首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel carboxylic acid-based alpha-sulfone MMP inhibitors have been synthesized and the in vitro enzyme SAR is discussed. A potential binding mode in the active site of the MMP-9 homology model was highlighted. These compounds are potent MMP-9 inhibitors and are selective over MMP-1.  相似文献   

2.
A new series of beta-N-biaryl ether sulfonamide hydroxamates as novel gelatinase inhibitors is described. These compounds exhibit good potency for MMP-2 and MMP-9 without inhibiting MMP-1. The structure-activity relationships (SAR) reveal the biaryl ether type P1' moiety together with methanesulfonamide is the optimal combination that provides inhibitory activity of MMP-9 in the single-digit nanomolar range.  相似文献   

3.
MMP-12 is a validated target in pulmonary and cardiovascular diseases. The principal obstacles to clinical development of MMP-12 inhibitors are an inadequate selectivity for the target enzyme and a poor water solubility, with consequent poor oral bioavailability. We recently reported a new class of sugar-based arylsulfonamide carboxylates with a nanomolar activity for MMP-12, a good selectivity and an improved water solubility. In this study, we designed and synthesized new derivatives to characterize the structure-activity relationship (SAR) within this class of glycoconjugate inhibitors. All the new derivatives were tested on human recombinant MMP-12 and MMP-9 in order to evaluate their affinity and the selectivity for the target enzyme. Among them, the four most promising compounds were selected to assess their intestinal permeability using an ex vivo everted gut sac model. Given the high polarity and structural similarity to glucose, compound 3 was demonstrated to cross the intestinal membrane by using the facilitative GLUT2 transport.  相似文献   

4.
Abstract

Lysine-specific demethylase 1 (LSD1) has been reported to connect with a range of solid tumors. Thus, the exploration of LSD1 inhibitors has emerged as an effective strategy for cancer treatment. In this study, we constructed a pharmacophore model based on a series of flavin adenine dinucleotide (FAD)-competing inhibitors bearing triazole???dithiocarbamate scaffold combining docking, structure–activity relationship (SAR) study, and molecular dynamic (MD) simulation. Meanwhile, another pharmacophore model was also constructed manually, relying on several speculated substrate-competing inhibitors and reported putative vital interactions with LSD1. On the basis of the two pharmacophore models, multi-step virtual screenings (VSs) were performed against substrate-binding pocket and FAD-binding pocket, respectively, combining pharmacophore-based and structure-based strategy to exploit novel LSD1 inhibitors. After bioassay evaluation, four compounds among 21 hits with diverse and novel scaffolds exhibited inhibition activity at the range of 3.63–101.43?μM. Furthermore, substructure-based enrichment was performed, and four compounds with a more potent activity were identified. After that, the time-dependent assay proved that the most potent compound with IC50 2.21?μM inhibits LSD1 activity in a manner of time-independent. In addition, the compound exhibited a cellular inhibitory effect against LSD1 in MGC-803 cells and may inhibit cell migration and invasion by reversing EMT in cultured gastric cancer cells. Considering the binding mode and SAR of the series of compounds, we could roughly deem that these compounds containing 3-methylxanthine scaffold act through occupying substrate-binding pocket competitively. This study presented a new starting point to develop novel LSD1 inhibitors.  相似文献   

5.
Using SAR from two related series of pyrimidinetrione-based inhibitors, compounds with potent MMP-13 inhibition and >100-fold selectivity against other MMPs have been identified. Despite high molecular weights, clogPs, and polar surface areas, the compounds are generally well absorbed and have excellent pharmacokinetic (PK) properties when dosed as sodium salts. In a rat fibrosis model, a compound from the series displayed no fibrosis at exposures many fold greater than its MMP-13 IC50.  相似文献   

6.
The SAR of a series of potent sulfonamide hydroxamate TACE inhibitors bearing novel acetylenic P1' groups was explored. In particular, compound 4t bearing a butynyloxy P1' moiety has excellent in vitro potency against isolated TACE enzyme and in cells, good selectivity over MMP-1 and oral activity in an in vivo model of TNF-alpha production.  相似文献   

7.
The SAR of a series of sterically hindered sulfonamide hydroxamic acids with relatively large P1' groups is described. The compounds typically spare MMP-1 while being potent inhibitors of MMP-13. The metabolically more stable compounds in the series contain either a monocyclic or bicyclic pyran ring adjacent to the hydroxamate group. Despite the sparing of MMP-1, pre-clinical and clinical studies revealed that fibrosis in rats and MSS in humans is still produced.  相似文献   

8.
This letter describes SAR exploration and rat PK optimization of a series of novel, MMP-1 sparing aryl hydroxamate sulfonamides with activity against MMP-2 and MMP-13.  相似文献   

9.
Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases known to exert multiple regulatory roles in tumor progression and invasiveness. This encouraged over the years the approach of MMP, and particularly MMP-2, targeting for anticancer treatment. Early generations of MMP inhibitors, based on aspecific zinc binding groups (ZBGs) assembled on (pseudo)peptide scaffolds, have been discontinued due to the clinical emergence of toxicity and further drawbacks, giving the way to inhibitors with alternative zinc-chelator moieties or not binding the catalytic zinc ion.In the present paper, we continue the search for new non-zinc binding MMP-2 inhibitors: exploiting previously identified compounds, a virtual screening (VS) campaign was carried out and led to the identification of a new class of ligands. The structure-activity relationship (SAR) of the benzimidazole scaffold was explored by synthesis of several analogues whose inhibition activity was tested with enzyme inhibition assays. By performing the molecular simplification approach, we disclosed different sets of single-digit micromolar inhibitors of MMP-2, with up to a ten-fold increase in inhibitory activity and ameliorated selectivity towards off-target MMP-8, compared to selected lead compound. Molecular dynamics calculations conducted on complexes of MMP-2 with docked privileged structures confirmed that analyzed inhibitors avoid targeting the zinc ion and dip inside the S1′ pocket. Present results provide a further enrichment of our insights for the design of novel MMP-2 selective inhibitors.  相似文献   

10.
By employing a stereosimplification approach, a thorough SAR exploration of the piperidine region of Sch 206272 was possible through a practical and efficient synthesis of substituted cyclic ureas. This SAR study led to the identification of a benzimidazolinone series of compounds which display single digit nanomolar NK(1)/NK(2) affinity and near micromolar binding for the NK(3) receptor.  相似文献   

11.
Conceptual design and modification of urea moiety in chemotype PF-3845/04457845, the bench marking irreversible inhibitor of fatty acid amide hydrolase (FAAH), led to discovery of a novel nicotinamide-based lead 12a having reversible mechanism of action. Focused SAR around the pyridine heterocycle (Ar) in 12a (Tables 1 and 2) resulted into four shortlisted compounds, (?)-12a, (?)-12i, (?)-12lm. The required (?)-enantiomers were obtained via diastereomeric resolution of a novel chiral dissymmetric intermediate 15. Based on comparative profile of FAAH potency, metabolic stability in liver microsome, liability of inhibiting major hCYP450 isoforms, rat PK, and brain penetration ability, two SAR optimized compounds, (?)-12l and (?)-12m, were selected for efficacy study in rat model of chemotherapy-induced peripheral neuropathy (CIPN). Both the compounds exhibited dose related antihyperalgesic effects, when treated with 3–30?mg/kg po for 7?days. The effects at 30?mg/kg are comparable to that of PF-04457845 (10?mg/kg) and Tramadol (40?mg/kg).  相似文献   

12.
A series of bis-(arylsulfonamide) hydroxamate inhibitors were synthesized. These compounds exhibit good potency against MMP-7 and MMP-9 depending on the nature, steric bulk, and substitution pattern of the substituents in the benzene ring. In general, the preliminary structure-activity relationships (SAR) suggest that among the DAPA hydroxamates (i) electron-rich benzene rings of the sulfonamides may produce better inhibitors than electron-poor analogs. However, potential H-bond acceptors can reverse the trend depending on the isozyme; (ii) isozyme selectivity between MMP-7 and -9 can be conferred through steric bulk and substitution pattern of the substituents in the benzene ring, and (iii) the MMP-10 inhibition pattern of the compounds paralleled that for MMP-9.  相似文献   

13.
The aromathecin topoisomerase I (top1) inhibitors offer promising scaffolds for the development of novel cancer chemotherapeutics. They are ‘composites’ of the camptothecin and indenoisoquinoline top1 inhibitors. Interestingly, some structure–activity relationship (SAR) overlap between the aromathecins and the indenoisoquinolines has been observed. For both classes, placement of certain polar groups in similar regions of the heteroaromatic system improves top1 inhibitory and antiproliferative activities. A series of water-soluble aromathecins substituted at position 14 with diaminoalkanes of various lengths has been prepared. These compounds all possess similar antiproliferative potency, but a general trend is observed: aromathecins with longer diaminoalkane substituents (>6 carbons) possess lower anti-top1 activity than their smaller counterparts (2–4 carbons), presumably as a result of unfavorable hydrophobic interactions. This trend is also noted with the indenoisoquinolines, revealing additional SAR overlap that supports the hypothesis that there is a ‘universal’ top1 inhibitor SAR.  相似文献   

14.
The dual-target inhibitors tend to improve the response rate in treating tumors, comparing with the single-target inhibitors. Matrix metalloproteinase-2 (MMP-2) and histone deacetylase-6 (HDAC-6) are attractive targets for cancer therapy. In this study, the hierarchical virtual screening of dual MMP-2/HDAC-6 inhibitors from natural products is investigated. The pharmacophore model of MMP-2 inhibitors is built based on ligands, but the pharmacophore model of HDAC-6 inhibitors is built based on the experimental crystal structures of multiple receptor–ligand complexes. The reliability of these two pharmacophore models is validated subsequently. The hierarchical virtual screening, combining these two different pharmacophore models of MMP-2 and HDAC-6 inhibitors with molecular docking, is carried out to identify the dual MMP-2/HDAC-6 inhibitors from a database of natural products. The four potential dual MMP-2/HDAC-6 inhibitors of natural products, STOCK1 N-46177, STOCK1 N-52245, STOCK1 N-55477, and STOCK1 N-69706, are found. The studies of binding modes show that the screened four natural products can simultaneously well bind with the MMP-2 and HDAC-6 active sites by different kinds of interactions, to inhibit the MMP-2 and HDAC-6 activities. In addition, the ADMET properties of screened four natural products are assessed. These found dual MMP-2/HDAC-6 inhibitors of natural products could serve as the lead compounds for designing the new dual MMP-2/HDAC-6 inhibitors having higher biological activities by carrying out structural modifications and optimizations in the future studies.  相似文献   

15.
As part of our continuing efforts to identify therapeutics for CNS diseases such as schizophrenia and Alzheimer’s disease (AD), we have been focused on the 5-HT6 receptor in order to identify potent and selective ligands as a potential treatment for cognitive dysfunction. Herein we report the identification of a novel series of benzoxazole derivatives as potent 5-HT6 ligands. The synthesis and detailed SAR of this class of compounds are reported. The compounds have been shown to be full antagonists in a cyclic AMP functional assay.  相似文献   

16.
The biphenyl amides (BPAs) are a novel series of p38α MAP kinase inhibitor. The optimisation of the series to give compounds that are potent in an in vivo disease model is discussed. SAR is presented and rationalised with reference to the crystallographic binding mode.  相似文献   

17.
A series of carboxylic acids was prepared based on cyclohexylglycine scaffolds and tested for potency as matrix metalloproteinase (MMP) inhibitors. Detailed SAR for the series is reported for five enzymes within the MMP family, and a number of inhibitors such as compound 18 display low nanomolar potency for MMP-2 and MMP-13, while selectively sparing MMP-1 and MMP-7.  相似文献   

18.
Compound YM-60828 was previously characterized in our laboratory as a potent, selective and orally-bioavailable Factor Xa (FXa) inhibitor. The L-shape conformation of this compound in the active site of FXa was recognized as an important factor in displaying its FXa inhibitory activity. This led to the exploration of conformationally restricted cyclic scaffolds bearing a similar active conformation. The current study investigated a novel series of benzothiadiazine-4-one based compounds as FXa inhibitors. Structure-activity relationship (SAR) investigations revealed some potent FXa inhibitors that were selected for further in vitro and ex vivo anticoagulant studies. Among them, compound 6j (YM-169920) was proved to be most effective anticoagulant in this series. The synthesis and SAR in addition to docking studies of this class of inhibitors are described.  相似文献   

19.
We disclose further optimization of hydantoin TNF-α convertase enzyme (TACE) inhibitors. SAR with respect to the non-prime region of TACE active site was explored. A series of biaryl substituted hydantoin compounds was shown to have sub-nanomolar Ki, good rat PK, and good selectivity versus MMP-1, -2, -3, -7, -9, and -13.  相似文献   

20.
Matrix metalloproteinase-8 (MMP-8) is the key mediator in initiating type I collagen degradation and is associated with rheumatoid arthritis. In the present study, a pharmacophore hypothesis was developed based on selective non zinc binding inhibitors of MMP-8. The pharmacophore hypothesis was refined manually and validated by observing structures and the interactions of MMP-8 inhibitors. The refined pharmacophore model was able to discriminate the non-zinc binding inhibitors of MMP-8 with respect to other inhibitors. Hence this study proposes a combined structure- and ligand-based pharmacophore model that is suitable for retrieving the novel inhibitors of MMP-8. The pharmacophore hypothesis AADRH was used as query for retrieving potential compounds from the Zinc database and hits were selected based on the catalytic selective amino acid residues of Arg 222, and Tyr 227. We identified six compounds as potent inhibitors and their selectivity profile were checked against different subtypes of MMPs using the cross-docking method. Molecular dynamics results indicated that ZINC 00673680 forms a stable interaction with the key amino acid residues and avoids the zinc atom with a distance of 5.49?Å. Our computational study might be useful for further development of selective MMP-8 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号