首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As one of the initial mucosal transmission pathways of HIV (HIV-1), epithelial cells translocate HIV-1 from apical to basolateral surface by nondegradative transcytosis. Transcytosis is initiated when HIV-1 envelope glycoproteins bind to the epithelial cell membrane. Here we show that the transmembrane gp41 subunit of the viral envelope binds to the epithelial glycosphingolipid galactosyl ceramide (Gal Cer), an alternative receptor for HIV-1, at a site involving the conserved ELDKWA epitope. Disrupting the raft organization of the Gal Cer-containing microdomains at the apical surface inhibited HIV-1 transcytosis. Immunological studies confirmed the critical role of the conserved ELDKWA hexapeptide in HIV-1 transcytosis. Mucosal IgA, but not IgG, from seropositive subjects targeted the conserved peptide, neutralized gp41 binding to Gal Cer, and blocked HIV-1 transcytosis. These results underscore the important role of secretory IgA in designing strategies for mucosal protection against HIV-1 infection.  相似文献   

2.
Yu H  Alfsen A  Tudor D  Bomsel M 《Cell calcium》2008,43(1):73-82
The peptide of HIV-1 envelope gp41 (a.a 628-683), referred to herein as P5, contains P1, a conserved galactose-specific lectin domain for binding the mucosal HIV-1-receptor, galactosyl ceramide (GalCer), as shown earlier, and a potential calcium-binding site (a.a 628-648). P1 contains contiguous epitopes recognized by the broadly neutralizing antibodies 2F5, 4E10, Z13. However, similar neutralizing antibodies could not be raised in animal model using immunogens based on these epitopes. We now show that the structure of both P5 and P1 peptides, as measured by circular dichroism, differs according to their environment: aqueous or lipidic, and as a function of calcium concentration. P5, but not P1, binds to calcium with a low binding affinity constant in the order of 2.5x10(4). Calcium binding results in a conformational change of P5, leading in turn to a decrease in affinity for GalCer. Hence, the affinity of the gp41-lectin site for the galactose harbored by the mucosal HIV-1 receptor GalCer is modulated by the peptide secondary and tertiary structure and the local environment. Therefore, definition of the conformation of this novel extended gp41 membrane proximal region, containing the conserved peptide P1 and the Ca(2+) binding site, could help designing an immunogen efficient at inducing neutralizing anti-HIV-1 antibodies.  相似文献   

3.
IgA has been supposed to play an important role in the prevention of HIV-1 infection. In this study, IgA-binding sites on gp120 and gp41 of HIV-1 envelope glycoproteins were analyzed using ELISA and overlapping synthetic peptides covering all of the gp120 and gp41 sites. IgA antibodies in plasma and saliva mainly bound to six and five sites on gp120 and gp41, respectively. Some of the IgA-binding sites differed from those of IgG-binding sites and the amount of IgA antibodies that bound to each site varied among samples. IgA antibodies in some plasma samples neutralized HIV-1 infection, and those IgA antibodies contained the antibodies which bound to the V3, C3 and ELDKWA sites. The results suggest that IgA antibodies which bind to certain sites on HIV-1 envelope glycoproteins may neutralize HIV-1 infection, presumably at mucosal sites where most IgA antibodies are produced. The induction of IgA antibodies that bind specific sites and neutralize HIV-1 infection at mucosal sites may be important in the development of a vaccine against HIV-1 infection.  相似文献   

4.
Recombinant native human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins gp160 and gp120 (residues 1 to 511) expressed in insect cells quantitatively adsorbed the group-specific neutralizing antibodies found in human sera. However, these antibodies were not adsorbed by envelope fragment 1 to 471 or 472 to 857 or by both fragments sequentially, even though together they add up to the full-length gp160 sequence. A hybrid envelope glycoprotein was constructed with residues 342 to 511 of the HIV-1 sequence and residues 1 to 399 of the simian immunodeficiency virus type 1 sequence to vary the HIV-1 sequence while preserving its conformation. This hybrid glycoprotein quantitatively adsorbed human neutralizing antibodies, while native simian immunodeficiency virus type 1 envelope glycoprotein did not. These results identify a new neutralizing epitope that depends on conformation and maps to residues 342 to 511 of gp120. It overlaps the extended CD4-binding site but is distinct from the V3 loop described previously (K. Javaherian et al., Proc. Natl. Acad. Sci. USA 86:6768-6772, 1989; J. R. Rusche et al., Proc. Natl. Acad. Sci. USA 85:3198-3202). Since it is conserved among diverse HIV-1 isolates, this new epitope may be a suitable target for future vaccine development.  相似文献   

5.
Protein-protein interaction surfaces can exhibit structural plasticity, a mechanism whereby an interface adapts to mutations as binding partners coevolve. The HIV-1 envelope glycoprotein gp120-gp41 complex, which is responsible for receptor attachment and membrane fusion, represents an extreme example of a coevolving complex as up to 35% amino acid sequence divergence has been observed in these proteins among HIV-1 isolates. In this study, the function of conserved gp120 contact residues, Leu593, Trp596, Gly597, Lys601, and Trp610 within the disulfide-bonded region of gp41, was examined in envelope glycoproteins derived from diverse HIV-1 isolates. We found that the gp120-gp41 association function of the disulfide-bonded region is conserved. However, the contribution of individual residues to gp41 folding and/or stability, gp120-gp41 association, membrane fusion function, and viral entry varied from isolate to isolate. In gp120-gp41 derived from the dual-tropic isolate, HIV-189.6, the importance of Trp596 for fusion function was dependent on the chemokine receptor utilized as a fusion cofactor. Thus, the engagement of alternative chemokine receptors may evoke distinct fusion-activation signals involving the site of gp120-gp41 association. An examination of chimeric glycoproteins revealed that the isolate-specific functional contributions of particular gp120-contact residues are influenced by the sequence of gp120 hypervariable regions 1, 2, and 3. These data indicate that the gp120-gp41 association site is structurally and functionally adaptable, perhaps to maintain a functional glycoprotein complex in a setting of host selective pressures driving the rapid coevolution of gp120 and gp41.  相似文献   

6.
The human immunodeficiency virus (HIV)-1 envelope glycoprotein is synthesized as a precursor (gp160) and subsequently cleaved to generate the external gp120 and transmembrane gp41 glycoproteins. Both gp120 and gp41 have been demonstrated to mediate critical functions of HIV, including viral attachment and fusion with the cell membrane. The antigenic variability of the HIV-1 envelope glycoprotein has presented a significant problem in the design of appropriate and successful vaccines and offers one explanation for the ability of HIV to evade immune surveillance. Therefore, the development and characterization of functional antibodies against conserved regions of the envelope glycoprotein is needed. Because of this need, we generated a panel of murine monoclonal antibodies (MuMabs) against the HIV-1 envelope glycoprotein. To accomplish this, we immunized Balb/C mice with a recombinant glycoprotein 160 (gp160) that was synthesized in a baculovirus expression system. From the growth-positive hybridomas, three MuMabs were generated that demonstrated significant reactivity with recombinant gp120 but failed to show reactivity against HIV-1 gp41, as determined by enzyme-linked immunosorbent assay (ELISA). Using vaccinia constructs that synthesize variant truncated subunits of gp160, we were able to map reactivity of all three of the Mabs (ID6, AC4, and AD3) to the first 204 residues of gp120 (i.e., the N terminus of gp120) via Western blot analysis. Elucidation of the epitopes for these Mabs may have important implications for inhibition of infection by HIV-1. Our initial attempts to map these Mabs with linear epitopes have not elucidated a specific antigenic determinant; however, several physical characteristics have been determined that suggest a continuous surface epitope. Although these antibodies failed to neutralize cell-free or cell-associated infection by HIV-1, they did mediate significant antibody-dependent cellular cytotoxicity (ADCC) activity, indicating potential therapeutic utility. In summary, these data suggest the identification of a potentially novel site in the first 200 aa of gp120 that mediates ADCC.  相似文献   

7.
The human monoclonal antibody, mAb 2F5, has broad HIV-1 neutralizing activity and binds a conserved linear epitope within the envelope glycoprotein gp41 having a core recognition sequence ELDKWA. In this study, the structural requirements of this epitope for high-affinity binding to mAb 2F5 were explored using peptide synthesis and competitive enzyme-linked immunosorbant assay (ELISA). Expansion of the minimal epitope to an end-capped, linear nonapeptide, Ac-LELDKWASL-amide, was sufficient to attain maximal affinity within the set of native gp41-sequence peptides assayed. Scanning single-residue alanine and d-residue substitutions then confirmed the essential recognition requirements of 2F5 for the central DKW sequence, and also established the importance of the terminal leucine residues in determining high-affinity binding of the linear nonapeptide. Further studies of side-chain and backbone-modified analogs revealed a high degree of structural specificity for the DK sequence in particular, and delineated the steric requirements of the Leu(3) and Trp(6) residues. The nine-residue 2F5 epitope, flanked by pairs of serine residues, retained a high affinity for 2F5 when it was conformationally constrained as a 15-residue, disulfide-bridged loop. However, analogs with smaller or larger loop sizes resulted in lower 2F5 affinities. The conformational effects of the gp41 C-peptide helix immediately adjacent to the N-terminal end of the ELDKWA epitope were examined through the synthesis of helix-initiated analogs. Circular dichroism (CD) studies indicated that the alpha-helical conformation was propagated efficiently into the LELDKWASL epitope, but without any significant effect on its affinity for 2F5. This study should guide the design of a second generation of conformationally constrained ELDKWA analogs that might elicit an immune response that mimics the HIV-neutralizing actions of 2F5.  相似文献   

8.
A cluster of promising epitopes for the development of human immunodeficiency virus (HIV) vaccines is located in the membrane-proximal external region (MPER) of the gp41 subunit of the HIV envelope spike structure. The crystal structure of the peptide corresponding to the so-called ELDKWA epitope (HIV-1 HxB2 gp41 residues 662-668), in complex with the corresponding broadly neutralizing human monoclonal antibody 2F5, provides a target for structure-based vaccine design strategies aimed at finding macromolecular carriers that are able to present this MPER-derived epitope with optimal antigenic activity. To this end, a series of replica exchange molecular dynamics computer simulations was conducted to characterize the distributions of conformations of ELDKWA-based epitopes inserted into a rhinovirus carrier and to identify those with the highest fraction of conformations that are able to bind 2F5. The length, hydrophobic character, and precise site of insertion were found to be critical for achieving structural similarity to the target crystal structure. A construct with a high degree of complementarity to the corresponding determinant region of 2F5 was obtained. This construct was employed to build a high-resolution structural model of the complex between the 2F5 antibody and the chimeric human rhinovirus type 14:HIV-1 ELDKWA virus particle. Additional simulations, which were conducted to study the conformational propensities of the ELDKWA region in solution, confirm the hypothesis that the ELDKWA region of gp41 is highly flexible and capable of assuming helical conformations (as in the postfusion helical bundle structure) and β-turn conformations (as in the complex with the 2F5 antibody). These results also suggest that the ELDKWA epitope can be involved in intramolecular—and likely intermolecular—hydrophobic interactions. This tendency offers an explanation for the observation that mutations decreasing the hydrophobic character of the MPER in many cases result in conformational changes that increase the affinity of this region for the 2F5 antibody.  相似文献   

9.
2F5 is a monoclonal antibody with potent and broadly neutralizing activity against HIV-1. It targets the membrane-proximal external region (MPER) of the gp41 subunit of the envelope glycoprotein and interferes with the process of fusion between viral and host cell membranes. This study presents eight 2F5 Fab′ crystal structures in complex with various gp41 peptide epitopes. These structures reveal several key features of this antibody-antigen interaction. (1) Whenever free of contacts caused by crystal artifacts, the extended complementarity-determining region H3 loop is mobile; this is true for ligand-free and epitope-bound forms. (2) The interaction between the antibody and the gp41 ELDKWA epitope core is absolutely critical, and there are also close and specific contacts with residues located N-terminal to the epitope core. (3) Residues located at the C-terminus of the gp41 ELDKWA core do not interact as tightly with the antibody. However, in the presence of a larger peptide containing the gp41 fusion peptide segment, these residues adopt a conformation consistent with the start of an α-helix. (4) At high sulfate concentrations, the electron density maps of 2F5 Fab′-peptide complexes contain a peak that may mark a binding site for phosphate groups of negatively charged lipid headgroups. The refined atomic-level details of 2F5 paratope-epitope interactions revealed here should contribute to a better understanding of the mechanism of 2F5-based virus neutralization, in general, and prove important for the design of potential vaccine candidates intended to elicit 2F5-like antibody production.  相似文献   

10.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

11.
Incorporation of envelope glycoproteins into a budding retrovirus is an essential step in the formation of an infectious virus particle. By using site-directed mutagenesis, we identified specific amino acid residues in the matrix domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein that are critical to the incorporation of HIV-1 envelope glycoproteins into virus particles. Pseudotyping analyses were used to demonstrate that two heterologous envelope glycoproteins with short cytoplasmic tails (the envelope of the amphotropic murine leukemia virus and a naturally truncated HIV-2 envelope) are efficiently incorporated into HIV-1 particles bearing the matrix mutations. Furthermore, deletion of the cytoplasmic tail of HIV-1 transmembrane envelope glycoprotein gp41 from 150 to 7 or 47 residues reversed the incorporation block imposed by the matrix mutations. These results suggest the existence of a specific functional interaction between the HIV-1 matrix and the gp41 cytoplasmic tail.  相似文献   

12.
The HIV-1 envelope glycoproteins (Env) gp120 and gp41 mediate entry and are the targets for neutralizing antibodies. Within gp41, a continuous epitope defined by the broadly neutralizing antibody 2F5, is one of the few conserved sites accessible to antibodies on the functional HIV Env spike. Recently, as an initial attempt at structure-guided design, we transplanted the 2F5 epitope onto several non-HIV acceptor scaffold proteins that we termed epitope scaffolds (ES). As immunogens, these ES proteins elicited antibodies with exquisite binding specificity matching that of the 2F5 antibody. These novel 2F5 epitope scaffolds presented us with the opportunity to test heterologous prime:boost immunization strategies to selectively boost antibody responses against the engrafted gp41 2F5 epitope. Such strategies might be employed to target conserved but poorly immunogenic sites on the HIV-1 Env, and, more generally, other structurally defined pathogen targets. Here, we assessed ES prime:boosting by measuring epitope specific serum antibody titers by ELISA and B cell responses by ELISpot analysis using both free 2F5 peptide and an unrelated ES protein as probes. We found that the heterologous ES prime:boosting immunization regimen elicits cross-reactive humoral responses to the structurally constrained 2F5 epitope target, and that incorporating a promiscuous T cell helper epitope in the immunogens resulted in higher antibody titers against the 2F5 graft, but did not result in virus neutralization. Interestingly, two epitope scaffolds (ES1 and ES2), which did not elicit a detectable 2F5 epitope-specific response on their own, boosted such responses when primed with the ES5. Together, these results indicate that heterologous ES prime:boost immunization regimens effectively focus the humoral immune response on the structurally defined and immunogen-conserved HIV-1 2F5 epitope.  相似文献   

13.
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope 664DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.  相似文献   

14.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior and gp41 transmembrane envelope glycoproteins assemble into trimers on the virus surface that represent potential targets for antibodies. Potent neutralizing antibodies bind the monomeric gp120 glycoprotein with small changes in entropy, whereas unusually large decreases in entropy accompany gp120 binding by soluble CD4 and less potent neutralizing antibodies. The high degree of conformational flexibility in the free gp120 molecule implied by these observations has been suggested to contribute to masking the trimer from antibodies that recognize the gp120 receptor-binding regions. Here we use cross-linking and recognition by antibodies to investigate the conformational states of gp120 monomers and soluble and cell surface forms of the trimeric HIV-1 envelope glycoproteins. The fraction of monomeric and trimeric envelope glycoproteins able to be recognized after fixation was inversely related to the entropic changes associated with ligand binding. In addition, fixation apparently limited the access of antibodies to the V3 loop and gp41-interactive surface of gp120 only in the context of trimeric envelope glycoproteins. The results support a model in which the unliganded monomeric and trimeric HIV-1 envelope glycoproteins sample several different conformations. Depletion of particular fixed conformations by antibodies allowed characterization of the relationships among the conformational states. Potent neutralizing antibodies recognize the greatest number of conformations and therefore can bind the virion envelope glycoproteins more rapidly and completely than weakly neutralizing antibodies. Thus, the conformational flexibility of the HIV-1 envelope glycoproteins creates thermodynamic and kinetic barriers to neutralization by antibodies directed against the receptor-binding regions of gp120.  相似文献   

15.
Changes were introduced into conserved amino acids within the ectodomain of the human immunodeficiency virus type 1 (HIV-1) gp41 transmembrane envelope glycoprotein. The effect of these changes on the structure and function of the HIV-1 envelope glycoproteins was examined. The gp41 glycoprotein contains an amino-terminal fusion peptide (residues 512 to 527) and a disulfide loop near the middle of the extracellular domain (residues 598 to 604). Mutations affecting the hydrophobic sequences between these two regions resulted in two phenotypes. Some changes in amino acids 528 to 562 resulted in a loss of the noncovalent association between gp41 and the gp120 exterior glycoprotein. Amino acid changes in other parts of the gp41 glycoprotein (residues 608 and 628) also resulted in subunit dissociation. Some changes affecting amino acids 568 to 596 resulted in envelope glycoproteins partially or completely defective in mediating membrane fusion. Syncytium formation was more sensitive than virus entry to these changes. Changes in several amino acids from 647 to 675 resulted in higher-than-wild-type syncytium-forming ability. One of these amino acid changes affecting tryptophan 666 resulted in escape from neutralization by an anti-gp41 human monoclonal antibody, 2F5. These results contribute to an understanding of the functional regions of the HIV-1 gp41 ectodomain.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the surface-exposed envelope protein (SU) gp120, which binds to cellular CD4 and chemokine receptors, triggering the membrane fusion activity of the transmembrane (TM) protein gp41. The core of gp41 comprises an N-terminal triple-stranded coiled coil and an antiparallel C-terminal helical segment which is packed against the exterior of the coiled coil and is thought to correspond to a fusion-activated conformation. The available gp41 crystal structures lack the conserved disulfide-bonded loop region which, in human T-lymphotropic virus type 1 (HTLV-1) and murine leukemia virus TM proteins, mediates a chain reversal, connecting the antiparallel N- and C-terminal regions. Mutations in the HTLV-1 TM protein gp21 disulfide-bonded loop/chain reversal region adversely affected fusion activity without abolishing SU-TM association (A. L. Maerz, R. J. Center, B. E. Kemp, B. Kobe, and P. Poumbourios, J. Virol. 74:6614-6621, 2000). We now report that in contrast to our findings with HTLV-1, conservative substitutions in the HIV-1 gp41 disulfide-bonded loop/chain reversal region abolished association with gp120. While the mutations affecting gp120-gp41 association also affected cell-cell fusion activity, HIV-1 glycoprotein maturation appeared normal. The mutant glycoproteins were processed, expressed at the cell surface, and efficiently immunoprecipitated by conformation-dependent monoclonal antibodies. The gp120 association site includes aromatic and hydrophobic residues on either side of the gp41 disulfide-bonded loop and a basic residue within the loop. The HIV-1 gp41 disulfide-bonded loop/chain reversal region is a critical gp120 contact site; therefore, it is also likely to play a central role in fusion activation by linking CD4 plus chemokine receptor-induced conformational changes in gp120 to gp41 fusogenicity. These gp120 contact residues are present in diverse primate lentiviruses, suggesting conservation of function.  相似文献   

17.
The binding properties of seven CD4-blocking monoclonal antibodies raised against recombinant gp120 of human immunodeficiency virus type 1 strain MN (HIV-1MN) and two CD4-blocking monoclonal antibodies to recombinant envelope glycoproteins gp120 and gp160 of substrain IIIB of HIVLAI were analyzed. With a panel of recombinant gp120s from seven diverse HIV-1 isolates, eight of the nine antibodies were found to be strain specific and one was broadly cross-reactive. Epitope mapping revealed that all nine antibodies bound to epitopes located in the fourth conserved domain (C4) of gp120. Within this region, three distinct epitopes could be identified: two were polymorphic between HIV-1 strains, and one was highly conserved. Studies with synthetic peptides demonstrated that the conserved epitope, recognized by antibody 13H8, was located between residues 431 and 439. Site-directed mutagenesis of gp120 demonstrated that residue 429 and/or 432 was critical for the binding of the seven antibodies to gp120 from HIV-1MN. Similarly, residues 423 and 429 were essential for the binding of monoclonal antibody 5C2 raised against gp120 from HIV-1IIIB. The amino acids located at positions 423 and 429 were found to vary between strains of HIV-1 as well as between molecular clones derived from the MN and LAI isolates of HIV-1. Polymorphism at these positions prevented the binding of virus-neutralizing monoclonal antibodies and raised the possibility that HIV-1 neutralization serotypes may be defined on the basis of C4 domain sequences. Analysis of the binding characteristics of the CD4-blocking antibodies demonstrated that their virus-neutralizing activity was directly proportional to their gp120-binding affinity. These studies account for the strain specificity of antibodies to the C4 domain of gp120 and demonstrate for the first time that antibodies to this region can be as effective as those directed to the principal neutralizing determinant (V3 domain) in neutralizing HIV-1 infectivity.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins function as a membrane-anchored trimer of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. Previously, we reported three approaches to stabilize soluble trimers containing parts of the gp41 ectodomains: addition of GCN4 trimeric helices, disruption of the cleavage site between gp120 and gp41, and introduction of cysteines in the gp41 coiled coil to form intersubunit disulfide bonds. Here, we applied similar approaches to stabilize soluble gp140 trimers including the complete gp120 and gp41 ectodomains. A combination of fusion with the GCN4 trimeric sequences and disruption of the gp120-gp41 cleavage site resulted in relatively homogeneous gp140 trimers with exceptional stability. The gp120 epitopes recognized by neutralizing antibodies are intact and exposed on these gp140 trimers. By contrast, the nonneutralizing antibody epitopes on the gp120 subunits of the soluble trimers are relatively occluded compared with those on monomeric gp120 preparations. This antigenic similarity to the functional HIV-1 envelope glycoproteins and the presence of the complete gp41 ectodomain should make the soluble gp140 trimers useful tools for structural and immunologic studies.  相似文献   

19.
The role of the cytoplasmic domain of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins in virus replication was investigated. Deletion of residues 840 to 856 at the carboxyl terminus of gp41 reduced the efficiency of virus entry during an early step in the virus life cycle between CD4 binding and formation of the DNA provirus without affecting envelope glycoprotein synthesis, processing, or syncytium-forming ability. Deletion of residues amino terminal to residue 846 was associated with decreased stability of envelope glycoproteins made in COS-1 cells, but this phenotype was cell type dependent. The cytoplasmic domain of gp41 was not required for the incorporation of the HIV-1 envelope glycoproteins into virions. These results suggest that the carboxyl terminus of the gp41 cytoplasmic domain plays a role in HIV-1 entry other than receptor binding or membrane fusion. The cytoplasmic domain of gp41 also affects the stability of the envelope glycoprotein in some cell types.  相似文献   

20.
Sadler K  Zhang Y  Xu J  Yu Q  Tam JP 《Biopolymers》2008,90(3):320-329
During viral entry, the fusogenic state of human immunodeficiency virus Type 1 (HIV-1) envelope protein gp41 is a quaternary structure consisting of three gp41 glycoproteins, each with two conserved helical domains (N-HR and C-HR). Thus far, the examination of monomeric gp41 peptides as an immunologically focused approach to vaccine design has not been successful. Here we report an approach using quaternary protein mimetics (called 3alpha mimetics) that are based on the gp41 N-HR and C-HR domains to closely mimic the fusogenic state and overcome the deficiencies of the monomeric peptide approach for synthetic vaccine design. The 3alpha mimetics are conveniently prepared by chemoselective ligation of unprotected monomeric peptides to an interstrand linker, and display enhanced conformational stability compared to the corresponding monomers. The 3alpha mimetics with or without a covalently attached T-helper epitope were immunogenic and elicited antisera that bound both recombinant gp160, which contains gp41, and HIV-1 virions and immunoprecipitated recombinant gp41. Anti-3alpha mimetic antisera neutralized viral infectivity against R5- and X4-tropic strains of HIV-1 at 31.5 degrees C. The results suggest that a quaternary protein approach to mimic conserved and functional domains of viral envelope proteins is desirable for HIV vaccine development as such antigens are more likely to produce immunologically-focused and broadly neutralizing antibody responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号