetic, has been investigated by measuring in mitochondria their effect on (i) the transmembrane proton electrochemical potential gradient (delta mu H) and the rates of electron transfer and adenosine 5'-triphosphate (ATP) hydrolysis in static head, (ii) delta mu H and the rates of electron transfer and ATP synthesis in state 3, and (iii) the membrane proton conductance. Both FCCP and oleic acid increase the membrane proton conductance, and accordingly, they cause a depression of delta mu H [generated by either the redox proton pumps or the adenosinetriphosphatase (ATPase) proton pumps]. Although their effects on ATP synthesis/hydrolysis, respiration, and delta mu H are qualitatively consistent with a pure protonophoric uncoupling mechanism and an additional inhibitory action of oleic acid on both the ATPases and the electron-transfer enzymes, a quantitative comparison between the dissipative proton influx and the rate of either electron transfer or ATP hydrolysis (multiplied by either the H+/e- or the H+/ATP stoichiometry, respectively) at the same delta mu H shows that the increase in membrane conductance induced by FCCP and oleic acid accounts for the stimulation of the rate of ATP hydrolysis but not for that of the rate of electron transfer. Chloroform (at concentrations that fully inhibit ATP synthesis) only very slightly increases the proton conductance of the mitochondrial membrane and causes only a little depression of delta mu H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The antibiotics venturicidin, oligomycin and ossamycin were investigated as potential inhibitors of the Escherichia coli H+-ATPase. It was found that venturicidin strongly inhibited ATP-driven proton transport and ATP hydrolysis, while oligomycin weakly inhibited these functions. Inhibition of the H+-ATPase by venturicidin and oligomycin was correlated with inhibition of F0-mediate proton transport. Both inhibitors were found to interfere with the covalent reaction between dicyclohexyl[14C]carbodiimide and the F0 subunit c (uncE protein). Ossamycin had no direct inhibitory effect on E. coli F0 or F1; rather, it was found to uncouple ATP hydrolysis from proton transport.  相似文献   

12.
The relationship between rate of ATP synthesis, JATP, and value of the proton electrochemical gradient, delta mu H, has been analyzed in intact mitochondria. Onset of phosphorylation causes a depression of delta mu H of 1.5 kJ/mol. There is a close parallelism between inhibition of JATP and restoration of delta mu H to its state-4 value during titrations with oligomycin or atractyloside. Titrations with ionophores display the following features: (a) delta mu H can be depressed by 3-4 kJ/mol by valinomycin + K+ without affecting the rate of ATP synthesis; (b) uncouplers abolish JATP completely while depressing delta mu H by 3 kJ/mol; (c) complete abolition of ATP synthesis by inhibitors of electron transport is accompanied by a depression of delta mu H of only 1 kJ/mol. The results indicate that: (a) there is a close functional relationship between redox and ATPase H+ pumps, whereby inhibition of electron transfer is accompanied by simultaneous inhibition of the ATPase H+ pumps; and (b) uncoupling of oxidative phosphorylation is not due to depression of delta mu H per se. The consistence of the present data with either a chemiosmotic model where delta mu H is the sole and obligatory intermediate for energy coupling, or models where there is a direct transfer of energy between the two pumps is discussed.  相似文献   

13.
Starved whole cells of alkalophilic Bacillus firmus OF4 that are equilibrated at either pH 10.2, 9.5, or 8.5 synthesize ATP in response to a pH gradient that is imposed by rapid dilution of the cyanide-treated cells into buffer at pH 7.5. If a valinomycin-mediated potassium diffusion potential (positive out) is generated simultaneously with the pH gradient, then the rate of ATP synthesis and the level of synthesis achieved is much higher than upon imposition of a pH gradient alone. By contrast, imposition of a large chemical gradient of Na+, either in the presence or absence of a concomitant diffusion potential, fails to result in ATP synthesis. We conclude that this organism does not possess a sodium-motive ATPase that can be made to synthesize detectable levels of ATP by imposition of a suitably large chemical or electrochemical gradient of Na+. On the other hand, a proton-translocating ATPase is in evidence when protons are provided at very high pH, corroborating our earlier work on extremely alkalophilic bacilli. Oxidative phosphorylation must, then, be catalyzed in these organisms by a proton-translocating ATPase even though the putative bulk driving forces for such a catalyst are low under optimal growth conditions. Stable, imposed pH gradients of 1 unit, comparable to the magnitude of the total electrochemical proton gradient of growing cells, result in much lower ATP concentrations than observed in such cells. We hypothesize that ATP synthesis in growing cells utilizes protons that are made available by some localized pathway between proton pumps and the ATP synthase.  相似文献   

14.
At the optimal pH for growth (pH 10.5), alkalophilic Bacillus firmus RAB, an obligate aerobe, exhibits normal rates of oxidative phosphorylation despite the low transmembrane proton electrochemical gradient, about -60 mV (delta psi = -180 mV and delta pH = +120 mV). This bioenergetic problem might be resolved by use of an Na+ coupled ATP synthase; otherwise an F1F0-ATPase must be able to utilize low driving forces in this organism. The ATPase activity was extracted from everted membrane vesicles by low ionic strength treatment and purified to homogeneity by hydrophobic interaction chromatography and sucrose density gradient centrifugation. The ATPase preparation had the characteristic F1-ATPase subunit structure, with Mr values of 51,500 (alpha), 48,900 (beta), 34,400 (gamma), 23,300 (delta), and 14,500 (epsilon); the identity of the alpha and beta subunits was confirmed by immunoblotting with anti-beta of Escherichia coli and anti-B. firmus RAB F1. Methanol and octyl glucoside, agents that stimulated the low basal membrane ATPase activity 10- to 12-fold, dramatically elevated the MgATPase activity of the purified F1, more than 150-fold, to 50 mumol min-1 mg protein-1. Anti-F1 inhibited membrane ATPase activity greater than or equal to 80%. The membranes exhibited no Na+-stimulated or vanadate-sensitive ATPase activity when prepared in the absence or presence of Na+ or ATP. These findings, which are consistent with previous studies, establish that in alkalophilic bacteria, ATP hydrolysis, and presumably ATP synthesis is catalyzed by an F1F0-ATPase rather than a Na+ ATPase.  相似文献   

15.
Here we report a fast, simple purification for thermophilic F1F0 ATP synthase (TF1F0) that utilizes a cocktail of stabilizing reagents and the detergent n-dodecyl beta-D-maltoside to yield enzyme with an ATPase activity of 41 micromol/min/mg, 2.5-fold higher than that previously reported. ATPase activity was 80% inhibited by the F0-reactive reagent dicyclohexylcarbodiimide, indicating that F1-F0 interactions were largely intact. To measure ATP-driven proton pumping activity, purified TF1F0 was incorporated into liposomes, and the ATP-induced change in internal pH was measured using the fluorescent probe pyranine. In the presence of valinomycin, a maximum ATP-driven deltapH of 0.8 units was obtained. To measure ATP synthesis activity, TF1F0 was incorporated into liposomes with the light-dependent proton pump bacteriorhodopsin. Proteoliposomes were illuminated to generate an electrochemical gradient, after which ADP and inorganic phosphate were added to initiate ATP synthesis. A steady state ATP synthesis activity of 490 nmol/min/mg was achieved after an initial approximately 30-min lag phase.  相似文献   

16.
Mitochondrial F(1)F(0)-ATPase was studied in lymphocytes from patients with neuropathy, ataxia, and retinitis pigmentosa (NARP), caused by a mutation at leu-156 in the ATPase 6 subunit. The mutation giving the milder phenotype (Leu156Pro) suffered a 30% reduction in proton flux, and a similar loss in ATP synthetic activity. The more severe mutation (Leu156Arg) also suffered a 30% reduction in proton flux, but ATP synthesis was virtually abolished. Oligomycin sensitivity of the proton translocation through F(0) was enhanced by both mutations. We conclude that in the Leu156Pro mutation, rotation of the c-ring is slowed but coupling of ATP synthesis to proton flux is maintained, whereas in the Leu156Arg mutation, proton flux appears to be uncoupled. Modelling indicated that, in the Leu156Arg mutation, transmembrane helix III of ATPase 6 is unable to span the membrane, terminating in an intramembrane helix II-helix III loop. We propose that the integrity of transmembrane helix III is essential for the mechanical function of ATPase 6 as a stator element in the ATP synthase, but that it is not relevant for oligomycin inhibition.  相似文献   

17.
1. The proton-translocating adenosine triphosphatase (ATPase) of bovine heart mitochondria was highly purified by extraction of submitochondrial particles with cholate, fractionation with ammonium sulfate, and sucrose gradient centrifugation in the presence of methanol, deoxycholate, and lysolecithin. 2. The preparation had a very low content of phospholipids, respiratory components, and adenine nucleotide transporter. The ATPase activity (14 o 16 micromoles/min/mg at 30 degrees) was dependent on addition of phospholipids. The purified enzyme was reconstituted with phospholipids, coupling factor 1 (F1), and the oligomycin sensitivity-conferring protein (OSCP) yielding vesicles with highly active 32Pi-ATP exchange (up to 260 nanomoles/min/mg at 30 degrees), and a proton pump driven by ATP. Site III oxidative phosphorylation was reconstituted when purified cytochrome oxidase was included. 3.The 32Pi-ATP exchange of the reconstituted vesicles was sensitive to both rutamycin and dichylohexylcarbodiimide but the ATPase activity was sensitive to rutamycin and not to dicyclohexylcarbodiimide. 4. In sodium dodecyl sulfate-acrylamide gel scans of the complex, the subunits of F1, OSCP, and three other major bands with apparent molecular weights of 32,000, 23,000, and about 11,000 were noted. Three other minor bands with estimated molecular weights of 80,000, 70,000, and 52,000 were also detected. These bands apparently represent residual trace amounts of respiratory components. Quantitative assays of individual respiratory components revealed between 0 and 3% contamination. 5. We conclude that the rutamycin-sensitive ATPase complex functions as a reversible ATP-driven proton pump.  相似文献   

18.
(1) Conditions are described wherein the yeast oligomycin-sensitive adenosine triphosphatase (ATPase) complex can be reconstituted together with phospholipids to yield extremely high rates of ATP-32Pj exchange. The vesicles so formed exhibit proton uptake upon addition of Mg2+-ATP and a relatively slow decay of the proton gradient. (2) The stimulation of ATP-32Pi exchange by valinomycin + K+ reported previously (Ryrie, I. J. (1975) Arch. Biochem. Biophys. 168, 704–711) is apparently not simply due to a diffusion potential. The findings suggest that an electroimpelled, valinomycin-dependent migration of K+ may occur together with the electrogenic movements of protons during ATP hydrolysis and synthesis to establish optimal energized conditions for ATP-32Pi exchange. (3) An artificial oxidative phosphorylation system in the reconstituted vesicles is described: [32P]ATP formation from ADP and 32Pi is shown to be linked with electron flow between external ascorbate and internal ferricyanide where a permeable proton carrier, such as phenazine methosulfate, is used to establish a proton gradient. That the yeast ATPase is capable of net ATP synthesis has also been demonstrated in a light-dependent reaction using ATPase proteoliposomes reconstituted together with bacteriorhodopsin.  相似文献   

19.
Preincubation of coupled submitochondrial particles with low concentrations of triorganotin compounds results in complete inhibition of the oligomycin-sensitive ATPase activity without any significant effect on the rate of succinate-driven ATP synthesis. The residual ATP synthetic activity is inhibited by oligomycin and uncouplers. The differential inhibition of ATP synthesis and hydrolysis by the triorganotin compounds examined suggests that the two processes are not 'mirror images' of each other, but that they occur through different routes and that the F1F0-ATPase is at least bifunctional.  相似文献   

20.
Rat liver Golgi vesicles were isolated by differential and density gradient centrifugation. A fraction enriched in galactosyl transferase and depleted in plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal markers was found to contain an ATP-dependent H+ pump. This proton pump was not inhibited by oligomycin but was sensitive to N-ethyl maleimide, which distinguishes it from the F0-F1 ATPase of mitochondria. GTP did not induce transport, unlike the lysosomal H+ pump. The pump was not dependent on the presence of potassium nor was it inhibited by vanadate, two of the characteristics of the gastric H+ ATPase. Addition of ATP generated a membrane potential that drove chloride uptake into the vesicles, suggesting that Golgi membranes contain a chloride conductance in parallel to an electrogenic proton pump. These results demonstrate that Golgi vesicles can form a pH difference and a membrane potential through the action of an electrogenic proton translocating ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号