首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frame shift mutations of the polyglutamine binding protein-1 (PQBP1) gene lead to total or partial truncation of the C-terminal domain (CTD) and cause mental retardation in human patients. Interestingly, normal Drosophila homologue of PQBP-1 lacks CTD. As a model to analyze the molecular network of PQBP-1 affecting intelligence, we generated transgenic flies expressing human PQBP-1 with CTD. Pavlovian olfactory conditioning revealed that the transgenic flies showed disturbance of long-term memory. In addition, they showed abnormal courtship that male flies follow male flies. Abnormal functions of PQBP-1 or its binding partner might be linked to these symptoms.  相似文献   

2.
We investigated the evolutionary conservation of polyglutamine binding protein-1 (PQBP-1) among Vertebrata. PQBP-1s were highly conserved and shared the same domain features including a WW domain, a polar amino acid rich domain (PRD), a nuclear localization signal (NLS), and a C-terminal domain (CTD) among Eutheria, but not always among Vertebrata. PQBP-1s of Vertebrata contained a variable region in the middle portion corresponding to the position of PRD. The full form of PRD including both 7aa and DR/ER repeats was specific to Eutheria. PRD of non-eutherian Amniota was minimal. Amphibia had no PRD. The DR/ER repeat was solo in fishes. Agnatha PRD was also rich in polar amino acids, but contained no repetitive sequence. We investigated 3 polyQ-containing proteins known to interact with PQBP-1: BRN-2, Huntingtin, and ATAXIN-1, and showed a diverse nature of protein-protein interaction in Vertebrata. There appears to be no interaction between PQBP-1 and BRN-2, Huntingtin, or ATAXIN-1 in Amphibia, while the interaction between PQBP-1 and BRN-2 is expected to be conserved among Mammalia, and the interaction between PQBP-1 and Huntingtin or ATAXIN-1 depends on the lineage in Eutheria.  相似文献   

3.
4.
5.
Human PQBP-1 is known to interact with triplet repeat disease gene products such as ataxin and huntingtin through their poly-glutamine (poly-Q) tracts. The poly-Q tracts show extensive variation in both the number and the configuration of repeats among species. A surface plasmon resonance assay showed clear interaction between human PQBP-1 and Q(11), representative of the poly-Q tract of the ataxin-1 of Old World monkeys. No response was observed using Q(2)PQ(2)P(4)Q(2), representative of the poly-Q tract of the ataxin-1 of New World monkeys. This implies that the interaction of human PQBP-1 with ataxin-1 is limited to humans and closely related species. Comparison of the human and mouse PQBP-1 sequences showed an elevated amino acid substitution rate in the polar amino acid-rich domain of PQBP-1 that is responsible for binding to poly-Q tracts. This could have been advantageous to the new biological function of human PQBP-1 through poly-Q tracts.  相似文献   

6.
Long interspersed nuclear element-1 (LINE-1 or L1) retrotransposons comprise a large fraction of the human and mouse genomes. The mobility of these successful elements requires the protein encoded by open reading frame-1 (ORF1p), which binds single-stranded RNA with high affinity and functions as a nucleic acid chaperone. In this report, we have used limited proteolysis, filter binding, and NMR spectroscopy to characterize the global structure of ORF1p and the three-dimensional structure of a highly conserved RNA binding domain. ORF1p contains three structured regions, a coiled-coil domain, a middle domain of unknown function, and a C-terminal domain (CTD). We show that high affinity RNA binding by ORF1p requires the CTD and residues within an amino acid protease-sensitive segment that joins the CTD to the middle domain. Insights in the mechanism of RNA binding were obtained by determining the solution structure of the CTD, which is shown to adopt a novel fold consisting of a three-stranded beta sheet that is packed against three alpha-helices. An RNA binding surface on the CTD has been localized using chemical shift perturbation experiments and is proximal to residues previously shown to be essential for retrotransposition, RNA binding, and chaperone activity. A similar structure and mechanism of RNA binding is expected for all vertebrate long interspersed nuclear element-1 elements, since residues encoding the middle, protease-sensitive segment, and CTD are highly conserved.  相似文献   

7.
8.
Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear protein that interacts and colocalizes with mutant polyglutamine proteins. We previously reported that PQBP-1 transgenic mice show a late-onset motor neuron disease-like phenotype and cell death of motor neurons analogous to human neurodegeneration. To investigate the molecular mechanisms underlying the motor neuron death, we performed microarray analyses using the anterior horn tissues of the spinal cord and compared gene expression profiles between pre-symptomatic transgenic and age-matched control mice. Surprisingly, half of the spots changed more than 1.5-fold turned out to be genes transcribed from the mitochondrial genome. Northern and western analyses confirmed up-regulation of representative mitochondrial genes, cytochrome c oxidase (COX) subunit 1 and 2. Immunohistochemistry revealed that COX1 and COX2 proteins are increased in spinal motor neurons. Electron microscopic analyses revealed morphological abnormalities of mitochondria in the motor neurons. PQBP-1 overexpression in primary neurons by adenovirus vector induced abnormalities of mitochondrial membrane potential from day 5, while cytochrome c release and caspase 3 activation were observed on day 9. An increase of cell death by PQBP-1 was also confirmed on day 9. Collectively, these results indicate that dysfunction of PQBP-1 induces mitochondrial stress, a key molecular pathomechanism that is shared among human neurodegenerative disorders.  相似文献   

9.
10.
11.
12.
Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear protein that interacts with various proteins, including RNA polymerase II and the spliceosomal protein U5-15kD. PQBP-1 is known to be associated with X-linked mental retardation in which a frameshift mutation in the PQBP-1 gene occurs. In the present study, we demonstrate that PQBP-1 binds to U5-15kD via a continuous 23-residue segment within its C-terminal domain. Intriguingly, this segment is lost in the frameshift mutants of PQBP-1 associated with X-linked mental retardation. These findings suggest that the frameshift mutations in the PQBP-1 gene lead to expression of mutants lacking the ability to interact with U5-15kD.  相似文献   

13.
ARTS (Sept4_i2) is a mitochondrial pro-apoptotic protein that functions as a tumor suppressor. Its expression is significantly reduced in leukemia and lymphoma patients. ARTS binds and inhibits XIAP (X-linked Inhibitor of Apoptosis protein) by interacting with its Bir3 domain. ARTS promotes degradation of XIAP through the proteasome pathway. By doing so, ARTS removes XIAP inhibition of caspases and enables apoptosis to proceed. ARTS contains 27 unique residues in its C-terminal domain (CTD, residues 248-274) which are important for XIAP binding. Here we characterized the molecular details of this interaction. Biophysical and computational methods were used to show that the ARTS CTD is intrinsically disordered under physiological conditions. Direct binding of ARTS CTD to Bir3 was demonstrated using NMR and fluorescence spectroscopy. The Bir3 interacting region in ARTS CTD was mapped to ARTS residues 266-274, which are the nine C-terminal residues in the protein. Alanine scan of ARTS 266-274 showed the importance of several residues for Bir3 binding, with His268 and Cys273 contributing the most. Adding a reducing agent prevented binding to Bir3. A dimer of ARTS 266-274 formed by oxidation of the Cys residues into a disulfide bond bound with similar affinity and was probably required for the interaction with Bir3. The detailed analysis of the ARTS - Bir3 interaction provides the basis for setting it as a target for anti cancer drug design: It will enable the development of compounds that mimic ARTS CTD, remove IAPs inhibition of caspases, and thereby induce apoptosis.  相似文献   

14.
15.
Within the ARVD1 (arrhythmogenic right ventricular dysplasia/cardiomyopathy, type 1) critical region, mapped to 14q24.3, we detected an intronless gene of 4859 bp, predominantly expressed in the heart tissue. This gene encodes a 796-amino-acid, proline-rich protein showing polyglutamine and polyalanine tracks with variable length at the N-terminus and a C3HC4 RING finger domain at the C-terminus. CREB and AP-2 binding sites are present in the promoter region. The 5' flanking region contains neither a TATA box nor a CAAT box, but it is high in GC content and includes several Sp1 binding sites. Protein similarity searches revealed a significant match between the C-terminus and a human hypothetical protein, whose gene is located on the chromosome 19 long arm. The predicted protein shows PEST sequences, suggesting its rapid degradation. The novel intronless gene, provisionally named C14orf4 and probably encoding a nuclear protein, was excluded from being the ARVD1 gene.  相似文献   

16.
17.
18.
19.
20.
Long interspersed nuclear element-1 is a highly abundant mammalian retrotransposon that comprises 17% of the human genome. L1 retrotransposition requires the protein encoded by open reading frame-1 (ORF1p), which binds single-stranded RNA with high affinity and functions as a nucleic acid chaperone. ORF1p has been shown to adopt a homo-trimeric, asymmetric dumbbell-shaped structure. However, its atomic-level structure and mechanism of RNA binding remains poorly understood. Here, we report the results of a site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) study of 27 residues within the RNA binding region of the full-length protein. The EPR data are compatible with the large RNA binding lobe of ORF1p containing a RNA recognition motif (RRM) domain and a carboxyl-terminal domain (CTD) that are predicted from crystallographic and NMR studies of smaller fragments of the protein. Interestingly, the EPR data indicate that residues in strands β3 and β4 of the RRM are structurally unstable, compatible with the previously observed sensitivity of this region to proteolysis. Affinity measurements and RNA-dependent EPR spectral changes map the RNA binding site on ORF1p to residues located in strands β3 and β4 of the RRM domain and to helix α1 of the CTD. Complementary in vivo studies also identify residues within the RRM domain that are required for retrotransposition. We propose that in the context of the full-length trimeric protein these distinct surfaces are positioned adjacent to one another providing a continuous surface that may interact with nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号