首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli strain NP2907 was isolated as a spontaneous mutant of strain NP29, which possesses a thermolabile valyl-transfer ribonucleic acid (tRNA) synthetase. The valyl-tRNA synthetase of the new mutant, unlike that of its immediate parent, retains enzymatic activity in vitro but differs from the wild-type enzyme in stability and apparent K(m) for adenosine triphosphate. The new mutant locus, valS-102, cotransduces with pyrB at the same frequency as does the parental locus, valS-1. Cultures of strain NP29 cease growth immediately in any medium when shifted from 30 to 40 C. The new mutant grows normally at 30 C, and upon a shift to 40 C growth quickly accelerates exactly as for normal cells. Exponential growth, however, cannot be sustained at 40 C. At a point characteristic for each medium, growth becomes linear with time. This transition occurs almost immediately in rich media and after 1.5 generations in glucose minimal medium. Net synthesis of valyl-tRNA synthetase ceases in the new mutant as soon as the temperature is raised to 40 C, irrespective of the growth medium. We conclude that it is the amount of valyl-tRNA synthetase activity that limits the rate of growth in the linear phase at 40 C. This property of the mutant makes it possible to evaluate the in vivo efficiency of this enzyme at different growth rates and thereby to determine the concentration that is necessary for a given rate of protein synthesis. The results of our measurements indicate that cells of E. coli growing in minimal medium normally possess a functional excess of valyl-tRNA synthetase with respect to protein synthesis and to repression of threonine deaminase.  相似文献   

2.
A single, recessive mutation in a nuclear gene confers a temperature-sensitive growth response in a mutant of Saccharomyces cerevisiae, ts(-) 136. The mutant grows normally at 23 C, but exhibits a rapid and preferential inhibition of ribonucleic acid (RNA) accumulation after a shift to 36 C, demonstrating a defect in stable RNA production. Cultures of the mutant which were shifted from 23 to 36 C display the following phenomena which indicate that messenger RNA (mRNA), as well as stable RNA production, is defective. The entrance of pulse-labeled RNA into cytoplasmic polyribosomes is even more strongly inhibited than is net RNA accumulation. The rate of protein synthesis, at first unaffected, decreases slowly; this decrease is paralleled by the decay of polyribosomes to monoribosomes with a half-time of 23 min. The polyribosomes which remain after a 30-min preincubation of the mutant at 36 C are active in polypeptide synthesis in vivo, whereas the monoribosomes which accumulate are not. Furthermore, ribosomes isolated from a culture of the mutant preincubated for 1 hr at 36 C are inactive in polypeptide synthesis in vitro, but can be restored to full activity by the addition of polyuridylic acid as mRNA. We conclude that mutant ts(-) 136 is defective either in the synthesis of all types of cytoplasmic RNA, or in the transport of newly synthesized RNA from the nucleus to the cytoplasm, and that the mRNA of a eucaryotic organism (yeast) is metabolically unstable, having a half-life of approximately 23 min at 36 C.  相似文献   

3.
The valyl-transfer ribonucleic acid (tRNA) synthetase of Escherichia coli strain NP2907, previously described as having an elevated K(m) for adenosine triphosphate and reduced stability in vitro compared to the wild type, was found to be conditionally thermolabile in vivo. The rate of inactivation of this enzyme at a particular temperature appears to be coordinated with the rate of growth; at 40 C this coordination results in equal rates of synthesis and destruction over a wide range of growth rates. In vitro studies showed that conditions favoring maintenance of the valyl-tRNA synthetase-valyl adenylate complex conferred complete protection against inactivation at 40 C, whereas the further addition of uncharged tRNA caused rapid, irreversible decay. We propose that the rate of inactivation of this mutant valyl-tRNA synthetase in vivo is a function of the ratio of deacylated to acylated tRNA(val) and that this ratio is a function of growth rate. The event which renders the valyl-tRNA synthetase susceptible to inactivation is likely to be the normal breakdown of the valyl-tRNA synthetase-valyl-adenylate complex during a cycle of aminoacylation of tRNA(val).  相似文献   

4.
Escherichia coli strain 9D3 possesses a highly temperature-sensitive valyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.9). Since 9D3 is a rel(+) strain, it cannot carry out net RNA synthesis at high temperature. A 100-mug amount of chloramphenicol (CAP) per ml added in the absence of valine cannot stimulate RNA synthesis. Either 300 mug of CAP or 100 mug of CAP plus 50 mug of valine per ml, however, promotes nearly maximal RNA synthesis. These results can be understood as follows. (i) Valyl-tRNA is required for net RNA synthesis, (ii) the synthetase lesion is incomplete, (iii) the rate of mutant acylation of tRNA(val) at high temperature is valine-dependent, and (iv) the CAP concentration determines the rate of residual protein synthesis. Data are also presented which demonstrate that the rate of net RNA synthesis can greatly increase long after the addition of CAP, if the amount of valyl-tRNA increases.  相似文献   

5.
Three forms of ribonucleic acid polymerase can be distinguished in exponentially growing Escherichia coli cells: (i) active, (ii) inactive, inside the nucleoid, and (iii) inactive, free in the cytoplasm.  相似文献   

6.
Reovirus-induced Ribonucleic Acid Polymerase   总被引:1,自引:6,他引:1       下载免费PDF全文
A virus-induced ribonucleic acid (RNA) polymerase activity was found in L cells infected with type 3 reovirus. Most of the enzyme is associated with the "large particle" fraction of the infected cells. The enzyme first appeared at 3 to 5 hr after infection and increased in amount until 7 to 9 hr. All four ribonucleoside triphosphates are incorporated in vitro into an acid-insoluble form by the enzyme. The major part of the product formed in vitro is a double-stranded RNA indistinguishable from viral RNA by electrophoresis on polyacrylamide gel. Approximately 40% of the product is a single-stranded RNA of relatively small molecular weight. More than 95% of the nucleotides incorporated into double-stranded RNA by the enzyme are bound in internal 3'-5'-phosphodiester linkages extending back from both 3'- and 5'-termini of the RNA strands.  相似文献   

7.
The large-particle fraction from the cytoplasm of chick embryo fibroblasts infected with Semliki Forest virus was found to catalyze the incorporation of the 5'-triphosphates of guanosine, adenine, cytidine, and uridine into an acid-insoluble alkali-labile product. The conditions affecting the preparation and assay of this enzyme were investigated. The ribonucleic acid (RNA) polymerase was not present in uninfected cells, and it appeared in infected cells at the time of rapid viral RNA synthesis. The polymerase was found to catalyze the synthesis of a species of RNA which was resistant to ribonuclease and which exhibited the sedimentation properties, buoyant density, and thermal transition temperature of the double-stranded RNA found in vivo in chick cells infected with Semliki forest virus. Attempts to demonstrate that the reaction product of this enzyme also included single-stranded viral RNA were not successful. Although other interpretations are possible, these results give some support to the suggestion that more than one enzyme may be involved in the replication of viral RNA.  相似文献   

8.
The effect of low concentrations of nalidixic acid on ribonucleic acid (RNA) synthesis in Escherichia coli was examined. It was observed that RNA synthesis in exponentially growing cells was not significantly affected, in harmony with previous studies. However, RNA synthesis was markedly depressed by nalidixic acid during starvation for an amino acid or during chloramphenicol treatment. This effect was not caused by increased killing or inhibition of nucleoside triphosphate synthesis by nalidixic acid. The pattern of radioactive uracil incorporation into transfer RNA or ribosomes was not changed by the drug. The sensitivity of RNA synthesis to nalidixic acid in the absence of protein production may be useful in probing the amino acid control of RNA synthesis.  相似文献   

9.
Escherichia coli treated with chloramphenicol (CM) accumulated ribonucleic acid (RNA) in the absence of protein synthesis. The accumulated RNA (CM-RNA) was largely ribosomal (23S and 16S) and soluble (4S). The stability of CM-RNA depended upon the incubation conditions following the removal of CM. Thus, conditions which allowed the complete recovery of cultures from CM inhibition resulted in only a 30% loss of CM-RNA. The addition of proflavine to recovering cultures, which prevented further RNA synthesis, also resulted in about 30 to 35% degradation of CM-RNA. However, when RNA synthesis was inhibited by starving the recovering cultures for the required amino acid, histidine, 55% of the CM-RNA was degraded. The decreased stability of CM-RNA in histidine-starved cultures appeared to be due specifically to the intracellular buildup of putrescine. Under the above conditions of incubation, that RNA which was stable sedimented in sucrose gradients as 23S, 16S, and 4S RNA. It is suggested that intracellular putrescine plays a role in the stability of ribosomal RNA accumulated during CM treatment.  相似文献   

10.
A temperature-sensitive mutant of Escherichia coli has been found in which the conditional growth is a result of a thermosensitive glutaminyl-transfer ribonucleic acid synthetase. The corresponding genetic locus glnS is cotransduced with lip. In a strain containing the mutationally altered glutaminyl-transfer ribonucleic acid synthetase, no derepression of the enzyme itself nor of glutamine synthetase was observed.  相似文献   

11.
Cultures of Escherichia coli excreted glutamate into the medium when protein synthesis was blocked in RC(rel) strains or when it was blocked with chloramphenicol in either RC(str) or RC(rel) strains. Both of these conditions resulted in continued ribonucleic acid (RNA) synthesis in the absence of protein synthesis. Glutamate was also excreted by both RC(str) and RC(rel) strains when RNA synthesis was inhibited by uracil starvation or by treatment with actinomycin D. It is proposed that, in each of these cases, glutamate excretion resulted from an increase in the permeability of the cell membrane.  相似文献   

12.
Ribonucleic acid (RNA)-dependent RNA polymerase activity was demonstrated in the microsomal and ribosomal fraction from the spleen cells of immunized mice. The enzyme activity was solubilized by Triton X-100 from the fraction and partially purified by Biogel A 1.5 M column chromatography. The RNA-dependent RNA polymerase activity was eluted in a single peak from the column. High activity was demonstrated with an RNA preparation (iRNA) as template made from the spleens of immunized mice but very low activity was found with an nRNA preparation made from the spleens of normal mice. Incorporation of 3H-UTP markedly decreased in the presence of RNase but not in the presence of DNase. DNA preparations made from the spleens of immunized mice were inactive as template for this enzyme. The iRNA preparation was fractionated by sucrose density gradient centrifugation. A fraction corresponding to 12–13 S was most active as a template. It was followed by a fraction corresponding to 6–7 S. Sucrose gradient analysis of the 3H-UTP-labeled product was attempted. Some properties of this enzyme are described.  相似文献   

13.
Ribosomes and immature ribonucleoprotein particles were isolated from extracts of log-phase cells grown under various conditions. Quantitative measurements were made to determine the relative amounts of immature particles present in the extracts. The results indicate that the steady-state level of ribosomal precursors accounted for essentially a constant fraction of the total ribonucleic acid (RNA) of the cells. For cells with RNA-protein ratios between 0.43 and 0.65, about 1.6% of the total RNA occurred as immature ribonucleoprotein particles. Further, increased levels of immature particles were shown to be correlated with a reduced rate of RNA synthesis in cells recovering from chloramphenicol inhibition. The reduction was found to vary directly with the duration of pretreatment in chloramphenicol and, consequently, with the level of immature particles present in the cells.  相似文献   

14.
Ribonucleic Acid Polymerase in Allomyces arbuscula   总被引:1,自引:1,他引:0  
Three distinct species of ribonucleic acid (RNA) polymerase were resolved from Allomyces arbuscula by diethylaminoethyl-cellulose chromatography and characterized as to ionic strength and divalent cation preference. alpha-Amanitin specifically inhibited enzyme II; neither rifampin nor cycloheximide had any effect on the three enzymes. RNA polymerase was isolated from three stages of the diploid life cycle: the hyphal growth stage, mycelia in the process of forming sporangia, and the mitospores. The same three enzyme species could be resolved from each stage. Thus, there is no evidence from this work that RNA polymerase plays a major role in the control of development.  相似文献   

15.
A mutant strain AA-522, temperature-sensitive for protein synthesis, was isolated from a stringent strain (CP-78) of Escherichia coli K-12. The mutant strain has a relaxed phenotype at the nonpermissive growth temperature. Protein synthesis stops completely at 42 C, whereas the rate of ribonucleic acid (RNA) synthesis is maintained at 20% of the 30 C rate. Sucrose-gradient centrifugation analysis of RNA-containing particles formed at 42 C indicated the presence of “relaxed particles.” These particles possess 16S and 23S RNA and are precursors to normal 50S and 30S ribosomal subunits. A search for the temperature-sensitive protein responsible for the halt in protein synthesis implicated phenylalanyl transfer RNA (tRNA) synthetase. Essentially no enzyme activity is detected in vitro at 30 or 40 C. Analysis of phenylalanyl tRNA synthetase activity in revertants of strain AA-522 indicated the presence of intragenic suppressor mutations. Revertants of strain AA-522 analyzed for the relaxed response at 42 C were all stringent; strain AA-522 was stringent at 30 C. These data indicate that a single mutation in phenylalanyl tRNA synthetase is responsible for both a block in protein synthesis and the relaxed phenotype at 42 C.  相似文献   

16.
A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis.  相似文献   

17.
A mutant of Bacillus subtilis 168 (strain 168 KL), which had lost its normal capacity to accumulate K(+), was used to explore the interrelationship between protein and ribonucleic acid (RNA) synthesis. In contrast to the wild type, the growth rate of strain 168 KL was markedly dependent on the K(+) concentration in the medium. K(+) uptake in the mutant strain was identical to that in the parent, but the mutant was unable to retain and accumulate K(+). Protein synthesis was markedly dependent on the K(+) concentration in the medium, whereas RNA synthesis was relatively unaffected by changes in the level of K(+). Most of the RNA synthesized during K(+) depletion was ribosomal RNA; it appeared in crude extracts in the form of ribonucleoproteins particles with sedimentation values between 4S and 30S. These particles were converted into mature ribosomes when growth was allowed to resume by the addition of K(+). Simultaneous synthesis of RNA and protein was necessary for the quantitative conversion of the ribonucleoprotein particles into ribosomes. During recovery from K(+) depletion, ribosomal protein was synthesized in preference to the other proteins of the cell.  相似文献   

18.
探究pflB、frdAB、fnr和AdhE四基因缺失突变株对大肠杆菌工程菌发酵生产异丁醇的影响。运用Red重组系统敲除大肠杆菌BW25113的pflB、frdAB、fnr和AdhE基因,构建pflB、frdAB、fnr和AdhE四基因缺失突变株E.coliBW25113H,结合本实验室已经构建的表达质粒pSTV29-alsS-ilvC-ilvD-kdcA,并检测该工程菌在1L发酵罐的发酵过程中的生物量、突变菌株的稳定性、异丁醇产量及有机酸含量的变化情况。成功获得pflB、frdAB、fnr和AdhE四基因缺失突变株BW25113H。发酵结果表明,该工程菌能以较长时间,较高比生长速率保持对数生长期,其稳定性较好,异丁醇产量增加了40%。成功构建pflB、frdAB、fnr和AdhE四基因缺失突变株BW25113H,结合非自身发酵途径使异丁醇的产量由3 g/L提升至4.2 g/L。  相似文献   

19.
The effects of pyrimidine limitation on chromosome replication and the control of ribosomal and transfer ribonucleic acid syntheses were investigated. Chromosome replication was studied by autoradiography of (3)H-thymine pulse-labeled cells. Pyrimidine limitation did not affect the fraction of cells incorporating radioactive thymine during a short pulse, indicating that when growth is limited by the supply of pyrimidine, the time required for chromosome duplication increases in proportion to the time required for cell duplication. Control of ribosomal RNA and transfer RNA syntheses was examined by chromatographing cell extracts on methylated albumin kieselguhr columns. When growth was controlled by carbon-nitrogen limitation, the ratio of tRNA to total RNA remained roughly constant at growth rates above 0.5 doublings per hour. During pyrimidine limitation, however, the control of rRNA synthesis was apparently dissociated from the control of tRNA synthesis: the ratio of tRNA to total RNA increased as the growth rate decreased.  相似文献   

20.
Morphological studies of a conditionally temperature-sensitive ribonucleic acid polymerase mutant of Bacillus subtilis have revealed that sporulation is inhibited at stage II when the cells are grown at 47.5 C. Growth and sporulation occur normally at 30 C with the mutant. The mutant grows normally at 47.5 C but is prevented from sporulating at the nonpermissive temperature by an abnormal septation during forespore membrane formation which prevents the subsequent engulfment process (stage III). The mutation affects the normal functioning of ribonucleic acid polymerase at the nonpermissive temperature resulting in abortive sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号