首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the body fluid of freeze-tolerant organisms freezes, solutes become concentrated in the gradually smaller unfrozen fluid fraction, and dissolved trace metals may reach toxic levels. A dialysis technique was used to investigate the metal binding capacity of the low density fraction of the hemolymph from the freeze tolerant beetle Phyto depressus. The low density fraction, assumed to contain the ice nucleating lipoproteins, showed approximately 100 times greater capacity to bind metals (Cd 2+, Cu 2+ and Zn 2+) than the proteins albumin, hemoglobin and similar to metallothionein. The high metal binding capacity in the low density fraction raises the question if the ice nucleating lipoproteins might assist in detoxification of potentially toxic concentrations of metals that may occur when a large fraction of the bodyfluids of freeze tolerant insects freeze. This hypotheis is consistent with the fact that the lipoprotein ice nucleators are present in far greater amounts than required for ice nucleation, and also with the fact that the lipoprotein ice nucleators have a remarkably high content of amino acids with negatively charged residues that may act as metal binding sites.  相似文献   

2.
Summary For many organisms, some heavy metals in external media are essential at low concentrations but are toxic at high concentrations. Strongly toxic heavy metals are toxic even at low concentrations. Recently, it was proven that changes of valencies of Fe, Cu and Mn were necessary for these metals to be utilized by organisms, especially microorganisms. The valencies of Hg and Cr are changed by reducing systems of cells in the process of detoxifying them. Thus, the processes of oxidoreduction of these metals are important for biological systems of metal-autoregulation and metal-mediated regulation. Metal ion-specific reducing enzyme systems function in the cell surface layer of microorganisms. These enzymes require NADH or NADPH as an electron donor and FMN or FAD as an electron carrier component. Electron transport may be operated by transplamsa-membrane redox systems. Metal ion reductases are also found in the cytoplasm. The affinities of metal ions to ligand residues change with the valence of the metal elements and mutual interactions of various metal ions are important for regulation of oxidoreduction states. Microorganisms can utilize essential metal elements and detoxify excess metals by respective reducing enzyme systems and by regulating movement of heavy metal ions.  相似文献   

3.
Konrad Bloch developed an interest in insects because they are unable to make sterols, and in yeast because these cells need oxygen to make sterols and unsaturated fatty acids. Insects, like all other organisms, must deal with the toxic effects of oxygen in the presence of iron, which itself is a vital nutrient. They do so by making proteins with high affinity for ferric or ferrous ions. Two such proteins are transferrins and ferritins. Insects produce both of these proteins, but use them in different ways from most other organisms. Insect transferrins appear to be involved in innate immunity, perhaps by sequestering ferric ions to prevent pathogens and parasites from utilizing them. Insect ferritins, unlike those of any other group of organisms, are exported into the extracellular space (hemolymph). They may be involved in iron transport and/or protection against iron overload in the diet.  相似文献   

4.
Heavy metals impact on the cytoplasmic function in a number of different ways, principally by their binding to protein sulflhdryl groups, by producing a deficiency of essential ions and, eventually, by substituting the essemial ions. Other modes of toxicity are possible, including disruption of cell transport processes and oxidative damage by free radicals generated by metal redox cycling. Plants have developed a variety of biochemical defense strategies to prevent heavy metal poisoning. The possible defense mechanism in plant may involve: metal binding to cell walls, avoidance of uptake these toxic metal ions, reduction of heavy metal transport across the cell membrane, active efflux, compartmentalization and metal chelation. Phytochelatins that can tightly bind and sequester metals may play an important role in the accumulation of heavy metals and preventing them from entering the cell metabolic pathway, the rates of high molecular weight (HMW) metal phytochelatin complexes (Cd-Sa-complex) formation may be an important determinant of the plant tolerance. In addition, plants possess several antioxidant defense systems to protect themselves from the oxidative stress by heavy metals.  相似文献   

5.
Methallothioneins and their role in the metabolism and toxicity of metals.   总被引:13,自引:0,他引:13  
Recent investigations have provided considerable new information regarding the biological role of metallothioneins. The synthesis of this protein is induced in cells by certain metals. It can tightly bind with zinc, copper, cadmium, mercury or silver reducing the availability of diffusible forms of these metals within cells and therefore decreasing their toxic potential. The metallothioneins may also have an important role in regulating the normal absorption and homeostasis of zinc and copper. It is paradoxical, however, in that a protein synthesized within the cell to reduce toxicity, may, in itself, be toxic when excreted or leaked out from the cell to the extracellular space. Further studies are required to elucidate the mechanisms involved in these effects.  相似文献   

6.
植物耐重金属机理研究进展   总被引:80,自引:0,他引:80  
由于工业“三废”和机动车尾气的排放、污水灌溉及农药、除草剂和化肥的使用,严重地污染了土壤、水质和大气,其中土壤中的重金属(Hg、Cd、As、Cu和Al)污染更为严重[1]。重金属在植物根、茎、叶及籽粒中的大量累积,不仅严重地影响植物的生长和发育[1~...  相似文献   

7.
生物表面活性剂修复重金属污染研究进展   总被引:3,自引:1,他引:2  
重金属在环境中积累会对动植物和人体健康造成危害。生物表面活性剂环境相容性好,在环境污染修复方面的应用日益受到关注。本文介绍了生物表面活性剂及其在重金属污染修复中的应用;生物表面活性剂与重金属络合的机理;影响二者络合的因素(如pH值、表面活性剂浓度、重金属存在形态等);对生物表面活性剂修复重金属污染的前景进行了展望。  相似文献   

8.
Molecular mechanisms of plant metal tolerance and homeostasis   总被引:68,自引:0,他引:68  
Clemens S 《Planta》2001,212(4):475-486
Transition metals such as copper are essential for many physiological processes yet can be toxic at elevated levels. Other metals (e.g. lead) are nonessential and potentially highly toxic. Plants – like all other organisms – possess homeostatic mechanisms to maintain the correct concentrations of essential metal ions in different cellular compartments and to minimize the damage from exposure to nonessential metal ions. A regulated network of metal transport, chelation, trafficking and sequestration activities functions to provide the uptake, distribution and detoxification of metal ions. Some of the components of this network have now been identified: a number of uptake transporters have been cloned as well as candidate transporters for the vacuolar sequestration of metals. Chelators and chaperones are known, and evidence for intracellular metal trafficking is emerging. This recent progress in the molecular understanding of plant metal homeostasis and tolerance is reviewed. Received: 14 July 2000 / Accepted: 22 September 2000  相似文献   

9.
In contrast to thermophilic or psychrophilic organisms, heavy metal-resistant bacteria do not supply enzymes that are active under harsh conditions, but are themselves tools for the evaluation and remediation of heavy metal-contaminated environments. Ralstonia sp. CH34 is a gram-negative bacterium with a remarkable set of resistance determinants, allowing this bacterium to live in extreme environments that are heavily contaminated with toxic metal ions. These heavy metal ions are mostly detoxified by inducible ion efflux systems that reduce the intracellular concentration of a given ion by active export. Because all metal resistance determinants in this bacterium are inducible, their regulatory systems can be used to develop biosensors that measure the biologically important concentrations of heavy metals in an environment. Resistance based on metal ion efflux detoxifies only the cytoplasm of the respective cell. Therefore, this resistance mechanism cannot be used directly to develop biotechnological procedures; however, metal ion efflux can protect a cell in a metal-contaminated environment. Thus, the cell can be enabled to mediate biochemical reactions such as precipitation of heavy metals with the carbon dioxide produced during growth or degradation of xenobiotics. Received: July 11, 1999 / Accepted: December 27, 1999  相似文献   

10.

Main conclusion

Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.
  相似文献   

11.
Cold-hardy insects overwinter by one of two main strategies: freeze tolerance and freeze avoidance by supercooling. As a general model, many freeze-tolerant species overwinter in extreme climates, freeze above -10 degrees C via induction by ice-nucleating agents, and once frozen, can survive at temperatures of up to 40 degrees C or more below the initial freezing temperature or supercooling point (SCP). It has been assumed that the SCP of freeze-tolerant insects is unaffected by the freezing process and that the freeze-tolerant state is therefore retained in winter though successive freeze-thaw cycles of the body tissues and fluids. Studies on the freeze-tolerant larva of the hoverfly Syrphus ribesii reveal this assumption to be untrue. When a sample with a mean 'first freeze' SCP of -7.6 degrees C (range of -5 degrees C to -9.5 degrees C) were cooled, either to -10 degrees C or to their individual SCP, on five occasions, the mean SCP was significantly depressed, with some larvae subsequently freezing as low as -28 degrees C. Only larvae that froze at the same consistently high temperature above -10 degrees C were alive after being frozen five times. The wider occurrence of this phenomenon would require a fundamental reassessment of the dynamics and distinctions of the freeze-tolerant and freeze-avoiding strategies of insect overwintering.  相似文献   

12.
Recent research on the ecology, physiology and genetics of metal resistance and accumulation in bacteria has significantly increased the basic understanding of microbiology in these areas. Research has clearly demonstrated the versatility of bacteria to cope with toxic metal ions. For example, certain strains of bacteria can efficiently efflux toxic ions such as cadmium, that normally exert an inhibitory effect on bacteria. Some bacteria such as Escherichia coli and Staphylococcus sp. can volatilize mercury via enzymatic transformations. It is also noteworthy that many of these resistance mechanisms are encoded on plasmids or transposons. By expanding the knowledge on metal-resistance and accumulation mechanisms in bacteria, it may be possible to utilize certain strains to recover precious metals such as gold and silver, or alternatively remove toxic metal ions from environments or products where their presence is undesirable.  相似文献   

13.
Plants experience oxidative stress upon exposure to heavy metals that leads to cellular damage. In addition, plants accumulate metal ions that disturb cellular ionic homeostasis. To minimize the detrimental effects of heavy metal exposure and their accumulation, plants have evolved detoxification mechanisms. Such mechanisms are mainly based on chelation and subcellular compartmentalization. Chelation of heavy metals is a ubiquitous detoxification strategy described in wide variety of plants. A principal class of heavy metal chelator known in plants is phytochelatins (PCs), a family of Cys-rich peptides. PCs are synthesized non-translationally from reduced glutathione (GSH) in a transpeptidation reaction catalyzed by the enzyme phytochelatin synthase (PCS). Therefore, availability of glutathione is very essential for PCs synthesis in plants at least during their exposure to heavy metals. Here, I reviewed on effect of heavy metals exposure to plants and role of GSH and PCs in heavy metal stress tolerance. Further, genetic manipulations of GSH and PCs levels that help plants to ameliorate toxic effects of heavy metals have been presented.  相似文献   

14.
Endocytic traffic is a complex and elegant operation involving cargo sorting, membrane budding and tubulation, generation of force, and the formation of organellar contacts. The role of specific proteins and lipids in these processes has been studied extensively. By comparison, precious little is understood about the contribution of the endocytic fluid to these events, despite much evidence that alteration of the contents can severely affect membrane traffic along the endocytic pathway. In particular, it has long been appreciated that dissipation of ionic gradients arrests endosome-to-lysosome maturation. How cells sense inorganic ions and transmit this information have remained largely enigmatic. Herein, we review the experimental findings that reveal an intimate association between luminal ions, their transport, and endocytic traffic. We then discuss the ionic sensors and the mechanisms proposed to convert ion concentrations into protein-based trafficking events, highlighting the current paucity of convincing explanations.  相似文献   

15.
The haemolymph of 9 species of insects found overwintering under the bark of dead trees in northern Indiana contained factors which produced a thermal hysteresis (a difference between the freezing and melting points) of several degrees. These thermal-hysteresis-factors were common in overwintering beetles, but rare in non-Coleoptera, and are similar to the macromolecular antifreezes of polar marine teleost fishes. The factors were found in both freeze-susceptible and freeze-tolerant species, and their function in freeze-susceptible insects appears to be to depress the supercooling points and therefore the lower lethal temperatures of the insects. However, the function of the factors in freeze-tolerant species is not clear. Possible functions are discussed.  相似文献   

16.
Toxic metal ions in photoautotrophic organisms   总被引:1,自引:1,他引:0  
We summarize the contemporary understanding of the effects of metal stress on various photosynthetic processes in photoautotrophic organisms and of the defence strategies employed by these organisms to avoid such stress. Cadmium is in the centre of interest of this review, as a non-essential element and important environmental pollutant, but Al, Pb, Hg, As, Cu, and Zn are also considered. Toxic metal ions pollute the environment through anthropogenic activities and affect the quality of plant crop. They represent one of the main abiotic stress factors influencing the health of plants and, as a secondary effect, of animals including man. The review summarizes the generally accepted answers to the questions: How do the toxic metal ions enter the photosynthetic organisms? How are they accumulated in plants? Which mechanisms do plants develop to tolerate metal stress and protect themselves?  相似文献   

17.
18.
In mammals, the transport of essential elements from the gastrointestinal tract to organs is orchestrated by biochemical mechanisms which have evolved over millions of years. The subsequent organ-based assembly of sufficient amounts of metalloproteins is a prerequisite to maintain mammalian health and well-being. The chronic exposure of various human populations to environmentally abundant toxic metals/metalloid compounds and/or the deliberate administration of medicinal drugs, however, can adversely affect these processes which may eventually result in disease. A better understanding of the perturbation of these processes has the potential to advance human health, but their visualization poses a major problem. Nonetheless, liquid chromatography-inductively coupled plasma-based 'metallomics' methods, however, can provide much needed insight. Size-exclusion chromatography-inductively coupled plasma atomic emission spectrometry, for example, can be used to visualize changes that toxic metals/medicinal drugs exert at the metalloprotein level when they are added to plasma in vitro. In addition, size-exclusion chromatography-inductively coupled plasma mass spectrometry can be employed to analyze organs from toxic metal/medicinal drug-exposed organisms for metalloproteins to gain insight into the biochemical changes that are associated with their acute or chronic toxicity. The execution of such studies-from the selection of an appropriate model organism to the generation of accurate analytical data-is littered with potential pitfalls that may result in artifacts. Drawing on recent lessons that were learned by two research groups, this tutorial review is intended to provide relevant information with regard to the experimental design and the practical application of these aforementioned metallomics tools in applied health research.  相似文献   

19.
Owing to the unique redox potential of transition metals, many of these elements serve important roles as cofactors in numerous enzymes. However, the reactive nature of metal becomes an intracellular threat when these ions are present in excess. Therefore, all organisms require mechanisms for sensing small fluctuations in metal levels to maintain a controlled balance of uptake, efflux, and sequestration. The ability to sense metal ion concentration is especially important for the survival of pathogenic bacteria because host organisms can both restrict access to essential metals from invading pathogens and utilize the innate toxicity of certain metals for bacterial killing. Host-induced metal ion fluctuations must be rapidly sensed by pathogenic bacteria so that they can activate metal transport systems, alter their physiology to accommodate differences in metal concentrations, and regulate the expression of virulence factors.  相似文献   

20.
Insect antifreezes and ice-nucleating agents   总被引:2,自引:0,他引:2  
John G. Duman 《Cryobiology》1982,19(6):613-627
Cold-tolerant, freeze-susceptible insects (those which die if frozen) survive subzero temperatures by proliferating antifreeze solutes which lower the freezing and supercooling points of their body fluids. These antifreezes are of two basic types. Lowmolecular-weight polyhydroxy alcohols and sugars depress the freezing point of water on a colligative basis, although at higher concentrations these solutes may deviate from linearity. Recent studies have shown that these solutes lower the supercooling point of aqueous solutions approximately two times more than they depress the freezing point. Consequently, if a freeze-susceptible insect accumulates sufficient glycerol to lower the freezing point by 5 °C, then the glycerol should depress the insect's supercooling point by 10 °C.Some cold-tolerant, freeze-susceptible insects produce proteins which produce a thermal hysteresis (a difference between the freezing and melting point) of several degrees in the body fluids. These thermal hysteresis proteins (THPs) are similar to the antifreeze proteins and glycoproteins of polar marine teleost fishes. The THPs lower the freezing, and presumably the supercooling, point by a noncolligative mechanism. Consequently, the insect can build up these antifreezes, and thereby gain protection from freezing, without the disruptive increases in osmotic pressure which accompany the accumulation of polyols or sugars. Therefore the THPs can be more easily accumulated and maintained during warm periods in anticipation of subzero temperatures. It is not surprising then that photoperiod, as well as temperature, is a critical environmental cue in the control of THP levels in insects.Some species of freeze-tolerant insects also produce THPs. This appears somewhat odd, since most freeze-tolerant insects produce ice nucleators which function to inhibit supercooling and it is therefore not clear why such an insect would produce antifreeze proteins. It is possible that the THPs have an alternate function in these species. However, it also appears that the THPs function as antifreezes during those periods of the year when these insects are not freeze tolerant (i.e., early autumn and spring) but when subzero temperatures could occur. In addition, at least one freeze-tolerant insect which produces THPs, Dendroides canadensis, typically loses freeze tolerance during midwinter thaws and then regains tolerance. The THPs could be important during those periods when Dendroides loses freeze tolerance by making the insect less susceptible to sudden temperature decreases.Comparatively little is known of the biochemistry of insect THPs. However, comparisons of those few insect THPs which have been purified with the THPs of fishes show some interesting differences. The insect THPs lack the large alanine component commonly found in the fish THPs. In addition, the insect THPs generally contain greater percentages of hydrophilic amino acids than do those of the fish. Perhaps the most interesting insect THPs are those from Tenebrio molitor which have an extremely large cysteine component (28% in one THP). Studies on the primary and higher-order structure of the insect THPs need to be carried out so that more critical comparisons with the fish THPs can be made. This may provide important insights into the mechanisms of freezing point and supercooling point depression exhibited by these molecules. In addition, comparative studies of the freezing and supercooling point depressing activities of the various THPs, in relation to their structures, should prove most interesting.It has become increasingly apparent over the last few years that most freeze-tolerant insects, unlike freeze-susceptible species, inhibit supercooling by accumulating ice-nucleating agents in their hemolymph. These nucleators function to ensure that ice formation occurs in the extracellular fluid at fairly high temperatures, thereby minimizing the possibility of formation of lethal intracellular ice. Little is known of the nature of the insect ice-nucleating agents. Those few which have been studied are heat sensitive and nondialyzable and are inactivated by proteolytic enzymes, thus indicating that they are proteinaceous. Studies on the structure-function relationships of these unique molecules should be done.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号