首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonlactating Dutch-Friesian cows were selected from a local slaughterhouse and synchronized with Syncro-Mate B. Cows with a normal progesterone pattern were treated with PMSG (3,000 I.U. i.m.) on Day 10 followed by PG (Prosolvin 22.5 mg) 48 h later. Blood samples were collected daily and at hourly intervals from 30 h after PG. Monoclonal anti-PMSG (Neutra-PMSG) was administered i.v. at 5.8 h after the LH peak in 16 cows; controls (n = 16) did not receive Neutra-PMSG. For comparison, 16 additional cows were superovulated with FSH-P in decreasing doses, twice a day (total 32 mg), starting at Day 10. All cows were inseminated at 10 h after the LH peak. Embryos were evaluated on Days 6 and 7 after flushing upon slaughter (recovery 87%). The number of corpora lutea and follicles on the donor ovaries were counted. No significant differences in the concentrations of progesterone and LH were observed between the three superovulation groups. Upon Neutra-PMSG, PMSG in blood was completely neutralized, it was decreased to < 0.5 ug/l at AI from 7.0 ug/l at the LH peak. The number of transferable embryos was significantly higher after Neutra-PMSG (9.1 per cow) than without Neutra-PMSG (5.3). or upon FSH-superovulation (4.6). The number of cysts on the ovaries of Neutra-PMSG-treated cows was reduced similarly to that after FSH-superovulation. Treatment with Neutra-PMSG shortly after the LH peak positively affects final follicular maturation in PMSG-superovulated cows and results in a nearly two-fold increase of transferable embryos.  相似文献   

2.
Follicular and oocyte maturation in cows treated for superovulation   总被引:2,自引:0,他引:2  
The maturational stage of oocytes and their follicles was assessed at 24 26 h after the preovulatory luteinizing hormone (LH) peak by means of morphological criteria. Follicles were obtained from cows treated for superovulation (PMSG/PG) with additional anti-PMSG to neutralize the residual PMSG. Follicular fluid was also recovered and analyzed for progesterone and estradiol levels. Seventy-two percent of the oocytes were at the Metaphase II (M(II)) stage of meiosis, whereas only 28% of the follicular walls were at the proper maturational stage; assessed on morphological characteristics, 78% of the follicles were progesterone-dominated. Earlier maturational stages of oocytes and follicles were also present, including those that are restricted to periods shortly after the LH peak in the normally cyclic cow. It is concluded that upon treatment for superovulation not all oocytes and follicles mature synchronously, and that not all oocytes mature in harmony with their follicles.  相似文献   

3.
Six heifers were injected i.m. with 2500 i.u. PMSG followed by 15 mg prostaglandin 48 h later. Serial blood samples were collected through a catheter in the caudal vena cava every 10 min for 8 h on Day 10 (7 h after PMSG administration), during luteal regression (7 h after prostaglandin administration) and on the day thereafter. Four normally cyclic heifers served as a control group. Concentrations of progesterone, androstenedione, oestradiol, LH, FSH, and PMSG in the vena cava samples were measured and the frequency and amplitudes of episodic pulses of all hormones were estimated except for PMSG. Ovaries were collected by ovariectomy at 50 h after onset of luteal regression to determine the number of preovulatory follicles (non-atretic follicles greater than or equal to 10 mm). Stimulation of follicular growth by administration of PMSG resulted in the following effects on the secretion of steroids and endogenous gonadotrophins. (1) There were no alterations in progesterone concentration and the amplitude and frequency of episodic pulses. Mean (+/- s.e.m.) concentrations were 54.1 +/- 5.8, 19.1 +/- 3.1 and 3.4 +/- 0.9 nmol/l on Day 10 (L), during luteal regression (LR) and on the day thereafter (F) respectively. (2) There were no alterations in the episodic secretion patterns of androstenedione. Mean concentrations were 0.20 +/- 0.02, 0.15 +/- 0.02 and 0.11 +/- 0.02 nmol/l for the L, LR and F periods respectively. (3) There was an increase in oestradiol concentration from 17.1 +/- 3.0 pmol/l during the L period to 233.7 +/- 86.4 pmol/l during the F period. Pulse amplitude was enhanced compared to corresponding periods in control animals whereas pulse frequency remained the same. The oestradiol concentration was significantly correlated with the number of preovulatory follicles (r = 0.82, P less than 0.05). (4) There was a suppression of the frequency of episodic LH pulses (/8 h) during the LR (3.2 +/- 0.7) and F (4.3 +/- 0.4) periods compared to corresponding periods in control heifers (9.5 +/- 0.9 and 7.0 +/- 1.5 respectively). The preovulatory LH peak occurred earlier in 4 of 6 treated heifers. (5) There was a suppression of FSH concentrations, pulse amplitude and frequency during the LR and F (17.4 +/- 0.9 mg/l, 4.7 +/- 0.8 microgram/l and 7.5 +/- 0.4 pulses/8 h) periods compared to the corresponding F-period values (35.6 +/- 6.2 mg/l, 9.8 +/- 1.6 micrograms/l and 9.3 +/- 0.3 pulses/8 h) in control heifers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Interrelationships of circulating hormone levels and their implications for follicular development were studied throughout the oestrous cycle with emphasis on the perioestrous period in heifers and cows. The oestradiol level showed a major peak (45 pmol/1) before and coinciding with oestrus, and a second peak (27 pmol/1) around day 5–6 (day 0: day of first standing oestrus); it was low during the luteal phase of the cycle when progesterone was higher than 14 nmol/1 from day −12 to day −2. Large antral follicles, which had developed during the luteal phase, did not secrete significant amounts of oestradiol, degenerated after luteolysis, and were replaced by a newly developing follicle which became preovulatory. Parallel with this development the oestradiol level increased from the onset of luteolysis to reach a plateau about 26 h before the onset of oestrus. The interval between the onset of luteolysis and the onset of oestrus was 58 h; luteolysis proceeded at a slower rate in heifers than in cows. At 4.6 h after the onset of oestrus the maximum of the LH surge was recorded; the LH surge appeared to be postponed in the period October–December in comparison to the period August–September. The maximum of the LH surge was higher in heifers (45 μg/l) than in cows (30 μg/l), but its duration was similar (8.0 h). The oestradiol level decreased significantly from 6 h after the maximum of the LH surge, and standing oestrus (duration 18 h) was terminated almost at the same time as the return to basal values of oestradiol. Cortisol and prolactin levels did not show a peak during the peri-oestrus period. Cortisol fluctuated irrespective of the stage of the oestrus cycle and prolactin was significantly higher during the luteal phase.

The results of this study indicate that development of the preovulatory follicle starts in the cow at the onset of luteolysis, about 2.5 days before the preovulatory LH surge, and that oestradiol secretion by this follicle is possibly inhibited by the LH surge.  相似文献   


5.
Thirty-two beef heifers were induced to superovulate by the administration of follicle stimulating hormone-porcine (FSH-P). All heifers received 32 mg FSH-P (total dose) which was injected twice daily in decreasing amounts for 4 d commencing on Days 8 to 10 of the estrous cycle. Cloprostenol was administered at 60 and 72 h after the first injection of FSH-P. Heifers were observed for estrus every 6 h and were slaughtered at known times between 48 to 100 h after the first cloprostenol treatment. The populations of ovulated and nonovulated follicles in the ovaries were quantified immediately after slaughter. Blood samples were taken at 2-h intervals from six heifers from 24 h after cloprostenol treatment until slaughter and the plasma was assayed for luteinizing hormone (LH) concentrations. The interval from cloprostenol injection to the onset of estrus was 41.3 +/- 1.25 h (n = 20). The interval from cloprostenol injection to the preovulatory peak of LH was 43.3 +/- 1.69 h (n = 6). No ovulations were observed in animals slaughtered prior to 64.5 h after cloprostenol (n = 12). After 64.5 h, ovulation had commenced in all animals except in one animal slaughtered at 65.5 h. The ovulation rate varied from 4 to 50 ovulations. Approximately 80% of large follicles (> 10 mm diameter) had ovulated within 12 h of the onset of ovulation. Onset of ovulation was followed by a dramatic decrease in the number of large follicles (> 10 mm) and an increase in the number of small follicles (相似文献   

6.
The objective of this study was to develop a model for the study of abnormal ovarian follicles in cattle by treating heifers with adrenocorticotrophic hormone (ACTH) (100 iu at 12 h intervals for 7 days, beginning on day 15 of the oestrous cycle). Cortisol concentrations increased (P < 0.05) within 24 h after beginning ACTH treatment and cortisol and progesterone concentrations remained elevated after cessation of ACTH treatment for 8 and 4 days, respectively. The pulses and surges of LH decreased during ACTH treatment, but FSH profiles were similar to those in controls and persistent or prolonged follicles were eventually observed in all heifers. In five heifers, prolonged dominant follicles ovulated after 10 days, whereas in six heifers, persistent follicular structures were present for 20 days, but ceased to secrete oestradiol after approximately 12 days. In the heifers with persistent follicular structures, new follicles emerged when the persistent follicle became non-oestrogenic. During the last 2 days of normal follicular growth, the concentration of oestradiol was greater than it was during prolonged or persistent follicle development (P < 0.05). There were no differences in the growth rates or maximum diameters of abnormal follicles that had different outcomes, but oestradiol concentrations were greater in prolonged follicles that ovulated compared with those follicles that persisted (P = 0.06). In conclusion, stimulation with ACTH resulted in a marked deviance from normal follicular activity. The aberrations were probably caused by the interruption of pulsatile secretion of LH (but not FSH) leading to decreased but prolonged oestradiol secretion.  相似文献   

7.
During the preovulatory period in heifers that ovulate from two compared to one follicle, circulating concentrations of estradiol-17β (E2) are greater, diameter of follicles and concentration of FSH are reduced, and the LH surge occurs sooner. The effect of increased E2 on the reported characteristics of double ovulation was studied by treating heifers with 0.07 mg E2, 0.09 mg E2, or vehicle in four treatments at 6-h intervals (n=6 heifers/group), beginning at the time of expected follicle deviation (largest follicle, 8.5mm). There were no significant differences on follicle diameters or hormone concentrations between the 0.07 and 0.09 mg E2 groups, and heifers were combined into one E2 group (n=12). The E2 treatments induced concomitant preovulatory surges in LH and FSH at 34.0 ± 2.6h after first treatment, compared to 57.6 ± 4.5h in the vehicle group (P<0.0002). The E2 treatments did not affect FSH concentrations during the preovulatory gonadotropin surge. The diameter of the preovulatory follicle at the LH peak was smaller (P<0.0001) in the E2-treated group (10.2 ± 0.2mm) than in the vehicle group (13.1 ± 0.6mm). The hypothesis was not supported that the previously reported increase in circulating E2 in heifers with double preovulatory follicles accounts for the reported lesser concentrations in the preovulatory FSH surge in heifers with double ovulations. Hypotheses were supported that the reported earlier occurrence of the preovulatory LH surge and smaller preovulatory follicles in heifers with double ovulations are attributable to the reported increase in E2 from the double preovulatory follicles.  相似文献   

8.
Action of PMSG on follicular populations in the heifer   总被引:2,自引:0,他引:2  
The short-term action of PMSG on the population of growing follicles in cattle was studied using histological methods. On Day 7 of a synchronized oestrous cycle 10 Friesian heifers were unilaterally ovariectomized. The remaining ovary was immediately stimulated by an injection of PMSG (2000 i.u.) and was removed 48 h after the preovulatory discharge of LH. Control animals did not receive any injection of PMSG. In all ovaries, follicles greater than 70 micron diameter were counted, measured and checked for atresia. The mitotic index in granulosa cells of follicles of different sizes was estimated in both ovaries of all the PMSG-injected animals. Unilateral ovariectomy alone had no significant effect on follicular populations. In the interval between PMSG injection and removal of the second ovary (148 +/- 22.7 h), PMSG significantly increased the number of normal preantral follicles but did not change the number of normal antral follicles. The mitotic index doubled in preantral and early antral follicles but remained unchanged in large antral follicles. PMSG stimulated slightly the growth of the antrum in large antral follicles but did not stimulate its formation in preantral follicles. The incidence of atresia among antral follicles, particularly the largest ones (diam. greater than 1.7 mm), was significantly reduced after PMSG, suggesting some 'rescue' of follicles from atresia.  相似文献   

9.
Adult rats were pretreated with a 3-day regimen of human menopausal gonadotrophin (hMG), PMSG, human FSH or hCG and experiments were carried out on the day of pro-oestrus. Treatment with hMG and hFSH induced a significant increase in the number of preovulatory follicles on the day of pro-oestrus and this was correlated with increased circulating concentrations of oestradiol. There was a parallel increase in the self-priming effect of GnRH, as observed from the biphasic LH response to a continuous GnRH challenge. PMSG treatment did not stimulate increased numbers of maturing follicles and was less effective in raising circulating oestrogen concentrations compared with hMG and hFSH. However, pituitary responsiveness was much higher after PMSG treatment and the biphasic response to continuous perfusion with GnRH was absent; LH release was high from the initiation of the stimulus. hCG alone failed to stimulate follicular maturation but enhanced pituitary LH responses. Hemi-pituitary glands perfused in the presence of isolated preovulatory follicles also showed augmented biphasic LH responses to GnRH compared with control hemi-pituitary glands. The apparent dissociation which can occur between follicular maturation, circulating oestrogen concentrations and pituitary responsiveness to GnRH supports the idea of non-steroidal ovarian factors modulating LH release.  相似文献   

10.
Ten nonlactating buffalo were superovulated with 3000 IU PMSG. Luteolysis was induced with 500 mug Cloprostenol (PG) 60 and 72 h after PMSG. Five buffalo were alloted for natural mating and five were bred by artificial insemination 60 and 84 h after the first PG treatment. Since four buffalo developed pyometra, only 6 of 10 underwent embryo collection successfully 180 to 190 h after PG. Three buffalo yielded only one morula each, while the remaining three yielded a total of two, three and four morulae and/or blastocysts as well als zero, one and three unfertilized ova, respectively. Six of the ten buffalo were assigned to an intensive blood collection regimen. Mean concentrations of progesterone (ng/ml) increased from 1.9 at PMSG stimulation to 4.8 at induction of luteolysis and decreased to a nadir of 0.2 about 72 h after PG treatment. The preovulatory surge of LH occurred 36 +/- 9 h after PG and was low in magnitude (7.3 +/- 1.3 ng/ml). Stimulation of 3 to 12 follicles resulted in concentrations of estradiol-17beta exceeding 5 pg/ml within 48 h after PMSG treatment and reaching a maximum of 32 +/- 11 pg/ml about the time of the preovulatory surge. Only in two individuals did concentrations decrease below 5 pg/ml within the following 12 h. In the other four buffalo 3 to 10 unovulated structures remained palpable, secreting estradiol-17beta far exceeding the preovulatory concentrations. The fast appearing, low magnitude LH surges were key problems resulting from PMSG treatment. They caused unovulated endocrinologically active follicles. High estrogen levels during the early luteal period may activate subclinical uterine infections, which in turn may negatively affect embryonic development.  相似文献   

11.
Possibilities for early characterization of the superovulatory response were studied in 41 PMSG/PG-treated dairy heifers, of which 21 received an additional treatment of PMSG-antiserum. Plasma was obtained at 33, 36, 41, 47 and 51 h after PG for hormone analyses. After slaughter at 6 or 7 d after insemination, the number of follicles and corpora lutea (CL) were recorded, and ova were recovered for morphological evaluation. Significant correlations were demonstrated between plasma concentrations of estradiol-17beta (E2) at 33, 36 and 41 h after PG and the ovulation rate (number of CL). Each of these correlations was equal to the one found by using the peak concentration of E2 achieved during the preovulatory E2 surge. In heifers with preovulatory E2 surges, as determined with the blood sampling scheme used, both the ovarian response (number of CL and follicles) and the quality of ova recovered (number of transferable embryos) was clearly better compared to heifers without this surge. None of the parameters studied was affected significantly by treatment with PMSG-antiserum. It is concluded that plasma E2 determinations at fixed times in relation to prostaglandin treatment can be used to characterize the superovulatory response in donor cattle in terms of the ovulation rate and the quality of ova recovered. No evidence was found in favor of using PMSG-antiserum for improving either the superovulatory response or such characterization.  相似文献   

12.
We used immunoneutralization of endogenous estradiol to investigate deficiencies in the estradiol-feedback regulation of LH secretion as a primary cause of follicular cysts in cattle. Twenty-one cows in the prostaglandin (PG) F(2alpha)-induced follicular phase were assigned to receive either 100 ml of estradiol antiserum produced in a castrated male goat (n = 11, immunized group) or the same amount of castrated male goat serum (n = 10, control group). The time of injection of the sera was designated as 0 h and Day 0. Five cows in each group were assigned to subgroups in which we determined the effects of estradiol immunization on LH secretion and follicular growth during the periovulatory period. The remaining six estradiol-immunized cows were subjected to long-term analyses of follicular growth and hormonal profiles, including evaluation of pulsatile secretion of LH. The remaining five control cows were used to determine pulsatile secretion of LH on Day 0 (follicular phase) and Day 14 (midluteal phase). The control cows exhibited a preovulatory LH surge within 48 h after injection of the control serum, followed by ovulation of the dominant follicle that had developed during the PGF(2alpha)-induced follicular phase. In contrast, the LH surge was not detected after treatment with estradiol antiserum. None of the 11 estradiol-immunized cows had ovulation of the dominant follicle, which had emerged before estradiol immunization and enlarged to more than 20 mm in diameter by Day 10. Long-term observation of the six immunized cows revealed that five had multiple follicular waves, with maximum follicular sizes of 20-45 mm at 10- to 30-day intervals for more than 50 days. The sixth cow experienced twin ovulations of the initial persistent follicles on Day 18. The LH pulse frequency in the five immunized cows that showed the long-term turnover of cystic follicles ranged from 0.81 +/- 0.13 to 0.97 +/- 0.09 pulses/h during the experiment, significantly (P < 0.05) higher than that in the midluteal phase of the control cows (0.23 +/- 0.07). The mean LH concentration in the immunized cows was also generally higher than that in the luteal phase of the control cows. However, the LH pulse and mean concentration of LH after immunization were similar to those in the follicular phase of the control cows. Plasma concentrations of total inhibin increased (P < 0.01) concomitant with the emergence of cystic follicles and remained high during the growth of cystic follicles, whereas FSH concentrations were inversely correlated with total inhibin concentrations. In conclusion, neutralization of endogenous estradiol resulted in suppression of the preovulatory LH surge but a normal range of basal LH secretion, and this circumstance led to an anovulatory situation similar to that observed with naturally occurring follicular cysts. These findings provide evidence that lack of LH surge because of dysfunction in the positive-feedback regulation of LH secretion by estradiol can be the initial factor inducing formation of follicular cysts.  相似文献   

13.
The long half-life of pregnant mare serum gonadotrophin (PMSG) reduces its application in the superovulation of cattle; thus, a monoclonal antibody to PMSG (anti-PMSG) was administered at the onset of estrus to increase the number of transferable embryos. Angus, Hereford and Angus x Hereford cows (n = 149) 3 to 9 yr old were assigned randomly to one of three dosages of PMSG (1500, 3000 or 6000 IU) with or without an equivalent dosage of anti-PMSG. Embryos were collected nonsurgically on Day 8 (estrus = Day 0), and all cows were ovariectomized on Day 9. The percentage of cows exhibiting estrus and ovulating decreased (P<0.05) with an increasing dosage of PMSG (82, 76 and 44% for 1500, 3000 and 6000 IU, respectively). Ovarian and total corpora lutea (CL) weight increased (P<0.001) linearly as PMSG dosage increased, but were reduced (P<0.001) curvilinearly by anti-PMSG, resulting in a PMSG by anti-PMSG interaction (P<0.001); the interaction was also significant (P<0.05) for ovulation rate (14.0 vs 14.3, 21.5 vs 24.4 and 29.2 vs 6.6 CL for 1500, 3000 and 6000 IU PMSG, without vs with anti-PMSG, respectively). Anti-PMSG increased (P<0.001) the number of small ovarian follicles (1 to 3 mm diameter) and decreased (P<0.001) the number of large follicles (>10 mm) at ovariectomy; the number of large follicles increased (P<0.001) with PMSG dosage. The number of total and transferable embryos recovered did not differ among PMSG and anti-PMSG dosages; however, the percentage of transferable embryos decreased (P<0.01) with increasing PMSG dosage. In general, neither PMSG dosage nor anti-PMSG influenced embryo quality.  相似文献   

14.
Ovaries were obtained from naturally cyclic pigs on Days 16-17, 18, 19, 20 and 21 of the oestrous cycle and on the basis of observed follicular characteristics were assigned as representative of the early (Group 1), mid- (Groups 2 and 3) or late (after LH; Group 4) follicular phase. Follicular development in cyclic gilts was compared with that in ovaries obtained from late prepubertal gilts 36 (Group 5) or 72 (Group 6) h after treatment with 750 i.u. PMSG alone, or with a combination of 500 i.u. hCG 72 h after PMSG and slaughter 30-40 h later (Group 7). After dissection of all follicles greater than 2 mm diameter, follicular diameter, follicular fluid volume, follicular fluid concentrations of progesterone, oestradiol and testosterone, and the stage of oocyte maturation were determined. Combined PMSG/hCG treatment of immature gilts resulted in a pattern of follicular development different from that in naturally cyclic gilts during the follicular phase. Overall exogenous gonadotrophin treatment also increased (P less than 0.001) the variability in follicular diameter and fluid volume. Comparisons between appropriate groups also established differences in the variability of both morphological (diameter and volume, Group 1 vs Group 5; P less than 0.05) and biochemical development (follicular fluid oestradiol, Group 3 vs Group 6 and Group 4 vs Group 7; both P less than 0.05). Such differences in both morphological and biochemical characteristics between cyclic and PMSG/hCG-treated gilts were particularly evident in the population of larger (greater than 6 mm) follicles. These results indicate that the pattern of follicular development in naturally cyclic and in PMSG/hCG-treated gilts is dissimilar and suggests that the ovaries of gonadotrophin-treated prepubertal gilts are functionally different from the ovaries of mature females.  相似文献   

15.
Cows and heifers were induced to superovulate by treatment with PMSG or FSH. The ultrastructural features of the oocytes were related to the time of the LH peak and the progesterone/oestradiol-17 beta ratios in the follicular fluid. At 0-2 h after the LH peak the perivitelline space developed; at 9-12 h there was disconnection of the junctions between cumulus cell projections and oolemma, and the concomitant breakdown of the oocyte nucleus; at approximately 15 h there were spatial rearrangements in the ooplasm of (a) mitochondrial clusters from a peripheral to an even distribution and (b) vesicles from an even distribution to a more central location; at approximately 19 h there was abstriction of the first polar body with dislocation of mitochondrial clusters and vesicles towards the site of polar body formation; at 21-22 h there was migration of cortical granules to solitary positions along the oolemma and decrease in the sizes of Golgi complexes and, on some occasions, the smooth endoplasmic reticulum. These ultrastructural changes were accompanied by an increase in progesterone/oestradiol ratios in the follicular fluids. It is concluded that preovulatory oocyte maturation in gonadotrophin-stimulated cattle comprises nuclear as well as cytoplasmic changes accompanied by steroidogenic changes in the follicle, each of which are closely related to the time of the LH peak. However, some variation existed between animals, between follicular and oocyte maturation and even within oocytes between nuclear and cytoplasmic maturation.  相似文献   

16.
Eighteen lactating Holstein cows were randomly divided into three groups of equal size. Six cows were not superovulated; the remaining cows were superovulated using either FSH-P or PMSG beginning on Day 12 of the estrous cycle (day of ovulation = Day 0). Animals treated with FSH-P were injected intramuscularly (i.m.) with 4 mg FSH-P every 12 h for 5 d. PMSG was administered i.m. as a single injection of 2350 IU. Cloprostenol (PG, 500 ug) was injected i.m. 56 and 72 h after commencement of treatment and at the same time in the cycle of controls. All cows were inseminated 56, 68 and 80 h after the first PG injection. Blood samples (5 ml) were collected daily and every 15 min for a period of 9 h on Days -1, 0, 2, 8 and 10, with continuous blood sampling at 15-min intervals during Days 3 to 6. Ovulation rate was 27.7 +/- 8.22 in animals treated with PMSG, and 8.0 +/- 3.2 embryos per donor were recovered. In the FSH group, ovulation rate was 8.3 +/- 1.48 and 3.0 +/- 1.1 embryos per donor were recovered. Progesterone concentrations were similar in all three groups until the onset of the LH surge, when progesterone concentrations were greater (P<0.05) in animals of the PMSG group. After the preovulatory LH surge, concentrations of progesterone started increasing earlier (44 h) in cows treated with PMSG, followed by FSH-treated cows (76 h) and controls (99 h). The LH surge occurred earlier (P<0.05) in PMSG-treated cows (37 h after first PG treatment), than in animals treated with FSH-P (52 h) or controls (82 h). In animals treated with FSH-P, the magnitude of the preovulatory LH surge (24.2 +/- 1.02 ng/ml) was higher (P<0.05) than in the other two groups (PMSG = 17.1 +/- 2.04 ng/ml; control, 16.7 +/- 1.24 ng/ml). Superovulation with FSH-P or PMSG did not affect either mean basal LH concentration, frequency or amplitude of LH pulses during Days -1, 0, 2, 3, presurge periods, or Days 8 and 10 post-treatment. At ovariectomy, 8 d post-estrus, more follicles > 10 mm diam. were observed in the ovaries after treatment with PMSG (8.5 +/- 5.66) than after treatment with FSH-P (0.7 +/- 0.42) (P<0.05). Maximum concentrations of PMSG were measured 24 h after administration. Following this peak, PMSG levels declined with two slopes, with half-lives of 36 h and 370 h.  相似文献   

17.
Preovulatory bovine follicles (n = 28) were collected at different times after the onset of standing oestrus until shortly before ovulation. In-vitro conversion of tritiated androstenedione in the presence of NADPH by homogenates of the follicular wall was compared in phases relative to the LH peak. During phase 0 (before the LH surge) conversion into oestradiol-17 beta was high and production of oestrone was about 8-fold lower. During phases 1 (0-6 h after the LH peak) and 2A (6-14 h after the LH peak) the production of oestradiol and oestrone remained constant; the percentage of remaining androstenedione increased. In phase 2B (14-20 h after the LH peak) conversion into oestradiol and oestrone had decreased to about one third correlating with a higher percentage of remaining androstenedione. In phase 3 (20 h after the LH peak until ovulation) conversion into oestradiol and oestrone remained constant. The ratio between the production of oestrone and oestradiol remained constant throughout the phases of preovulatory development (0.13), indicating a concurrent inhibition of aromatase and 17 beta-hydroxysteroid dehydrogenase activities. Conversion into 19-hydroxyandrostenedione showed a pattern similar to that of oestradiol, and testosterone was produced in minute quantities. The results indicate that in preovulatory bovine follicles eventual inhibition of aromatization takes place at about 14 h after the preovulatory LH peak.  相似文献   

18.
Sixteen heifers were superovulated using 5 000 i.u. PMSG on days 9 to 11 of the oestrous cycle (day 1 of the experiment) followed by two injections of 500 mug Estrumate 48 and 54 hours later. Eight of them were injected with goat anti-PMSG serum 5 hours after the first signs of oestrus were observed. Compared with the control group, the treatment with anti-PMSG serum resulted in a shorter heat period (25.8 vs. 51.3 hours), a higher mean number of ovulations (22.1 vs. 18.0) and a lower number of follicles over 10 mm in diameter (4.1 vs. 22.3). The mean numbers of eggs recovered in the experimental and control groups were 17.8 and 6.9, of which 70.2 and 42.0 per cent, respectively, were viable embryos. The concentrations of progesterone and 17-beta oestradiol in the blood plasma showed no significant differences between the experimental and control animals. A higher oestradiol in the control group on day 9 of the experiment was in keeping with the histological picture of the target organs and with a significantly higher number of follicles at slaughter on days 12 to 14 of the experiment.  相似文献   

19.
In cyclic hamsters, exogenous progesterone (100 micrograms) administered s.c. at 09:00 h on the day of dioestrus II reduced prostaglandin (PG) E and 6-keto PGF-1 alpha but not PGF concentrations in preovulatory follicles measured at 09:00 h of pro-oestrus. The injection of 10 micrograms ovine LH (NIADDK-oLH-25) concurrently with 100 micrograms progesterone on dioestrus II prevented the decline in follicular PGE and 6-keto PGF-1 alpha values. Administration of LH alone did not significantly alter follicular PG concentrations. Inhibition of follicular PGE accumulation by progesterone was due to a decline in granulosa PGE concentration and not thecal PGE. Progesterone administration also reduced follicular oestradiol concentrations. Administration of oestradiol-17-cyclopentanepropionate (ECP) (10 micrograms) with progesterone did not prevent the decline in follicular PGE and 6-keto PGF-1 alpha but did increase follicular PGF concentrations. However, ECP given alone on dioestrus II reduced follicular PGE and increased PGF concentrations in preovulatory follicles on pro-oestrus. It is concluded that exogenous progesterone administered on dioestrus II inhibits granulosa PGE and 6-keto PGF-1 alpha accumulation in preovulatory follicles, probably by reducing serum LH concentrations, and that the granulosa cells, which are LH-dependent, are a major source of follicular PGE.  相似文献   

20.
Holstein-Friesian cows (n=56) were synchronized with Syncro-Mate B, and those cows (n=47) developing a normal progesterone pattern were further treated im with 3,000 I.U. eCG at Day 10 and 22.5 mg PGF2alpha 48 h later. Blood samples were collected every hour from 30 until 49 h after PG administration. Cows (n=17, 36.2%) with fewer than 8 follicles larger than 8 mm in diameter at 28 to 30 h after PG treatment and animals without an LH peak (n=7, 23%) were excluded from the study. Transvaginal ultrasound-guided puncture of the follicles was carried out two times per cow, at 30 h after PG injection (4 to 5 follicles) and again at 1 to 5 (n=6), 12 (n=8) or 22 h (n=9) after the LH peak. No differences in the concentrations of progesterone and LH were observed among the 3 groups. An average of 18 follicles per cow was punctured (total of 415 punctures, n=23); 116 cumulus-oocyte-complexes and 370 follicular fluid samples were obtained producing average recovery rates of 28.0% and 89.2%. The number of cumulus-oocyte-complexes varied between puncture times; shortly before ovulation, at 22 h after the LH peak, the recovery rate was significantly 5 times higher than immediately after the LH peak. Overall, in 75 punctures the cumulus-oocyte-complex was accompanied by a pure follicular fluid sample (3.3 per cow). In conclusion, the transvaginal ultrasound-guided puncture of preovulatory-size follicles can be used to collect follicular fluids to study changes in the microenvironment of maturing oocytes upon superovulation. However, further research is required in order to obtain an equivalent number of accompying cumulus-oocyte-complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号