首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Platelets containing adenine nucleotides labelled with 3H and 14C in vitro were aggregated biphasically with ADP and adrenaline. Amounts of ATP and ADP as well as the radioactivity of ATP, ADP, AMP, IMP, hypoxanthine and adenine were determined in platelets and plasma at different stages of aggregation. 2. ATP and ADP were released during the second aggregation phase and had a low specific radioactivity compared with the ATP and ADP retained by the cells. The specific radioactivity of intracellular nucleotides increased during release. The parameters observed with ADP and adrenaline as release inducers were the same as for collagen and thrombin. 3. Release induced by all four inducers was accompanied by conversion of cellular [3H]ATP into extracellular [3H]-hypoxanthine. By variation of temperature, inducer concentration, time after blood withdrawal and use of acetylsalicylic acid, the aggregation pattern caused by adrenaline and ADP could be made mono- or bi-phasic. Release or second-phase aggregation was intimately connected with the ATP–hypoxanthine conversion, whereas first phase aggregation was not. 4. The [3H]ATP–hypoxanthine conversion started immediately after ADP addition. With adrenaline it usually started with the appearance of the second aggregation phase. The conversion was present during first phase of ADP-induced aggregation only if a second phase were to follow. 5. When secondary aggregation took place while radioactive adenine was being taken up by the platelets, increased formation of labelled hypoxanthine still occurred, but there was either no change or an increase in the concentration of labelled ATP. 6. Biphasically aggregated platelets converted [3H]adenine more rapidly into [3H]-ATP and -hypoxanthine than non-aggregated platelets. Addition of [3H]adenine at different stages of biphasic aggregation showed that more [3H]hypoxanthine was formed during than after the release step. 7. We conclude that ADP and adrenaline, like thrombin and collagen, cause extrusion of non-metabolic granula-located platelet adenine nucleotides. During release metabolic ATP breaks down to hypoxanthine, and this process might reflect an ATP-requiring part of the release reaction.  相似文献   

2.
A23187 induced shape change, aggregation and secretion of platelets in plasma. When rapid cooling was used to stop secretion and centrifugation to separate the cells from the medium, maximal amounts of storage ATP plus ADP and preadsorbed [14C]serotonin were found in the supernatant immediately (less than 5 s) after A23187 addition. These results suggested that A23187 could cause shape change and aggregation through secreted ADP and not directly. When secretion was stopped with chilling and formaldehyde treatment before centrifugation, the secreted substances appeared after a lag of 60-120 s, i.e. after shape change was terminated and aggregation was well on its way. These two platelet responses thus seemed to be independent of secretion and induced directly by A23187. The absence of a lag period when secretion was stopped by chilling alone was thought to be due to centrifugation-induced secretion of platelets conditioned by A23187. Formaldehyde completely inhibited centrifugation-induced secretion. At 37 degrees C, formaldehyde caused rapid breakdown of metabolic ATP in platelets with a pattern dependent on the formaldehyde concentration: Below 50 mM, ATP was converted to inosine plus hypoxanthine via ADP, AMP and IMP and the adenylate energy charge was preserved. Above 100 mM, AMP was the end product with a drastic reduction in the adenylate energy charge. These changes were not due to lysis of the platelets, but were apparently caused by an formaldehyde-induced increase in cellular ATP consumption. Platelet secretion is usually associated with a conversion of metabolic ATP to hypoxanthine. Formaldehyde had to be used to stop secretion and since it caused breakdown of ATP, additional smaples were taken out for nucleotide determination during stirring of platelet-rich plasma with A23187. It was found that metabolic ATP was converted to inosine plus hypoxanthine only during the secretion step.  相似文献   

3.
5'-p-Fluorosulfonylbenzoyl adenosine (FSBA), a nucleotide analog of ADP, has been shown to inhibit ADP-induced shape change, aggregation and exposure of fibrinogen binding sites concomitant with covalent modification of a single surface membrane polypeptide of Mr 100,000 (aggregin). Since thrombin can aggregate platelets which have been modified by FSBA and are refractory to ADP, we tested the hypothesis that thrombin-induced platelet aggregation might involve cleavage of aggregin. At a low concentration of thrombin (0.05 U/ml), platelet aggregation, exposure of fibrinogen receptors and cleavage of aggregin in FSBA-modified platelets did not occur, indicating ADP dependence. In contrast, incubation of [3H]FSBA-labeled intact platelets with a higher concentration of thrombin (0.2 U/ml) resulted in cleavage of radiolabeled aggregin, aggregation, and exposure of fibrinogen binding sites. Under identical conditions, aggregin in membranes isolated from [3H]FSBA-labeled platelets was not cleaved by thrombin. Thrombin-induced platelet aggregation and cleavage of aggregin were concomitantly inhibited by a mixture of 2-deoxy-D-glucose, D-gluconic acid 1,5-lactone, and antimycin A. These results suggest that thrombin cleaves aggregin indirectly by activating an endogeneous protease. Thrombin is known to elevate intracellular Ca2+ concentration and thereby activates intracellular calcium dependent thiol proteases (calpains). In contrast to serine protease inhibitors, calpain inhibitors including leupeptin, antipain, and ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (chelator of Ca2+) inhibited platelet aggregation and cleavage of aggregin in [3H]FSBA-labeled platelets. Leupeptin, at a concentration of 10-20 microM, used in these experiments, did not inhibit the amidolytic activity of thrombin, thrombin-induced platelet shape change, or the rise in intracellular Ca2+. Purified platelet calpain II caused aggregation of unmodified and FSBA-modified platelets and cleaved aggregin in [3H]FSBA-labeled platelets as well as in isolated membranes. The latter is in marked contrast to the action of thrombin on [3H]FSBA-labeled membranes. Thus, thrombin-induced platelet aggregation may involve intracellular activation of calpain which proteolytically cleaves aggregin thus unmasking latent fibrinogen receptors, a necessary prerequisite for platelet aggregation.  相似文献   

4.
Changes in phosphoinositide metabolism were examined in washed rabbit platelets stimulated with 0.5 microM-ADP, 50 microM-adrenaline, or ADP and adrenaline in combination. Adrenaline does not stimulate platelet aggregation when used alone, but does potentiate aggregation stimulated by ADP. In platelets prelabelled with [32P]Pi and [3H]glycerol, adrenaline was found to potentiate the ADP-induced changes in platelet phospholipids, causing larger increases in the amount and labelling of phosphatidylinositol 4-phosphate (PIP) and phosphatidic acid than was observed with ADP alone. The combination of ADP and adrenaline did not produce a greater decrease in phosphatidylinositol 4,5-bisphosphate (PIP2) than was produced by ADP alone. In platelets prelabelled with [3H]inositol, adrenaline potentiated the increases in labelling of inositol phosphate and inositol bisphosphate stimulated by ADP; no increase in inositol trisphosphate labelling was detected with ADP alone or with the combination of ADP and adrenaline. Phentolamine, an alpha-adrenergic-receptor antagonist, blocked potentiation by adrenaline of ADP-induced changes in phosphoinositide metabolism. Propranolol and sotalol, beta-adrenergic-receptor antagonists, augmented the potentiation; this is consistent with the concept that the effect of adrenaline is mediated by beta-adrenergic receptors. The effect of adrenaline on phosphoinositide metabolism appears to be to potentiate the mechanisms by which ADP causes turnover of PIP and possibly degradation of PI, rather than the mechanism by which PIP2 is decreased.  相似文献   

5.
Purine utilization in the malarial parasite dependent on a “salvage” pathway was studied to determine the detailed mechanism of how purines were utilized and which precursor might be penetrating the membrane of the parasite.Erythrocyte-free malarial parasites (Plasmodium berghei) were incubated at 20 C with 2,8-3H-adenosine as a precursor for purine metabolism. Parasites and medium were separated using a unique system whereby the metabolites associated with the parasite and those contained in the medium can be identified after as little as 15 sec–10 min of incubation. It was shown that 3H-adenosine is rapidly deaminated to inosine and then deribosylated to hypoxanthine. The distribution of radioactivity indicated that these events occurred on the surface or outside of the parasite, while conversion of hypoxanthine to form IMP, and subsequently to ATP occurred most probably inside the parasite. The results indicated that hypoxanthine may be the immediate precursor entering the parasite membrane and is then converted to IMP eventually forming AMP, ADP, and ATP. 3H-IMP occurred in high concentration with a maximum occurring 2 min after incubation and gradually decreasing thereafter. The pool sizes of AMP and ADP appeared to be small and were quickly saturated. Formation of 3H-ATP continued to increase throughout the 10 min experimental period at which time > 80% of the added adenosine was converted to ATP. The large pool of IMP appeared to act as a “sink” to accomodate large amounts of purine intermediates available for later use and this could be a mechanism developed by the parasites to bypass the usual regulatory control of AMP.Phosphorylation and further utilization of 3H adenosine was completely eliminated in the presence of 5 × 10?5M concentrations of adenosine, inosine, and hypoxanthine. Hypoxanthine, a normal-exit metabolite in mammalian purine metabolism, is apparently the building block of the nucleotides for the parasite indicating that hypoxanthine and/or its analogs may be able to antagonize and therefore have chemotherapeutic value in the treatment of malaria.Scanning-beam electron microscopy of the parasites showed that the free malarial parasites were round in shape measuring 1–2 μm (average 1.5 μm) in diameter and the outer surface appeared to be somewhat uneven.  相似文献   

6.
1. A method is described for detecting and determining the products of metabolism of ADP added to plasma at initial concentrations of about 1mum-ADP. 2. ATP, ADP, AMP, adenosine, inosine and hypoxanthine were detected in human platelet-rich plasma after incubation with ADP and in the presence of either heparin or heparin-citrate. 3. The products of incubation of ADP with human platelet-poor plasma in the presence of heparin were the same as with platelet-rich plasma, except that, when the initial concentration of ADP was 1.5mum, little or no ATP was detected. 4. The ATP detected in platelet-rich plasma when 1.5mum-ADP was initially incubated was present in the platelets and not in the plasma. 5. The time for 50% decay of ADP in either platelet-rich or platelet-poor plasma in the presence of heparin was about 20min. when the initial concentration of ADP was 200mum, but was 6-9min. when the initial ADP concentration was 1.5-2.5mum. The corresponding values in the presence of heparin-citrate were about 45min. and about 9-12min. respectively. 6. Hypoxanthine accumulated to a greater extent in platelet-rich than in platelet-poor plasma after the addition of ADP. 7. After incubation for 15-20min. of either platelet-rich plasma or suspensions of washed platelets in saline with adenosine at an initial concentration of about 3-4mum, ATP, ADP and AMP were detected in the platelets. Similar incubations of washed platelets with inosine also showed the formation of these substances, but to a much less extent. 8. After the addition of adenosine to suspensions of washed platelets in saline, inosine and hypoxanthine were detected in the incubation mixture. After the addition of inosine, hypoxanthine was detected. 9. When ADP at an initial concentration of 1.5mum was added to platelet-rich plasma containing adenosine deaminase, no adenosine was detected in the incubation mixture. There was no difference in the rate of decay of ADP in the presence or absence of the deaminase, but ATP formation was decreased in its presence.  相似文献   

7.
The receptor for ADP on the platelet membrane, which triggers exposure of fibrinogen-binding sites and platelet aggregation, has not yet been identified. Two enzymes with which ADP interacts on the platelet surface, an ecto-ATPase and nucleosidediphosphate kinase, have been proposed as possible receptors for ADP in ADP-induced platelet aggregation. In the present study, experiments were conducted with washed human platelets to examine if a relationship existed between platelet aggregation, fibrinogen binding and the enzymatic degradation of ADP. With 12 different platelet suspensions, a good correlation (P less than 0.01) was found between the extent of platelet aggregation and the amount of 125I-fibrinogen bound to platelets after ADP stimulation. No correlation was found between these parameters and the rate or extent of transformation of [14C]ADP to [14C]ATP or [14C]AMP. The binding of fibrinogen to platelets was inhibited in parallel with aggregation when ADP stimulation was impaired by the enzymatic degradation of ADP by the system creatine phosphate/creatine phosphokinase, or by the use of specific antagonists, such as ATP and AMP. These antagonists also influenced the enzymatic degradation of ADP. This effect occurred at lower concentrations of ATP or AMP than those required to inhibit ADP-induced platelet aggregation and fibrinogen binding. Our results demonstrate that ATP and AMP may be used as specific antagonists of the ADP-induced fibrinogen binding to platelets. They do not provide evidence to suggest that enzymes which metabolize ADP on the platelet surface are involved in the mechanism of ADP-induced platelet aggregation.  相似文献   

8.
The uptake activity ratio for AMP, ADP, and ATP in mutant (T-1) cells of Escherichia coli W, deficient in de novo purine biosynthesis at a point between IMP and 5-aminoimidazole-4-carboxiamide-1-β-D-ribofuranoside (AICAR), was 1:0.43:0.19. This ratio was approximately equal to the 5'-nucleotidase activity ratio in E. coli W cells. The order of inhibitory effect on [2-3H]ADP uptake by T-1 cells was adenine > adenosine > AMP > ATP. About 2-fold more radioactive purine bases than purine nucleosides were detected in the cytoplasm after 5 min in an experiment with [8-1?C]AMP and T-1 cells. Uptake of [2-3H]adenosine in T-1 cells was inhibited by inosine, but not in mutant (Ad-3) cells of E. coli W, which lacked adenosine deaminase and adenylosuccinate lyase. These experiments suggest that AMP, ADP, and ATP are converted mainly to adenine and hypoxanthine via adenosine and inosine before uptake into the cytoplasm by E. coli W cells.  相似文献   

9.
Filamentous muscle actin (F-actin) aggregated blood platelets while G-actin was ineffective. This aggregation could be blocked by ATP suggesting a possible role of actin-bound ADP in this process. Actin-bound ADP caused platelet aggregation at concentrations significantly lower than equivalent concentrations of free ADP. Thus, actin potentiates the aggregating action of ADP. An actin antibody or DNase I inhibited this aggregation showing the requirement of actin in this process. Like other physiological agents, Ca++ was necessary for platelet aggregation by actin. Platelets fixed in formaldehyde were not aggregated by actin showing the need for viable platelets. Since F-actin contains 1 mole of bound ADP/mole protein, it is postulated that actin potentiates ADP-induced aggregation by providing multiple interaction sites for platelets.  相似文献   

10.
In contrast to human platelets, which aggregate poorly in response to ADP unless fibrinogen is present in the external medium, washed rabbit platelets form large aggregates in response to ADP without fibrinogen in the suspending medium. Addition of fibrinogen to the suspending medium of rabbit platelets frequently has little or no effect on the extent of ADP-induced platelet aggregation. We examined washed rabbit platelets by immunocytochemistry during ADP-induced aggregation and deaggregation and during thrombin-induced aggregation when the external medium did not contain added fibrinogen to determine if (a) fibrinogen was expressed on the surface of rabbit platelets that could support aggregation when the platelets were stimulated, or (b) fibrinogen secreted from the alpha granules supports platelet aggregation. Glutaraldehyde-fixed samples were prepared at different times after addition of ADP or thrombin, embedded in Lowicryl K4M, sectioned, incubated with sheep anti-rabbit fibrinogen, washed, reacted with gold-labeled anti-sheep IgG, and prepared for electron microscopy. The alpha granules of rabbit platelets were heavily labeled with immunogold; the platelet membrane was not labeled. During platelet aggregation and deaggregation in response to ADP, fibrinogen was not detectable on the platelet surface. In response to thrombin, large aggregates formed before fibrinogen was secreted from the alpha granules; fibrinogen was detectable focally at sites of granule discharge by 30-60 sec and fibrin formed by 3 min. Therefore, stimulated washed rabbit platelets can adhere to each other without large amounts of fibrinogen taking part in the close platelet-to-platelet contact, since aggregation occurs before detectable secretion, and large areas where the platelets are in contact are devoid of fibrinogen between the adherent membranes. Adhesion mechanisms not involving fibrinogen may support the aggregation of washed rabbit platelets.  相似文献   

11.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

12.
Effect of thrombin on the radioactive nucleotides of human washed platelets   总被引:9,自引:4,他引:5  
Radioactive ATP and ADP were found in platelets after incubation of human platelet-rich plasma with either [8-(14)C]adenosine or [8-(14)C]ADP. Treatment of the labelled and washed platelets with thrombin indicated that, though considerable amounts of ATP and ADP were released to the supernatant, radioactive ATP and ADP remained predominantly in the cellular fraction. Breakdown of radioactive ATP took place to form mainly IMP and hypoxanthine, the latter compound appearing in the supernatant. The results indicate the presence of at least two pools of nucleotide in platelets. Evidence is given that the two pools contain approximately the same amounts of ATP plus ADP, and that the ratio of ATP to ADP in the pool released to the supernatant by the action of thrombin is about 0.7-0.8.  相似文献   

13.
[3H]Adenosine was taken up and metabolized by isolated ganglia of the marine mollusc Aplysia californica. After 2 h, most of the radioactivity was recovered as metabolites, including ATP, ADP, and AMP, as well as the deaminated products, inosine, hypoxanthine, and uric acid. Little remained in the form of adenosine. These pathways were not uniformly distributed among various tissue elements. In most individual neurons, inosine and its breakdown products were the principal metabolites of [3H]adenosine, whereas ATP and other nucleotides predominated in the connective tissue sheath. Endogenous levels of ATP, ADP, AMP, and adenosine in ganglia, sheath, and individual neurons were also determined using a fluorimetric-HPLC assay. The concentrations of the nucleotides were quite uniform in sheath and among the individual neurons assayed (1-5 pmol/microgram of protein); however, concentrations of adenosine were considerably higher in neurons than in the sheath.  相似文献   

14.
Adenine nucleotide (AN) degradation has been shown to occur during intense exercise in the horse and in man, at or close to the point of fatigue. The aim of the study was to compare the concentrations of muscle inosine 5'-monophosphate (IMP) and plasma ammonia (NH3) during intense exercise with the concentrations of muscle and blood lactate. Seven trained thoroughbred horses were used in the study. Each exercised on a treadmill for periods of between 30 s and 150 s, at 11 and/or 12 m.s-1. Blood and muscle samples were taken and analysed for lactate and NH3 and adenosine 5'-triphosphate (ATP), phosphorylcreatine (PCr), IMP, creatine, lactate and glycerol-3-phosphate respectively. Horses showed varying degrees of AN degradation as indicated by plasma [NH3] and muscle [ATP] and [IMP]. Comparisons of [IMP] with muscle [lactate], and plasma [NH3] with that of blood [lactate] indicated a threshold to the start of AN degradation. This threshold corresponded to a lactate content of around 80 mmol.kg-1 dry muscle and 15 mmol.l-1 in blood. We discuss the mechanisms which have been proposed to account for AN degradation and suggest that IMP formation occurs as a result of a sudden rise in the concentration of adenosine 5'-diphosphate (ADP) and consequently the concentration of adenosine 5'-monophosphate. The data suggest a critical pH below which there may be a substantial reduction in the kinetics of ADP rephosphorylation provided by PCr resulting in an increase in [ADP], which is the stimulus to AN degradation during intense exercise.  相似文献   

15.
A method has been developed that makes it possible to obtain [5,6-3H2]PGE1 with a yield of 35% and a molar radioactivity of 1.7-1.8 TBq/mmol. The binding of [5,6-3H2]PGE1 to native platelets proved to be specific, saturating and reversible. It is characterized by low values (approximately 10(-9) M) of dissociation constants for high-affinity sites, correlates with the inhibition of ADP-induced aggregation of platelets and can be considered as receptor binding. Specific binding of 10 +/- 2 molecules of PGE1 with one platelet was found to cause 50% inhibition of the ADP-induced aggregation.  相似文献   

16.
Inositol phospholipid metabolism in human platelets stimulated by ADP   总被引:2,自引:0,他引:2  
ADP-induced changes in inositol phospholipids, phosphatidic acid and inositol phosphates of human platelets have been studied in detail, using not only 32P labelling, but also by examining changes in amounts of the phospholipids, their labelling with [3H]glycerol and their specific radioactivities; changes in the labelling of inositol phosphates in platelets prelabelled with [3H]inositol were also measured. During the early (10 s) stage of reversible ADP-induced primary aggregation in a medium containing fibrinogen and with a concentration of Ca2+ in the physiological range (2 mM), the amounts of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and phosphatidylinositol 4-phosphate (PtdInsP) decreased (by 11.2 +/- 4.9% and 11.3 +/- 5.3%, respectively) while the labelling, but not the amount, of phosphatidic acid increased. The decreases do not appear to be attributable to the action of phospholipase C because the specific radioactivity of phosphatidic acid labelling with [3H]glycerol was not significantly increased at 10 s (although the initial specific radioactivities of the inositol phospholipids and PtdCho were more than double that of phosphatidic acid), and no increases in the labelling of inositol trisphosphate (InsP3), inositol bisphosphate (InsP2) or inositol phosphate (InsP) were detectable at 10 s. Shifts in the interconversions between PtdInsP2 and PtdInsP, and PtdInsP and PtdIns may occur. By 30 to 60 s, when deaggregation was beginning, the amounts of PtdInsP2, PtdInsP and phosphatidic acid were not different from those in unstimulated platelets, but large increases in the 32P-labelling and [3H]glycerol labelling of phosphatidic acid were observed. Formation of [3H]inositol-labelled InsP3 was not detectable at any time in association with ADP-induced primary aggregation, indicating that degradation of PtdInsP2 by phospholipase C is not appreciably stimulated by ADP. These findings were compared with those obtained when platelets were aggregated by ADP in a medium without added of Ca2+ in which secondary aggregation associated with thromboxane A2 (TXA2) formation and release of granule contents occurs. At 10 s (during primary aggregation) the changes were similar in the two media. At 30 s and 60 s (during secondary aggregation in the low-Ca2+ medium), the increases in PtdInsP2, PtdInsP and phosphatidic acid in platelets suspended in the absence of added Ca2+ were larger than those in platelets suspended in the presence of 2 mM Ca2+. In the absence of added Ca2+, ADP-induced increases in the labelling of InsP3, InsP2 and InsP which were probably due to the effects of TXA2 since they were abolished by aspirin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Electrical shock treatment produces a rapid loss of high energy phosphates in rat brain. The [ATP]/[ADP] ratio decreases to one-third of its control value within 10 s. The ammonia content increases 3-fold during the first minute after starting the stimulus. The total adenine nucleotide plus adenosine content of brain decreases an equivalent amount of hypoxanthine-containing compounds appears. Adenosine, inosine, and hypoxanthine accumulate, and there is a transitory accumulation of adenylosuccinate. The contents of ATP and creatine phosphate, and the [ATP]/[ADP] ratio, are rapidly restored to control values, but other metabolite contents are restored more slowly. The transient rise in adenylosuccinate and IMP provides evidence that the ammonia production is due in part, and possibly in whole, to the operation of the purine nucleotide cycle.  相似文献   

18.
Pretreatment of human platelets with the metabolic inhibitors rotenone and 2-deoxyglucose, before French press homogenization, has led to the isolation of dense storage granules in an overall yield of about 20%. The concentrations of serotonin, ATP and ADP were estimated in the dense granules. Serotonin was 40--60-fold enriched in the dense granules compared to the platelet homogenate. Stored ATP and ADP were also 40-fold enriched in the dense granules compared to the estimated storage nucleotide pool in intact platelets. The ATP to ADP ratio in the isolated dense granules was 0.68-0.70, the same as the ratio of the secreted ATP and ADP. In platelets prelabeled with [3H]adenine, the specific radioactivities of the ATP and ADP in the isolated dense granules and of the secreted ATP and ADP were both negligible, whereas the estimated specific radioactivity of the metabolically active ATP and ADP was 2,000 cpm/nmol. These results confirm that the ATP and ADP in the isolated dense granules are the same as the secreted ATP and ADP in terms of metabolic inactivity and their ATP to ADP ratios.  相似文献   

19.
Isolated human blood platelets, loaded with the pH-sensitive fluorescence dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein show cytoplasmic alkalinization upon stimulation with thrombin but acidification with ADP stimulation. In both cases a Na+/H+ exchange is activated. This can be revealed by the sensitivity of the induced pH changes to amiloride and to 5-N-(3-aminophenyl)amiloride (APA), known inhibitors of the Na+/H+ exchanger, and by a dependence on sodium in the external medium. ADP-induced platelet aggregation is not affected by omission of sodium from the external medium. Furthermore, aggregation is barely inhibited (less than 10%) by amiloride or APA at concentrations up to 50 microM while the Ki values in affecting the Na+/H+ exchange are 5.9 and 1.6 microM for amiloride and APA, respectively. Platelet aggregation is inhibited by amiloride or APA at concentrations higher than 50 microM, but this inhibition is apparently due to a secondary effect of the agents. It is concluded that platelet aggregation induced by ADP is not dependent on activation of Na+/H+ exchange.  相似文献   

20.
Platelets play a major role in the hemostatic process following vascular injury. Chemical modification of cysteine and/or lysine residues in platelet proteins has been shown to cause loss of platelet aggregation induced by diverse agonists; however, these investigations have not addressed the identity of the specific proteins affected. o-Phthalaldehyde (OPTH) is a unique chemical modification reagent that forms and permits the identification of fluorescent isoindole derivatives with proteins by covalently and simultaneously modifying closely spaced cysteine and lysine residues. We found that OPTH inhibited platelet aggregation induced by ADP, collagen, and U46619 (an analog of prostaglandin H2), but had minimal effect on platelet aggregation induced by thrombin, plasmin, chymotrypsin, A23187 (a calcium ionophore), PMA (phorbol 12-myristate 13-acetate), and PMA + A23187. Since platelet aggregation induced by ADP, collagen, and U46619 has been shown to involve binding of endogenous or exogenous ADP to the platelet receptor, our further studies focused on platelet aggregation induced by ADP. OPTH inhibited ADP-induced shape change and aggregation in a concentration-dependent manner. The second-order rate constant for the inhibition of ADP-induced platelet shape change (Ksc = 1.0 X 10(3) M-1 s-1) was lower than that for aggregation (Kagg = 5.4 X 10(3) M-1 s-1). Fluorescence excitation and emission spectra of OPTH-platelet adduct exhibited maxima at 346 and 437 nm, respectively, consistent with the formation of an isoindole derivative(s). The nonpenetrating thiol-specific reagent, p-chloromercuribenzenesulfonate (pCMBS) (0.8 mM), is known to block the inhibition of stimulated adenylate cyclase induced by ADP but not the ADP-induced platelet shape change. The inhibition of ADP-induced platelet shape change (Ksc = 1.5 X 10(3) M-1 s-1) by OPTH was not affected by pCMBS. OPTH, at concentrations (15-50 microM) that inhibited ADP-induced platelet aggregation and shape change did not raise the intracellular levels of adenosine cyclic 3',5'-monophosphate (cAMP) in platelets nor did it impair the ability of iloprost (a stable analog of prostaglandin I2) to raise the platelet cAMP level. Thus, OPTH under these conditions did not interact with platelet adenylate cyclase. 5'-p-fluorosulfonylbenzoyladenosine (FSBA) has been previously shown to inhibit ADP-induced platelet shape change and aggregation by covalently modifying aggregin (Mr = 100 kDa), a putative ADP receptor on platelet surface.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号