首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oryza rufipogon, the progenitor of the cultivated rice species Oryza sativa, is known by its wide intraspecific variation. In this study, we performed phylogenetic analyses of O. rufipogon strains and their relationships to O. sativa strains by using 26 newly identified p-SINE1 members from O. rufipogon strains, in addition to 23 members previously identified from O. sativa strains. A total of 103 strains of O. rufipogon and O. sativa were examined for the presence and absence of each of the p-SINE1 members at respective loci by PCR with a pair of primers that hybridize to the regions flanking each p-SINE1 member. A phylogenetic tree constructed on the basis of the insertion polymorphism of p-SINE1 members showed that O. rufipogon and O. sativa strains are classified into three groups. The first group consisted of O. rufipogon perennial strains mostly from China and O. sativa ssp. japonica strains, which included javanica strains forming a distinct subgroup. The second group consisted of almost all the O. rufipogon annual strains, a few O. rufipogon perennial strains and O. sativa ssp. indica strains. These groupings, in addition to other results, support the previous notion that annual O. rufipogon originated in the O. rufipogon perennial population, and that O. sativa originated polyphyletically in the O. rufipogon populations. The third group consisted of the other perennial strains and intermediate-type strains of O. rufipogon, in which the intermediate-type strains are most closely related to a hypothetical ancestor with no p-SINE1 members at the respective loci and to those belonging to the other rice species with the AA genome. This suggests that O. rufipogon perennial strains are likely to have originated from the O. rufipogon intermediate-ecotype population.  相似文献   

2.
Previous studies based on morphological and molecular markers indicated that there are two cultivated and five wild rice species within the Oryza genus with the AA genome. In the cultivated rice species, Oryza sativa, a retroposon named p-SINE1 has been identified. Some of the p-SINE1 members characterized previously showed interspecific insertion polymorphisms in the species with the AA genome. In this study, we identified new p-SINE1 members showing interspecific insertion polymorphisms from representative strains of four wild rice species with the AA genome: O. barthii, O. glumaepatula, O. longistaminata, and O. meridionalis. Some of these members were present only in strains of one species, whereas the others were present in strains of two or more species. The p-SINE1 insertion patterns in the strains of the Asian and African cultivated rice species O. sativa and O. glaberrima were very similar to those of the Asian and African wild rice species O. rufipogon and O. barthii, respectively. This is consistent with the previous hypothesis that O. sativa and O. glaberrima are derived from specific wild rice species. Phylogenetic analysis based on the p-SINE1 insertion patterns showed that the strains of each of the five wild rice species formed a cluster. The strains of O. longistaminata appear to be distantly related to those of O. meridionalis. The strains of these two species appear to be distantly related to those of three other species, O. rufipogon, O. barthii and O. glumaepatula. The latter three species are closely related to one another with O. barthii and O. glumaepatula being most closely related. A phylogenetic tree including a hypothetical ancestor with all loci empty for p-SINE1 insertion showed that the strains of O. longistaminata are related most closely to the hypothetical ancestor. This indicates that O. longistaminata and O. meridionalis diverged early on, whereas the other species diverged relatively recently, and suggests that the Oryza genus with AA genome might have originated in Africa, rather than in Asia.  相似文献   

3.
The wild rice species Oryza rufipogon with wide intraspecific variation is thought to be the progenitor of the cultivated rice species Oryza sativa with two ecotypes, japonica and indica. To determine the origin of cultivated rice, subfamily members of the rice retroposon p-SINE1, which show insertion polymorphism in the O. sativa -O. rufipogon population, were identified and used to "bar code" each of 101 cultivated and wild rice strains based on the presence or absence of the p-SINE1 members at the respective loci. A phylogenetic tree constructed based on the bar codes given to the rice strains showed that O. sativa strains were classified into two groups corresponding to japonica and indica, whereas O. rufipogon strains were in four groups, in which annual O. rufipogon strains formed a single group, differing from the perennial O. rufipogon strains of the other three groups. Japonica strains were closely related to the O. rufipogon perennial strains of one group, and the indica strains were closely related to the O. rufipogon annual strains, indicating that O. sativa has been derived polyphyletically from O. rufipogon. The subfamily members of p-SINE1 constitute a powerful tool for studying the classification and relationship of rice strains, even when one has limited knowledge of morphology, taxonomy, physiology, and biochemistry of rice strains.  相似文献   

4.
Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.  相似文献   

5.
段世华  李绍清  李阳生  熊云  朱英国 《遗传》2007,29(4):455-461
水稻线粒体基因组嵌合基因orf79 和 orfH79分别被认为与BT-型和HL-型水稻CMS有关, 两者具有98%的同源性, 并且其DNA序列只存在4核苷酸的差异。对于这两个嵌合基因, 前者来源于栽培稻(Oryza. sativa L.), 而后者则来源于普通野生稻(O. rufipogon Griff.)。这意味着orf79/ orfH79可能在广泛分布于稻属AA基因组中。为了调查orf79/ orfH79在稻属物种中的分布和变异, 190份栽培稻品系[包括156份亚洲栽培稻(O. sativa var. landrace)和34份非洲栽培稻(O. glaberrima)]以及104份稻属AA基因组野生稻品系(包括O. rufipogon、O.nivara、O. glumaepatula、O. barthii、O. longistaminata和O. meridionalis 6个种), 被用于PCR扩增检测。31份具有控制粤泰A和笹锦A的特异片段的稻属AA基因组水稻品系被检测出。所有特异片段均被回收并测序, 基于DNA 序列的聚类结果显示31份水稻材料被分成了两组, 分别代表为BT-型和HL-型水稻不育细胞质组群。结果也进一步表明: HL-型水稻CMS胞质主要分布于一年生的O. nivara中; BT-型水稻CMS胞质可能来源于栽培稻变种或多年生野生稻O. rufipogon。  相似文献   

6.
7.
p-SINE1 was the first plant SINE element identified in the Waxy gene in Oryza sativa, and since then a large number of p-SINE1-family members have been identified from rice species with the AA or non-AA genome. In this paper, we report two new rice SINE elements, designated p-SINE2 and p-SINE3, which form distinct families from that of p-SINE1. Each of the two new elements is significantly homologous to p-SINE1 in their 5'-end regions with that of the polymerase III promoter (A box and B box), but not significantly homologous in the 3'-end regions, although they all have a T-rich tail at the 3' terminus. Despite the three elements sharing minimal homology in their 3'-end regions, the deduced RNA secondary structures of p-SINE1, p-SINE2 and p-SINE3 were found to be similar to one another, such that a stem-loop structure seen in the 3'-end region of each element is well conserved, suggesting that the structure has an important role on the p-SINE retroposition. These findings suggest that the three p-SINE elements originated from a common ancestor. Similar to members of the p-SINE1 family, the members of p-SINE2 or p-SINE3 are almost randomly dispersed in each of the 12 rice chromosomes, but appear to be preferentially inserted into gene-rich regions. The p-SINE2 members were present at respective loci not only in the strains of the species with the AA genome in the O. sativa complex, but also in those of other species with the BB, CC, DD, or EE genome in the O. officinalis complex. The p-SINE3 members were, however, only present in strains of species in the O. sativa complex. These findings suggest that p-SINE2 originated in an ancestral species with the AA, BB, CC, DD and EE genomes, like p-SINE1, whereas p-SINE3 originated in an ancestral strain of the species with the AA genome. The nucleotide sequences of p-SINE1 members are more divergent than those of p-SINE2 or p-SINE3, indicating that p-SINE1 is likely to be older than p-SINE2 and p-SINE3. This suggests that p-SINE2 and p-SINE3 have been derived from p-SINE1.  相似文献   

8.
Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable 57K region of the cp genome. When 2 nucleotide substitutions (AA or TT) were taken into account, these 8 cp types were subdivided into 11 cp types. Most indica cultivars had 1 of 3 cp genome types that were also identified in the wild relatives of rice, O. nivara and O. rufipogon, suggesting that the 3 indica cp types had evolved from distinct gene pools of the O. rufipogon - O. nivara complex. The majority of japonica cultivars had 1 of 3 different cp genome types. One of these 3 was identified in O. rufipogon, suggesting that at least 1 japonica type is derived from O. rufipogon with the same cp genome type. These results provide evidence to support a polyphyletic origin of cultivated Asian rice from at least 4 principal lineages in the O. rufipogon - O. nivara complex.  相似文献   

9.
We have previously found that a short interspersed element (SINE), named p-SINE1, is present in the Waxy gene of Oryza sativa in two copies. Here, we cloned five members of p-SINE1 located at other loci in O. sativa and determined their nucleotide sequences. These sequences had a T-rich pyrimidine tract at their defined 3' end and were flanked by direct repeats of a sequence of mostly 14-15 bp long like p-SINE1s in the Waxy gene. The consensus sequence derived from total seven members of p-SINE1 was 123 bp in length and had an internal promoter region for RNA polymerase III. The 5'-half region of the sequence was partially homologous to the tRNA-related block of rabbit C family, one of SINEs in the animal system. Two of the seven p-SINE1 members were not present in the corresponding loci in African rice, Oryza glaberrima, and may thus be available for classification of some rice strains. Comparison of the nucleotide sequences of the Waxy gene between O. sativa and O. glaberrima showed that base substitutions have frequently occurred in a p-SINE1 member (p-SINE1-r1) and a transposable element Tnr1 also present in the Waxy gene, suggesting that these elements, which appear as repetitive sequences in the rice chromosome, tend to acquire base substitutions at a higher frequency than do unique sequences.  相似文献   

10.
An insertion sequence 418 bp in length was found in one member of rice retroposon p-SINE1 in Oryza glaberrima. This sequence had long terminal inverted repeats (TIRs) and is flanked by direct repeats of a 9-bp sequence at the target site, indicative that the insertion sequence is a rice transposable element, which we named Tnr8. Interestingly, each TIR sequence consisted of a unique 9-bp terminal sequence and six tandem repeats of a sequence about 30 bp in length, like the foldback transposable element first identified in Drosophila. A homology search of databases and analysis by PCR revealed that a large number of Tnr8 members with sequence variations were present in the rice genome. Some of these members were not present at given loci in several rice species with the AA genome. These findings suggest that the Tnr8 family members transposed long ago, but some appear to have mobilized after rice strains with the AA genome diverged. The Tnr8 members are thought to be involved in rearrangements of the rice genome.  相似文献   

11.
In the genus Oryza, interspecific hybrids are useful bridges for transferring the desired genes from wild species to cultivated rice (Oryza sativa L.). In the present study, hybrids between O. sativa (AA genome) and three Chinese wild rices, namely O. rufipogon (AA genome), O. officinalis (CC genome), and O. meyeriana (GG genome), were produced. Agricultural traits of the F1 hybrids surveyed were intermediate between their parents and appreciably resembled wild rice parents. Except for the O. sativa × O. rufipogon hybrid, the other F1 hybrids were completely sterile. Genomic in situ hybridization (GISH) was used for hybrid verification. Wild rice genomic DNAs were used as probes and cultivated rice DNA was used as a block. With the exception of O. rufipogon chromosomes, this method distinguished the other two wild rice and cultivated rice chromosomes at the stage of mitotic metaphase with different blocking ratios. The results suggest that a more distant phylogenetic relationship exists between O. meyeriana and O. sativa and that O. rufipogon and O. sativa share a high degree of sequence homology. The average mitotic chromosome length of O. officinalis and O. meyeriana was 1.25- and 1.51-fold that of O. sativa, respectively. 4',6'-Diamidino- 2-phenylindole staining showed that the chromosomes of O. officinalis and O. meyeriana harbored more heterochromatin, suggesting that the C and G genomes were amplified with repetitive sequences compared with the A genome. Although chromocenters formed by chromatin compaction were detected with wild rice-specific signals corresponding to the C and G genomes in discrete domains of the F1 hybrid interphase nuclei, the size and number of O. meyeriana chromocenters were bigger and greater than those of O. officinalis. The present results provide an important understanding of the genomic relationships and a tool for the transfer of useful genes from three native wild rice species in China to cultivars.  相似文献   

12.
Genetic variations of AA genome Oryza species measured by MITE-AFLP   总被引:5,自引:0,他引:5  
MITEs (miniature inverted-repeat transposable elements) are the major transposable elements in Oryza species. We have applied the MITE-AFLP technique to study the genetic variation and species relationship in the AA-genome Oryza species. High polymorphism was detected within and between species. The genetic variation in the cultivated species, Oryza sativa and Oryza glaberrima, was comparatively lower than in their ancestral wild species. In comparison between geographical lineages of the AA genome species, African taxa, O. glaberrima and Oryza barthii, showed lower variation than the Asian taxa, O. sativa, Oryza rufipogon, and Oryza nivara, and Australian taxon Oryza meridionalis. However, another African taxon, Oryza longistaminata, showed high genetic variation. Species relationships were analyzed by the pattern of presence or absence of homologous fragments, because nucleotide sequences of the detected MITE-AFLP fragments revealed that the same fragments in different species shared very high sequence homology. The clustering pattern of the AA-genome species matched well with the geographical origins (Asian, African and Australian), and with the Australian taxon being distant to the others. Therefore, this study demonstrated that the MITE-AFLP technique is amenable for studying the genetic variation and species relationship in rice.  相似文献   

13.
A database search of the sequences flanking a member of rice retrotransposon RIRE7 revealed that a 298-bp sequence in the region downstream of the member is a repetitive sequence interspersed in the genome of Oryza sativa cv. Nipponbare. Most of the repetitive sequences were flanked by a direct repeat of a target-site sequence, about 14 bp in length. The consensus sequence, 293 bp in length, had no regions encoding any proteins but had sequence motifs of an internal promoter of RNA polymerase III. These indicate that the sequence is a retroposon SINE, designated OsSN1 (Oryza sativa SINE1). OsSN1 is a new rice SINE, because it has no homology with any of the three p-SINE families previously identified from rice, and because it has a stretch of A at the 3' end, unlike p-SINE and any other Gramineae SINEs which have a stretch of T at the 3' end. The Nipponbare genome was found to have many members related to OsSN1, forming two additional new SINE families (designated OsSN2 and OsSN3). OsSN2 and OsSN3 are highly homologous to the 3' and 5' regions of OsSN1, respectively. This suggests that OsSN1 has a mosaic structure, which is generated by sequence exchange (or shuffling) between ancestral OsSN2 and OsSN3. Despite the absence of homology in the 3' regions between OsSN1 (or OsSN2) and OsSN3, a sequence, 5'-TTCTC-3', is commonly present in the region preceding the A stretch at the 3' end. This sequence together with the A stretch and a stem-loop structure found in the region near the A stretch are assumed to be important for retroposition. OsSN members were present in strains of Oryza species, as were p-SINE members. Some of the members showed insertion polymorphism at the respective loci among the rice strains. p-SINE had such polymorphic members, which are useful for classification and phylogenetic analysis of various strains of Oryza species. The polymorphic members of OsSN were more frequently found than those of p-SINE, and therefore, such members are likely to be useful for extensive taxonomic and phylogenetic studies on various rice strains.  相似文献   

14.
The recognition of a new species of rice (Oryza) from Australia   总被引:1,自引:0,他引:1  
The discovery is reported of a new endemic species of wild rice in series Sativae from northern Australia, Oryza meridionalis Ng. This species has previously been confused with O. rufipogon, O. nivara and O. saliva f. spontanea. Its geographical distribution is confined to northern Australia. It is also reproductively isolated from all other species of the series Sativae.  相似文献   

15.
Varying degrees of reduction of genetic diversity in crops relative to their wild progenitors occurred during the process of domestication. Such information, however, has not been available for the Asian cultivated rice (Oryza sativa) despite its importance as a staple food and a model organism. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationship and demographic history of O. sativa and its close relatives (Oryza rufipogon and Oryza nivara), we investigated nucleotide diversity data from 10 unlinked nuclear loci in species-wide samples of these species. The results indicated that O. rufipogon and O. nivara possessed comparable levels of nucleotide variation ((sil) = 0.0077 approximately 0.0095) compared with the relatives of other crops. In contrast, nucleotide diversity of O. sativa was as low as (sil) = 0.0024 and even lower ((sil) = 0.0021 for indica and 0.0011 for japonica), if we consider the 2 subspecies separately. Overall, only 20-10% of the diversity in the wild species was retained in 2 subspecies of the cultivated rice (indica and japonica), respectively. Because statistic tests did not reject the assumption of neutrality for all 10 loci, we further used coalescent to simulate bottlenecks under various lengths and population sizes to better understand the domestication process. Consistent with the dramatic reduction in nucleotide diversity, we detected a severe domestication bottleneck and demonstrated that the sequence diversity currently found in the rice genome could be explained by a founding population of 1,500 individuals if the initial domestication event occurred over a 3,000-year period. Phylogenetic analyses revealed close genetic relationships and ambiguous species boundary of O. rufipogon and O. nivara, providing additional evidence to treat them as 2 ecotypes of a single species. Lowest linkage disequilibrium (LD) was found in the perennial O. rufipogon where the r(2) value dropped to a negligible level within 400 bp, and the highest in the japonica rice where LD extended to the entirely sequenced region ( approximately 900 bp), implying that LD mapping by genome scans may not be feasible in wild rice due to the high density of markers needed.  相似文献   

16.
CACTA is a class 2 transposon, that is very abundantly present in plant genomes. Using Rim2/Hipa CACTA transposon display (hereafter Rim2/Hipa-TD), we analyzed several A-genome diploid Oryza species that have a high distribution of the CACTA motifs. High levels of polymorphism were detected within and between the Oryza species. The African taxa, O. glaberrima and O. barthii, both showed lower levels of polymorphism than the Asian taxa, O. sativa, O. rufipogon, and O. nivara. However, O. longistaminata, another African taxon, showed levels of polymorphism that were similar to the Asian taxa. The Latin American taxon, O. glumaepatula, and the Australian taxon, O. meridionalis, exhibited intermediate levels of polymorphism between those of the Asian and African taxa. The lowest level of polymorphism was observed in O. glaberrima (32.1%) and the highest level of polymorphism was observed in O. rufipogon (95.7%). The phylogenetic tree revealed three major groups at the genetic similarity level of 0.409. The first group consisted of three Asian taxa, O. sativa, O. rufipogon and O. nivara. The second group consisted of three African taxa, O. glaberrima, O. barthii, O. longistaminata, and an American taxon, O. glumaepatula. The third group contained an Australian taxon, O. meridionalis. The clustering patterns of these species matched well with their geographical origins. Rim2/Hipa-TD appears to be a useful marker system for studying the genetic diversity and species relationships among the AA diploid Oryza species.  相似文献   

17.
We searched the genomes of eight rice cultivars (Oryza sativa L. ssp. japonica and ssp. indica) and a wild rice accession (Oryza rufipogon Griffith) for nucleotide polymorphisms, and identified 7805 polymorphic loci, including single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels), in predicted intergenic regions. Polymorphisms are useful as DNA markers for genetic analysis or positional cloning with segregating populations of crosses. Pairwise comparison between cultivars and a neighbor-joining tree calculated from SNPs agreed very well with relationships between rice strains predicted from pedigree data or calculated with other DNA markers such as p-SINE1 and simple sequence repeats (SSRs), suggesting that whole-genome SNP information can be used for analysis of evolutionary relationships. Using multiple SNPs to identify alleles, we drew a map to illustrate the alleles shared among the eight cultivars and the accession. The map revealed that most of the genome is mono- or di-allelic among japonica cultivars, whereas alleles well conserved among modern japonica paddy rice cultivars were often shared with indica cultivars or wild rice, suggesting that the genome structure of modern cultivars is composed of chromosomal segments from various genetic backgrounds. Use of allele-sharing analysis and association analysis were also tested and are discussed.  相似文献   

18.
 Intron-2 of the Oryza sativa CatA catalase gene is similar in nucleotide sequence to p-SINE1, a retroposon, and seems to have been added to the ancestral genome of rice. To examine when the p-SINE1-like intron was inserted into CatA during the evolutionary divergence of Oryza species, and to elucidate the evolutionary relationships among Oryza species using the sequence of the intron as a marker, we performed polymerase chain reaction (PCR) analyses of 32 accessions of 17 Oryza species with various genome types. Agarose-gel electrophoresis of the PCR products revealed that all the Oryza species with an AA genome have the CatA homolog with the intron, whereas other Oryza species have the CatA homolog without the intron. These results indicate that intron-2 of CatA is a good marker for distinguishing species with an AA genome among Oryza species. Sequencing of the PCR products showed that all the introns are similar to p-SINE1, though with slight variations in length. We also performed PCR analyses using four accessions of three species in genera related to Oryza, and found that there is an intron in the CatA homolog of Leersia perrieri. On the other hand, the CatA homolog of Porteresia coarctata has no intron. Sequence data showed that the L. perrieri homolog has a p-SINE1-like intron similar to that in Oryza species with an AA genome. These results suggest that the p-SINE1-like intron was already present in the common ancestor of Oryza and L. perrieri and was then lost in the ancestors of P. coarctata and of the Oryza species other than those with an AA genome. The phylogenetic tree of Oryza species with an AA genome based on the nucleotide sequences of the introns leads us to propose that Oryza species with an AA genome evolved from an ancestor of Oryza longistaminata. Received: 29 August 1998 / Accepted: 2 November 1998  相似文献   

19.
Orv'za gluniaepatula is a perennial wild rice species, endemic to tropical America, previously known as the Latin American race of Orrza rufipogon. In Costa Rica, it is found in the northern region of the country, mainly in the wetland of the Medio Queso River, Los Chiles, Alajuela. It is diploid, of AA type genome and because of its genetic relatedness to cultivated rice it is included in the O. saliva complex. We describe the ultrastructure of leaf blade, spikelet, ligule and auricles. Special emphasis is given to those traits of major taxonomic value for O. glumaepatula and to those characters that distinguish this species from O. rufipogon and O. sativa. O. glumaepatula has a leaf blade covered with tombstone-shaped, oblong and spheroid epicuticular wax papillae. It has diamond-shaped stomata surrounded by spherical papillae, rows of zipper-like silica cells, bulky prickle trichomes of ca. 40 microm in length and small hirsute trichomes of ca. 32 tpm in length. The central vein is covered with large, globular papillae of ca. 146 microm in length, a characteristic that distinguishes this species from O. rufipogon and O. sativa. The border of the leaf blade exhibits a row of even-sized bulky prickle trichomes of ca. 42.5 microm in length. Auricles have attenuated trichomes of ca. 5.5 mm in length on the edges and small bicellular trichomes of 120 microm in length on the surface. The ligule has a large number of short attenuated trichomes on its surface of 100 microm in length. These latter two traits have important taxonomic value since they were found in O. glumaepatula but not found in O. sativa or in O. rufipogon. The spikelet has the typical morphology of the Oryza genus. Fertile lemmas have abundant spines, a trait shared with O. rufipogon but not with O. sativa. The sterile lemmas are wing-shaped with serrated borders, a characteristic that distinguishes this species from O. rufipogon and O. sativa. All the ultrastructure characters observed in O. glumaepatula from Costa Rica are also common to the specimens from Brazil.  相似文献   

20.
Li C  Zhou A  Sang T 《The New phytologist》2006,170(1):185-194
With a small and sequenced genome, rice provides an excellent system for studying the genetics of cereal domestication. We conducted a quantitative trait locus (QTL) analysis of key domestication traits using an F2 population derived from a cross between the cultivated rice, Oryza sativa, and the annual wild species, O. nivara. We found that the QTL of large phenotypic effects were targeted by domestication selection for effective harvest and planting, including a reduction in seed shattering and seed dormancy and the synchronization of seed maturation. Selection for higher yield was probably responsible for the fixation of mutations at a cluster of QTL on chromosome 7 and a few other chromosomal locations that could have substantially improved plant architecture and panicle structure, resulting in fewer erect tillers and longer and more highly branched panicles in cultivated rice. In comparison with the wild perennial species, O. rufipogon, rice domestication from O. nivara would have involved QTL with a greater degree of chromosomal co-localization and required little genetic change associated with life history or mating system transitions. The genetic analyses of domestication traits with both wild relatives will open opportunities for the improvement of rice cultivars utilizing natural germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号