首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to elucidate the molecular mechanisms involved in human immunodeficiency virus type 1 (HIV-1) mother-to-child transmission, we have analyzed the genetic variation within the V3 hypervariable domain and flanking regions of the HIV-1 envelope gene in four mother-child transmission pairs. Phylogenetic analysis and amino acid sequence comparison were performed on cell-associated viral sequences derived from maternal samples collected at different time points during pregnancy, after delivery, and from child samples collected from the time of birth until the child was approximately 1 year of age. Heterogeneous sequence populations were observed to be present in all maternal samples collected during pregnancy and postdelivery. In three newborns, viral sequence populations obtained within 2 weeks after birth revealed a high level of V3 sequence variability. In contrast, V3 sequences obtained from the fourth child (diagnosed at the age of 1 month) displayed a more restricted heterogeneity. The phylogenetic analysis performed for each mother-child sequence set suggested that several mechanisms may potentially be involved in HIV-1 vertical transmission. For one pair, child sequences were homogeneous and clustered in a single branch within the phylogenetic tree, consistent with selective transmission of a single maternal variant. For the other three pairs, the child sequences were more heterogeneous and clustered in several separate branches within the tree. In these cases, it appeared likely that more than one maternal variant was responsible for infection of the child. In conclusion, no single mechanism can account for mother-to-child HIV-1 transmission; both the selective transmission of a single maternal variant and multiple transmission events may occur.  相似文献   

2.
Steady-state levels of human immunodeficiency virus type 1 (HIV-1) RNA in plasma reached at approximately 4 months postinfection are highly predictive of disease progression. Several studies have investigated viral levels in adults or infants during primary and early infection. However, no studies have directly compared these groups. We compared differences in peak and set point plasma HIV-1 RNA viral loads among antiretrovirus-naive Kenyan infants and adults for whom the timing of infection was well defined. Peak and set point viral loads were significantly higher in infants than in adults. We did not observe any gender-specific differences in viral set point in either adults or infants. However, infants who acquired HIV-1 in the first 2 months of life, either in utero, intrapartum, or through early breast milk transmission, had significantly higher set point HIV-1 RNA levels than infants who were infected after 2 months of age through late breast milk transmission or adults who were infected through heterosexual transmission.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) infection results in different patterns of viral replication in pediatric compared to adult populations. The role of early HIV-1-specific responses in viral control has not been well defined, because most studies of HIV-1-infected infants have been retrospective or cross-sectional. We evaluated the association between HIV-1-specific gamma interferon (IFN-gamma) release from the cells of infants of 1 to 3 months of age and peak viral loads and mortality in the first year of life among 61 Kenyan HIV-1-infected infants. At 1 month, responses were detected in 7/12 (58%) and 6/21 (29%) of infants infected in utero and peripartum, respectively (P = 0.09), and in approximately 50% of infants thereafter. Peaks of HIV-specific spot-forming units (SFU) increased significantly with age in all infants, from 251/10(6) peripheral blood mononuclear cells (PBMC) at 1 month of age to 501/10(6) PBMC at 12 months of age (P = 0.03), although when limited to infants who survived to 1 year, the increase in peak HIV-specific SFU was no longer significant (P = 0.18). Over the first year of life, infants with IFN-gamma responses at 1 month had peak plasma viral loads, rates of decline of viral load, and mortality risk similar to those of infants who lacked responses at 1 month. The strength and breadth of IFN-gamma responses at 1 month were not significantly associated with viral containment or mortality. These results suggest that, in contrast to HIV-1-infected adults, in whom strong cytotoxic T lymphocyte responses in primary infection are associated with reductions in viremia, HIV-1-infected neonates generate HIV-1-specific CD8+-T-cell responses early in life that are not clearly associated with improved clinical outcomes.  相似文献   

4.
Mother-to-child transmission can occur in utero, mainly intrapartum and postpartum in case of breastfeeding. In utero transmission is highly restricted and results in selection of viral variant from the mother to the child. We have developed an in vitro system that mimics the interaction between viruses, infected cells present in maternal blood, and the trophoblast, the first barrier protecting the fetus. Trophoblastic BeWo cells were grown as a tight polarized monolayer in a two-chamber system. Cell-free virions applied to the apical pole neither crossed the barrier nor productively infected BeWo cells. In contrast, apical contact with human immunodeficiency virus (HIV)-infected peripheral blood mononuclear cells (PBMCs) resulted in transcytosis of infectious virus across the trophoblastic monolayer and in productive infection correlating with the fusion of HIV-infected PBMCs with trophoblasts. We showed that viral variants are selected during these two steps and that in one case of in utero transmission, the predominant maternal viral variant characterized after transcytosis was phylogenetically indistinguishable from the predominant child's virus. Hence, the first steps of transmission of HIV-1 in utero appear to involve the interaction between HIV type 1-infected cells and the trophoblastic layer, resulting in the passage of infectious HIV by transcytosis and by fusion/infection, both leading to a selection of virus quasispecies.  相似文献   

5.
We have examined the viral selection that may occur during transmission by studying the env gene sequences from four cases of mother-to-child transmission of human immunodeficiency virus type 1. The V3 region sequences were directly amplified from both plasma viral RNA and peripheral blood mononuclear cells containing proviral DNA from mothers at delivery and at the time of diagnosis for children. Transmission occurred perinatally in three cases. The similarity of the viral sequences in each infant sample contrasted with the heterogeneous viral populations in the mothers. Phylogenetic analysis indicated the transmission of one or a few closely related maternal minor virus variants. In contrast, the child virus population in the fourth case was as heterogeneous as that of his mother, and phylogenetic analysis strongly suggested the transmission of multiple maternal variants. This case of multiple transmission was confirmed by analyzing sequences obtained at three times after delivery. Strains with sequences corresponding to the syncytium-inducing phenotype were also transmitted in this fourth case, and this was associated with the rapid development of disease in the child. There was no evidence for transmission of particular viral variants from mother to infant. We have thus described a particular case of vertical human immunodeficiency virus type 1 transmission with the transmission of multiple maternal variants to the infant and a rapid, fatal outcome in the child.  相似文献   

6.
Variation in the env (V3 region) and gag (p17 region) genes of genomic RNA of human immunodeficiency virus type 1 was studied in three mother-child pairs. One infant was human immunodeficiency virus type 1 RNA positive at birth (pair 114), one became positive 6 weeks after birth (pair 127), and one became positive 30 months after birth (pair 564). The first two children were born to seropositive mothers, and the last child was infected by breast-feeding following seroconversion of the mother after delivery. In both V3 and p17gag, intrasample variability was much higher in the maternal samples, including the first seropositive sample of the seroconverted mother, than in the infants' samples. Variability was less in p17gag than in V3, except in the postnatally infected child. In all three cases, infection of the child was established by variants representing a minority of the cell-free virus population in the maternal samples. For the two infants born to seropositive mothers, V3 sequences were more similar to the sequence populations of maternal samples collected during pregnancy than to those of samples collected at delivery or thereafter. However, in pair 114 a V3 variant identical to the child's virus was also detected in the sample collected at delivery. In contrast to the V3 region, p17gag sequences of maternal samples of the first trimester of pregnancy and at delivery had comparable resemblance to the child's sequences in pair 114, while in pair 127, similarity to sequences of the sample collected at delivery was higher than that to sequences of the sample from early in pregnancy. In the last pair, V3 and p17gag sequences from a maternal sample collected 18 months prior to the first RNA-positive sample of the child resembled the infant's sequences as much as the sample collected close to the presumed time of infection. Taken together, the evolutionary characteristics for genomic RNA env and gag genes did not point to a particular time of mother-to-child transmission.  相似文献   

7.
During cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), many viral particles can be simultaneously transferred from infected to uninfected CD4 T cells through structures called virological synapses (VS). Here we directly examine how cell-free and cell-to-cell infections differ from infections initiated with cell-free virus in the number of genetic copies that are transmitted from one generation to the next, i.e., the genetic inheritance. Following exposure to HIV-1-expressing cells, we show that target cells with high viral uptake are much more likely to become infected. Using T cells that coexpress distinct fluorescent HIV-1 variants, we show that multiple copies of HIV-1 can be cotransmitted across a single VS. In contrast to cell-free HIV-1 infection, which titrates with Poisson statistics, the titration of cell-associated HIV-1 to low rates of overall infection generates a constant fraction of the newly infected cells that are cofluorescent. Triple infection was also readily detected when cells expressing three fluorescent viruses were used as donor cells. A computational model and a statistical model are presented to estimate the degree to which cofluorescence underestimates coinfection frequency. Lastly, direct detection of HIV-1 proviruses using fluorescence in situ hybridization confirmed that significantly more HIV-1 DNA copies are found in primary T cells infected with cell-associated virus than in those infected with cell-free virus. Together, the data suggest that multiploid inheritance is common during cell-to-cell HIV-1 infection. From this study, we suggest that cell-to-cell infection may explain the high copy numbers of proviruses found in infected cells in vivo and may provide a mechanism through which HIV preserves sequence heterogeneity in viral quasispecies through genetic complementation.  相似文献   

8.
Previous studies have provided conflicting data on the presence of selective pressures in the transmission of a homogeneous maternal viral subpopulation to the infant. Therefore, the purpose of this study was to definitively characterize the human immunodeficiency virus type 1 (HIV-1) quasispecies transmitted in utero and intrapartum. HIV-1 envelope gene diversity from peripheral blood mononuclear cells and plasma was measured during gestation and at delivery in mothers who did and did not transmit HIV perinatally by using a DNA heteroduplex mobility assay. Children were defined as infected in utero or intrapartum based on the timing of the first detection of HIV. Untreated transmitting mothers (n = 19) had significantly lower HIV-1 quasispecies diversity at delivery than untreated nontransmittting mothers (n = 18) (median Shannon entropy, 0.711 [0.642 to 0.816] versus 0.853 [0.762 to 0.925], P = 0.005). Eight mothers transmitted a single major env variant to their infants in utero, and one mother transmitted a single major env variant intrapartum. Four mothers transmitted multiple HIV-1 env variants to their infants in utero, and two mothers transmitted multiple env variants intrapartum. The remaining six intrapartum- and two in utero-infected infants had a homogeneous HIV-1 env quasispecies which did not comigrate with their mothers' bands at their first positive time point. In conclusion, in utero transmitters were more likely to transmit single or multiple major maternal viral variants. In contrast, intrapartum transmitters were more likely to transmit minor HIV-1 variants. These data indicate that different selective pressures, depending on the timing of transmission, may be involved in determining the pattern of maternal HIV-1 variant transmission.  相似文献   

9.
The HIV-1 characteristics associated with mother to child transmission (MTCT) are still poorly understood and if known would indicate where intervention strategies should be targeted. In contrast to horizontally infected individuals, exposed infants possess inherited antibodies (Abs) from their mother with the potential to protect against infection. We investigated the HIV-1 gp160 envelope proteins from seven transmitting mothers (TM) whose children were infected either during gestation or soon after delivery and from four non-transmitting mothers (NTM) with similar viral loads and CD4 counts. Using pseudo-typed viruses we tested gp160 envelope glycoproteins for TZM-bl infectivity, CD4 and CCR5 interactions, DC-SIGN capture and transfer and neutralization with an array of common neutralizing Abs (NAbs) (2F5, 2G12, 4E10 and b12) as well as mother and infant plasma. We found no viral correlates associated with HIV-1 MTCT nor did we find differences in neutralization with the panel of NAbs. We did, however, find that TM possessed significantly higher plasma neutralization capacities than NTM (P  = 0.002). Furthermore, we found that in utero (IU) TM had a higher neutralization capacity than mothers transmitting either peri - partum (PP) or via breastfeeding (BF) (P  = 0.002). Plasma from children infected IU neutralized viruses carrying autologous gp160 viral envelopes as well as those from their corresponding mothers whilst plasma from children infected PP and/or BF demonstrated poor neutralizing capacity. Our results demonstrate heightened autologous NAb responses against gp120/gp41 can associate with a greater risk of HIV-1 MTCT and more specifically in those infants infected IU. Although the number of HIV-1 transmitting pairs is low our results indicate that autologous NAb responses in mothers and infants do not protect against MTCT and may in fact be detrimental when considering IU HIV-1 transmissions.  相似文献   

10.
11.
Gender differences in HIV-1 diversity at time of infection   总被引:12,自引:0,他引:12  
To develop an HIV-1 vaccine with global efficacy, it is important to identify and characterize the viruses that are transmitted, particularly to individuals living in areas of high incidence. Several studies have shown that virus from the blood of acutely infected adults was homogeneous, even when the virus population in the index case was genetically diverse. In contrast to those results with mainly male cohorts in America and Europe, in several cases a heterogeneous virus population has been found early in infection in women in Africa. Thus, we more closely compared the diversity of transmitted HIV-1 in men and women who became infected through heterosexual contact. We found that women from Kenya were often infected by multiple virus variants, whereas men from Kenya were not. Moreover, a heterogeneous virus was present in the women before their seroconversion, and in each woman it was derived from a single index case, indicating that diversity was most likely to be the result of transmission of multiple variants. Our data indicate that there are important differences in the transmitted virus populations in women and men, even when cohorts from the same geographic region who are infected with the same subtypes of HIV-1 are compared.  相似文献   

12.
13.
Abstract: The lack of a representative animal model that permits frequent in utero fetal blood sampling is a major limiting factor for the study of maternal-fetal HIV transmission. Therefore, we have developed a maternal-fetal virus infection model using chronically catheterized macaques to simultaneously study the time-course of viral infection in the mother and the response of the fetus to maternal HIV infection. Pregnant macaques were infected with 103 infectious units of HIV-2287; every 3 days blood samples from both the mother and the fetus as well as amniotic fluid samples were collected. We found a varying degree of peak and time-to-peak virus load, virus-infected PBMCs, and free virus (determined by QC-RNA-PCR method) in maternal blood. Two of the three mothers with more than 108 copies of viral RNA/ml of plasma at peak viremia transmitted the virus to their fetuses at about 14 days post-infection. As observed with HIV-2287 infected mothers, virus-infected fetuses also produced a rapid rate of CD4+ cell decline in utero.  相似文献   

14.
Early potent combination antiretroviral therapies (ART) for HIV-1 infection can preserve or restore immune function, but control of viral replication early in infection may interfere with the development of HIV-1-specific immune responses. Using an IFN-gamma ELISPOT assay, we evaluated the breadth and intensity of HIV-1-specific CD8(+) T cell responses in 17 vertically infected infants who began ART at 1-23 mo of age. CMV-specific responses were also characterized in three infants coinfected with HIV-1 and CMV. Before ART, HIV-1-specific CD8(+) T cell responses were detected in two of 13 (15%) infants <6 mo of age. HIV-1-specific CD8(+) T cells became undetectable in these two infants after the control of viral replication. Intermittent HIV-1-specific responses were noted in six infants who did not experience durable control of viral replication. In contrast, HIV-1-specific responses were detected before ART in four of four infants >6 mo of age and became persistently undetectable in only one child. CMV-specific CD8(+) T cell responses were persistently detected in all HIV-1 and CMV coinfected infants. In conclusion, HIV-1-specific CD8(+) T cell responses were less commonly detected before therapy in young infants than in older infants. Suppression of viral replication appeared to interfere with the development and maintenance of HIV-1-specific CD8(+) T cell responses. The detection of CMV-specific responses in HIV-1 and CMV coinfected infants suggests a selective defect in the generation or maintenance of HIV-1-specific CD8(+) T cell responses. Therapeutic HIV-1 vaccine strategies in young infants may prolong the clinical benefit of ART by expanding the HIV-1-specific CD8(+) T cell pool.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are two viral pathogens that establish chronic infections in their hosts and that are at present responsible for serious public health problems on a pandemic scale. HIV-1 and HCV can be transmitted from person to person by contact with bodily fluids. Both can also be transmitted from mother to child during the course of pregnancy and childbirth. There are currently no vaccines available to immunize against HIV-1 and HCV infection or to prevent mother-to-child transmission (MTCT), and accessible treatments have significant yet limited efficacy. However, important progresses have been made since the discovery of HCV and HIV-1 : (a) sensitive screening and detection methods have been perfected ; (b) risk factors for acquisition, replicative cycles, pathogenesis, and mechanisms of transmission have been better characterized ; (c) specific treatments, immunotherapy, and antiretroviral prophylaxis regimen were developed ; (d) immune correlates of protection are better understood ; and (e) vaccine design was undertaken. In addition, co-infection with HCV and HIV-1, which is common among high-risk groups including injection drug users, significantly increases the incidence of MTCT of both viruses. The mechanisms by which this facilitation occurs are still under investigation and may involve direct replicative facilitation, enhancement of placental transfer, and/or interference with host immune responses. Taken together, these developments could lead to the implementation of global scale strategies to prevent MTCT of HCV and HIV-1.  相似文献   

16.
Perinatal transmission of Human immunodeficiency virus(HIV),also called mother-to-child transmission(MTCT),accounts for 90% of infections in infants worldwide and occurs in 30%-45% of children born to untreated HIV-1 infected mothers.Among HIV-1 infected mothers,some viruses are transmitted from mothers to their infants while others are not.The relationship between virologic properties and the pathogenesis caused by HIV-1 remains unclear.Previous studies have demonstrated that one obvious source of selective pressure in the perinatal transmission of HIV-1 is maternal neutralizing antibodies.Recent studies have shown that viruses which are successfully transmitted to the child have growth advantages over those not transmitted,when those two viruses are grown together.Furthermore,the higher fitness is determined by the gp120 protein of the virus envelope.This suggests that the selective transmission of viruses with higher fitness occurred exclusively,regardless of transmission routes.There are many factors contributing to the selective transmission and HIV replicative fitness is an important one that should not be neglected.This review summarizes current knowledge of the role of HIV replicative fitness in HIV MTCT transmission and the determinants of viral fitness upon MTCT.  相似文献   

17.

Background

Mother-to-child transmission of HIV-1 remains a significant problem in the resource-constrained settings where anti-retroviral therapy is still not widely available. Understanding the earliest events during HIV-1 transmission and characterizing the newly transmitted or founder virus is central to intervention efforts. In this study, we analyzed the viral env quasispecies of six mother-infant transmission pairs (MIPs) and characterized the genetic features of envelope glycoprotein that could influence HIV-1 subtype C perinatal transmission.

Methodology and Findings

The V1-V5 region of env was amplified from 6 MIPs baseline samples and 334 DNA sequences in total were analyzed. A comparison of the viral population derived from the mother and infant revealed a severe genetic bottleneck occurring during perinatal transmission, which was characterized by low sequence diversity in the infant. Phylogenetic analysis indicates that most likely in all our infant subjects a single founder virus was responsible for establishing infection. Furthermore, the newly transmitted viruses from the infant had significantly fewer potential N-linked glycosylation sites in Env V1-V5 region and showed a propensity to encode shorter variable loops compared to the nontransmitted viruses. In addition, a similar intensity of selection was seen between mothers and infants with a higher rate of synonymous (dS) compared to nonsynonymous (dN) substitutions evident (dN/dS<1).

Conclusions

Our results indicate that a strong genetic bottleneck occurs during perinatal transmission of HIV-1 subtype C. This is evident through population diversity and phylogenetic patterns where a single viral variant appears to be responsible for infection in the infants. As a result the newly transmitted viruses are less diverse and harbored significantly less glycosylated envelope. This suggests that viruses with the restricted glycosylation in envelope glycoprotein appeared to be preferentially transmitted during HIV-1 subtype C perinatal transmission. In addition, our findings also indicated that purifying selection appears to predominate in shaping the early intrahost evolution of HIV-1 subtype C envelope sequences.  相似文献   

18.
The NEF gene is conserved among members of human and simian immunodeficiency viruses and may play an important role in viral pathogenesis. To determine the evolutionary dynamics and conservation of functionality of the human immunodeficiency virus type 1 (HIV-1) NEF gene during maternal-fetal transmission, we analyzed NEF sequences from seven mother-infant pairs following perinatal transmission, including a mother with infected twin infants. The NEF open reading frame was maintained in mother-infant isolates with a frequency of 86.2% following vertical transmission. While there was a low degree of viral heterogeneity and estimates of genetic diversity and high population growth rates of NEF sequences from mother-infant isolates, the infants' NEF sequences were slightly higher with respect to these parameters compared with the mothers' sequences. Both the mothers' and infants' NEF sequences were under positive selection pressure, as determined by a new method of Nielsen and Yang [Genetics 148:929-936;1998]. Based on genetic distance and phylogenetic parameters, the epidemiologically linked NEF sequences from mother-infant pairs were closer to each other compared with epidemiologically unlinked sequences from individuals. The functional domains essential for Nef activity, including membrane binding, CD4 and MHC-I downmodulation, T cell activation and interaction with factors of the cellular protein trafficking machinery, were conserved in most of the sequences from mother-infant pairs. The maintenance of intact NEF open reading frames with conserved functional domains and a low degree of genetic variability following vertical transmission supports the notion that NEF plays an important role in HIV-1 infection and replication in mothers and their perinatally infected infants.  相似文献   

19.
Objective: To determine the risk factors for and timing of vertical transmission of hepatitis C virus in women who are not infected with HIV-1. Design: Follow up for a median of 28 (range 24-38) months of babies born to women with antibodies to hepatitis C virus but not HIV-1. Subjects: 442 mothers and babies, of whom 403 completed the study. Main outcome measures: Presence of antibodies to hepatitis C virus and viral RNA and alanine aminotransferase activity in babies. Presence of viral RNA, method of infection with hepatitis C, method of delivery, and type of infant feeding in mothers.Results: 13 of the 403 children had acquired hepatitis C virus infection at the end of follow up. All these children were born to women positive for hepatitis C virus RNA; none of the 128 RNA negative mothers passed on the infection (difference 5%, 95% confidence interval 2% to 7%). 6 children had viral RNA immediately after birth. 111 women had used intravenous drugs and 20 had received blood transfusions. 11 of the infected children were born to these women compared with 2 to the 144 with no known risk factor (difference 7%, 2% to 12%).Conclusions: This study suggests that in women not infected with HIV only those with hepatitis C virus RNA are at risk of infecting their babies. Transmission does seem to occur in utero, and the rate of transmission is higher in women who have had blood transfusions or used intravenous drugs than in women with no known risk factor for infection.

Key messages

  • Little information exists on vertical transmission of hepatitis C virus in women not infected with HIV
  • This study in a large unselected population of infants born to HIV-1 negative mothers suggests that intravenous drug use itself is an important risk factor for transmission of hepatitis C virus
  • Maternal post-transfusional hepatitis is also an important risk factor for infection of infants
  • Viral genotype, maternal viraemia, type of delivery (vaginal delivery or caesarean section) and breast feeding do not seem to be risk factors
  • In utero transmission of hepatitis C virus has been suggested by RNA positivity on day of birth in some infected children
  相似文献   

20.
CD8+ T lymphocyte responses play an important role in controlling HIV-1 replication but escape from CD8+ T cell surveillance may limit the effectiveness of these responses. Mother-to-child transmission of CD8+ T cell escape variants may particularly affect CD8+ T cell recognition of infant HIV-1 epitopes. In this study, amino acid sequence variation in HIV-1 gag and nef was examined in five untreated mother-infant pairs to evaluate the potential role of CD8+ T cell responses in the evolution of the viral quasispecies. Several CD8+ T cell escape variants were detected in maternal plasma. Evaluation of infant plasma viruses at 1-3 mo documented heterogeneity of gag and nef gene sequences and mother-to-child transmission of CD8+ T cell escape variants. Infant HLA haplotype and viral fitness appeared to determine the stability of the escape mutants in the infant over time. Changes in CD8+ T cell epitope sequences were detected in infants' sequential plasma specimens, suggesting that infants are capable of generating virus-specific CD8+ T cell responses that exert selective pressures in vivo. Altogether, these studies document that HIV-1-specific CD8+ T cell responses contribute to the evolution of the viral quasispecies in HIV-1-infected women and their infants and may have important implications for vaccine design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号