首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time fully protected substrates with only one hydrolyzable ester bond have been used to analyze the substrate specificity of microbial lipases. In these substrates the ester is attached to the glycerol molecule in a precisely defined position. The use of three different substituents generates chirality and thus allows the analysis of positional specificities of individual lipases. Therefore, these new substrates have been used to study the enzymatic activities of two closely related lipases isolated from Staphylococcus aureus (TEN5) designated the 44 and 43 kDa lipase. The lipases, especially the 44 kDa molecule, show a high specificity for the hydrolysis of the ester in the sn-1 position (S-configuration), which is hydrolyzed by a factor of ten faster than that in the sn-3 position. In addition, the study demonstrates for the first time that the rate of hydrolysis of a fatty acid ester attached to the sn-2 position of glycerol by microbial lipases depends on the configuration of the substrate molecule.  相似文献   

2.
华根霉脂肪酶有机相合成酶活的研究   总被引:3,自引:0,他引:3  
通过比较7种微生物脂肪酶的有机相合成酶活、水相水解酶活及在正庚烷中催化己酸乙酯合成的能力,证明了合成酶活与水解酶活相关性不高,合成酶活比水解酶活更能反映脂肪酶的合成能力。通过比较两株华根霉(Rhizopus chinensis)脂肪酶酶活,发现合成酶活相差较大,表明相同种属微生物的脂肪酶合成酶活存在不同。对.Rhizopus chinensis-2液态发酵产脂肪酶进程研究发现,水解酶活高峰先于合成酶活高峰大约12h。将不同培养时间的Rhizopus chinensis-2全细胞脂肪酶用于催化己酸乙酯合成,具有高合成酶活的全细胞脂肪酶催化己酸乙酯合成反应较快。因此,全细胞脂肪酶用于催化有机相酯合成反应时,具有高脂肪酶合成酶活的菌体具有较好的催化酯合成能力。  相似文献   

3.
Immobilization of lipases involves many levels of complications relating to the structure of the active site and its interactions with the immobilization support. Interaction of the so called hydrophobic ‘lid’ with the support has been reported to affect synthetic activity of an immobilized lipase. In this work we evaluate and compare the synthetic activity of lipases from different sources immobilized on different kinds of supports with varying hydrophobicity. Humicola lanuginosa lipase, Candida antarctica lipase B and Rhizomucor miehei lipase were physically adsorbed onto two types of hydrophobic carriers, namely hydrophilic carriers with conjugated hydrophobic ligands, and supports with base matrix hydrophobicity. The prepared immobilized enzymes were used for acylation of n-butanol with oleic acid as acyl donor in iso-octane with variable water content (0–2.8%, v/v) as reaction medium. Enzyme activity and effect of water on the activity of the immobilized derivatives were compared with those of respective soluble lipases and a commercial immobilized lipase Novozyme 435. Both R. miehei and H. lanuginosa immobilized lipases showed maximum activity at 1.39% (v/v) added water concentration. Sepabeads, a methacrylate based hydrophilic support with conjugated octadecyl chain showed highest immobilized esterification (synthetic) activity for all three enzymes, and of the three R. miehei lipase displayed maximum esterification activity comparable to the commercial enzyme.  相似文献   

4.
Interest in lipases from microorganisms, animals, and plants has greatly increased in the past decade due to their applications in biotransformations and organic syntheses. We are reporting the purification and characterization of two lipases from the fungus, Ophiostoma piliferum, a saprophytic organism commonly found on wood. A major and a minor lipase have been co-purified by hydrophobic interaction chromatography on octyl sepharose FF, followed by ion exchange chromatography on Q sepharose FF. The lipases bound very tightly to octyl sepharose resulting in greater than 100-fold purification in this one step. The major lipase has a molecular weight of approximately 60 kDa, a pI of 3.79, and is glycosylated as determined by PAS staining. The minor lipase, which composes 10% of the total protein, has a pI of 3.6, and molecular weight of approximately 52 kDa and did not stain with the PAS reagent. Deglycosylation of the major lipase produced two proteins of lower molecular weight, a 55 kDa protein and a 52 kDa protein. The deglycosylated protein at 52 kDa co-migrates with the minor lipase on SDS-PAGE gels. N-terminal amino acid sequencing of the major and minor lipases indicated both lipases have the same N-termini and MALDI-TOF mass spectral analysis showed similar peptide patterns. Available data indicate that the lipases are derived from the same protein and appear to differ in their post-translational modification as evidenced by their pIs and molecular weight difference. The pH rate profile and thermal stability were determined for the purified O. piliferum lipase and were consistent with a mesophilic lipase. In aqueous solution, the lipases exhibited a higher rate of hydrolysis for p-nitrophenylbutyrate (C4) than for p-nitrophenylstearate (C18), which is an unexpected result.  相似文献   

5.
The fungal Rhizopus chinensis could produce several types of lipase, which were mainly intracellular. During the whole-cell lipase production by this strain in submerged fermentation, it was observed that two catalytic characteristics (hydrolytic and synthetic activity) of lipases were different with addition of lipids. The hydrolytic activity of the lipase was not induced by lipids efficaciously and could be detected regardless of whether substrate-related compounds were present. However, it was found that the induction of lipids for the synthetic activity lipase was significant, and that nearly no synthetic activity was detected while the medium contained no lipids. When only a little lipid (1 g/L) was added to medium, the synthetic activity increased sharply in the initial process of fermentation. Analysis of crude membrane-bound lipase by SDS-PAGE confirmed this induction. De novo biosynthesis of lipases, especially the lipase with synthetic activity occurred only when lipids existed. Cell growth and maltose repress the lipase production with synthetic activity, but have little influence on the lipase production with hydrolytic activity. Since the production process of mycelium-bound lipase with hydrolytic activity was different, it was reasonable to consider hydrolytic activity and synthetic activity for different application purposes. Whole-cell lipase obtained from fermentation process with high synthetic activity showed excellent catalytic ability in solvent free system on synthesis of ethylcaprylate and ethyloleate, the conversion could reach more than 90% in 5 h.  相似文献   

6.
7.
Lipase-catalyzed alcoholysis of triolein dissolved in ethanol or isopropanol for the formation of ethyl and isopropyl esters was investigated. Of 16 lipases screened, Amano lipase from P. fluorescens was selected for investigation of the effects of basic reaction conditions on alcoholysis yields. Ethanolysis yields were only slightly affected by water additions to immobilized lipase preparations. Isopropyl ester yields decreased with water addition. Good operational stability was observed over 17 days. Changes in initial triolein concentration in the range 5–50 mM had very little effect on ester yields. The ionic strength of the phosphate buffer used in lipase immobilization affected ethanolysis and isopropanolysis yields in opposite ways. The highest ethanolysis yields were obtained with lipases immobilized from 250 mM buffer, while isopropyl ester yields were highest with lipases immobilized from water. In addition, the quantities and isomers of monoglyceride intermediates in ethanolysis were affected by the immobilization buffer strength. Larger quantities of 2-monoglycerides were formed in ethanolysis reactions with lipase preparations immobilized from water.  相似文献   

8.
In the present study, porcine pancreatic lipase, rabbit gastric lipase, and human gastric lipase stereospecificity toward chemically alike, but sterically nonequivalent ester groups within one single triglyceride molecule was investigated. Lipolysis reactions were carried out on synthetic trioctanoin or triolein, which are homogenous, prochiral triglycerides, chosen as models for physiological lipase substrates. Diglyceride mixtures resulting from lipolysis were derivatized with optically active R-(+)-1-phenylethylisocyanate, to give diastereomeric carbamate mixtures, which were further separated by high performance liquid chromatography. Resolution of diastereomeric carbamates gave enantiomeric excess values, which reflect the lipases stereobias and clearly demonstrate the existence of a stereopreference by both gastric lipases for the sn-3 position. The stereoselectivity of human and rabbit gastric lipases, expressed as the enantiomeric excess percentage, was 54% and 70% for trioctanoin and 74% and 47% for triolein, respectively. The corresponding values with porcine pancreatic lipase were 3% in the case of trioctanoin and 8% in that of triolein. It is worth noting that rabbit gastric lipase, unlike human gastric lipase, became more stereoselective for the triglyceride with shorter acyl chains (trioctanoin). This is one of the most striking catalytic differences observed between these two gastric lipases.  相似文献   

9.
An extracellular lipase catalyzing the synthesis of macrocyclic lactones in anhydrous organic solvents was purified to homogeneity from Pseudomonas nov. sp. 109, and characterized. The lipase showed a pI of 5.3 on isoelectric focusing and a Mr of 29,000 +/- 1,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With respect to substrate specificity, optimum chain length for acyl moiety varied depending on the type of reaction catalyzed: C18 in monomer lactone formation, C11 or shorter in dimer lactone formation, and C8 in ester hydrolysis. The amino-terminal 19 amino acid residues of the purified lipase were determined as Ser-Thr-Tyr-Thr-Gln-Thr-Lys-Tyr-Pro-Ile-Val-Leu-Ala-His-Gly-Met-Leu-Gly- Phe, and the gene encoding the lipase was identified by hybridization to a synthetic 20-nucleotide probe, cloned, and sequenced. Nucleotide sequence analysis predicted a 311-amino acid open reading frame, a putative ribosome-binding site, and a 26-amino acid sequence at the amino terminus of the sequence that is not found in the mature protein. This 26-amino acid sequence has many of the characteristics common to known signal peptides. The lipase gene encoded a sequence of Val-Asn-Leu-Ile-Gly-His-Ser-His-Gly-Gly which is very well conserved among lipases, and showed 38-40% overall homology to the amino acid sequences of lipases from Pseudomonas fragie and Pseudomonas cepacia, but showed little homology to those of other lipases, suggesting that some structural features are required for catalyzing macrocyclic lactone synthesis in organic solvents and are restricted to lipases of the Pseudomonas origin.  相似文献   

10.
Lipase producing ability of 120 bacterial isolates was examined qualitatively, resulting in 32 lipase producers, which were further screened for 1,3-regiospecificity. Three Bacillus (GK-8, GK-31 and GK-42) and one Pseudomonas (GK-80) were found to produce 1,3-regiospecific lipases. These lipases were alkaline in nature as they showed pH optima of 9.0 and high stability in the alkaline pH range of 8.0–11.0. The lipases from three Bacillus isolates, viz. GK-8, GK-31 and GK-42 showed temperature optima of 37 °C, whereas the Pseudomonas (GK-80) lipase showed optimum activity at 50 °C. The lipase of GK-8 was highly stable and showed enhanced activity in different organic solvents like petroleum ether (172%), diethyl ether (143%) and acetone (135%).  相似文献   

11.
Two lipolytic proteins (61 and 57 kDa) present in a Sephadex G-100 fraction of extracellular lipase from Geotrichum candidum ATCC 66592 were separated using high-performance liquid chromatography. Crossed electrofocusing immunoelectrophoresis was used to demonstrate that the 61-kDa lipase fraction contained two forms of lipase with pI 4.5 and 4.7. However, when deglycosylated with endoglycosidase H, the two forms gained an identical pI, 4.6. The 57-kDa lipase fraction contained one form of lipase with pI close to 4.5. Although the 61- and 57-kDa lipases were immunologically identical, the substrate specificity differed. Thus, the 61-kDa lipase hydrolysed palmitic acid methyl ester at an initial velocity of hydrolysis that was 60% of the initial velocity of hydrolysis of oleic acid methyl ester, whereas the 57-kDa lipase hydrolysed palmitic acid methyl ester at an initial velocity of hydrolysis that was only 7% of the initial velocity of hydrolysis of oleic acid methyl ester.  相似文献   

12.
Two types of extracellular lipases (I and II) from Trichosporon fermentans WU-C12 were purified by acetone precipitation and successive chromatographies on Butyl-Toyopearl 650 M, Toyopearl HW-55F and Q-Sepharose FF. The molecular weight of lipase I was 53 kDa by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 160 kDa by gel filtration, while that of lipase II was 55 kDa by SDS-PAGE and 60 kDa by gel filtration. For the hydrolysis of olive oil, the optimum pH and temperature of both the lipases were 5.5 and 35°C, respectively. The lipases showed stable activities after incubation at 30°C for 24 h in a pH range from 4.0 to 8.0. The thermostability of lipase I for 30 min at a reaction pH of 5.5 was up to 40°C, while that of lipase II under the same conditions was up to 50°C. Both lipases could hydrolyze the 1-, 2-, and 3-positions of triolein, and cleave all three ester bonds, regardless of the position in the triglyceride.  相似文献   

13.
Mycelial lipase activity of the mould Rhizopus delemar was purified by gel filtration chromatography to three distinct proteins of notable lipase activity. The three enzymes were designated A′, B′ and C′, according to elution volumes from a Sephadex G150 column. The capacity of the three lipases to catalyse glyceride synthesis from free fatty acids and glycerol indicated a tendency towards short-chain and unsaturated fatty acids in preference to long-chain saturated fatty acids. The postional specificity of all lipases involved in such synthetic reactions indicated the formation of ester bonds at positions 1 and 3 of glycerol.  相似文献   

14.
Sterol homeostasis in eukaryotic cells relies on the reciprocal interconversion of free sterols and steryl esters. The formation of steryl esters is well characterized, but the mechanisms that control steryl ester mobilization upon cellular demand are less well understood. We have identified a family of three lipases of Saccharomyces cerevisiae that are required for efficient steryl ester mobilization. These lipases, encoded by YLL012/YEH1, YLR020/YEH2, and TGL1, are paralogues of the mammalian acid lipase family, which is composed of the lysosomal acid lipase, the gastric lipase, and four novel as yet uncharacterized human open reading frames. Lipase triple-mutant yeast cells are completely blocked in steryl ester hydrolysis but do not affect the mobilization of triacylglycerols, indicating that the three lipases are required for steryl ester mobilization in vivo. Lipase single mutants mobilize steryl esters to various degrees, indicating partial functional redundancy of the three gene products. Lipase double-mutant cells in which the third lipase is expressed from the inducible GAL1 promoter have greatly reduced steady-state levels of steryl esters, indicating that overexpression of any of the three lipases is sufficient for steryl ester mobilization in vivo. The three yeast enzymes constitute a novel class of membrane-anchored lipases that differ in topology and subcellular localization.  相似文献   

15.
Covalent immobilization of pure lipases A and B from Candida rugosa on agarose and silica is described. The immobilization increases the half-life of the biocatalysts ( ) with respect to the native pure lipases ( ). The percentage immobilization of lipases A and B is similar in both supports (33–40%). The remaining activity of the biocatalysts immobilized on agarose (70–75%) is greater than that of the enzymatic derivatives immobilized on SiO2 (40–50%). The surface area and the hydrophobic/hydrophilic properties of the support control the lipase activity of these derivatives. The thermal stability of the immobilized lipase A derivatives is greater than that of lipase B derivatives. The nature of the support influences the thermal deactivation profile of the immobilized derivatives. The immobilization in agarose (hydrophilic support) gives biocatalysts that show a greater initial specific reaction rate than the biocatalysts immobilized in SiO2 (hydrophobic support) using the hydrolysis of the esters of (R) or (S) 2-chloropropanoic and of (R,S) 2-phenylpropanoic acids as the reaction test. The enzymatic derivatives are active for at least 196 h under hydrolysis conditions. The stereospecificity of the native and the immobilized enzymes is the same.  相似文献   

16.
Several isoforms of rabbit and human gastric lipases have been purified. These isoforms have the same apparent molecular weight (Mr approximately 50,000), but very different isoelectric points. Some of these isoforms were purified: pI 7.2 and 6.5 in the case of rabbit gastric lipase; and pI 7.4 and 7.2 in that of human gastric lipase. All the purified isoforms were found to have the same specific lipase activity (around 1200 units per mg of protein, measured on tributyrin as substrate). The isoforms of dog gastric lipase are more closely related, and could not be separated. Partial enzymatic deglycosylation of human gastric lipase reduced the apparent molecular weight from Mr approximately 50,000 to Mr approximately 43,000 and induced a change in the isoelectrofocusing pattern and the emergence of a new isoform (pI 7.3). It is concluded that the charge heterogeneity of gastric lipases is at least partly due to the glycan moiety of the molecule, which amounts to approximately 14% of the total molecular weight. Several crystallization trials on purified native preparations of rabbit and human gastric lipases were unsuccessful, whereas crystals were obtained from native dog gastric lipase and all the purified isoforms of rabbit and human gastric lipases, some of which were crystallographically characterized.  相似文献   

17.
Summary Strains of Penicillium cyclopium and Rhizopus arrhizus secrete two extracellular lipases and contain an intracellular lipase. As these intracellular enzymes exhibited good synthetic activities in organic solvent, we designed a loop fixed-bed reactor for the continuous synthesis of esters. In a preliminary study we optimized the yield of ester synthesis using response surface methodology. With dodecanoic dodecyl ester as a model compound, the yields of ester synthesis were higher than 90%. It has been demonstrated that the reactor designed for this study is more efficient than a stirred batch reactor and more efficient than a fixed-bed reactor without a loop current or without a second catalytic column. In application, we have shown that lipases from R. arrhizus and P. cyclopium do not esterify tertiary alcohols like many lipases. Correspondence to: L. C. Comeau  相似文献   

18.
The cell-bound lipase from Rhizopus chinensis CCTCC M201021 with high catalysis ability for ester synthesis was located as a membrane-bound lipase by the treatments of Yatalase™ firstly. In order to improve its synthetic activity in non-aqueous phase, the pretreatments of this enzyme with various organic solvents were investigated. The pretreatment with isooctane improved evidently the lipase synthetic activity, resulting in about 139% in relative synthetic activity and 115% in activity recovery. The morphological changes of mycelia caused by organic solvent pretreatments could influence the exposure of the membrane-bound enzyme from mycelia and the exhibition of the lipase activity. The pretreatment conditions with isooctane and acetone were further investigated, and the optimum effect was obtained by the isooctane pretreatment at 4°C for 1 h, resulting in 156% in relative synthetic activity and 126% in activity recovery. When the pretreated lipases were employed as catalysts for the esterification production of ethyl hexanoate in heptane, higher initial reaction rate and higher final molar conversion were obtained using the lipase pretreated with isooctane, compared with the untreated lyophilized one. This result suggested that the pretreatment of the membrane-bound lipase with isooctane could be an effective method to substitute the lyophilization for preparing biocatalysts used in non-aqueous phase reactions.  相似文献   

19.
Although Candida rugosa utilizes a nonuniversal serine codon (CUG) for leucine, it is possible to express lipase genes (LIP) in heterologous systems. After replacing the 19 CUG codons in LIP4 with serine codons by site-directed mutagenesis, a recombinant LIP4 was functionally overexpressed in Pichia pastoris in this study. This recombinant glycosylated lipase was secreted into the culture medium with a high purity of 100 mg/liter in a culture broth. Purified recombinant LIP4 had a molecular mass of 60 kDa, showing a range similar to that of lipase in a commercial preparation. Since LIP4 has only a glycosylation site at position Asn-351, this position may also be the major glycosylation site in C. rugosa lipases. Although the thermal stability of recombinant LIP4 significantly increased from 52 to 58 degrees C after glycosylation, there were no significant differences in the catalytic properties of recombinant glycosylated lipase from P. pastoris and the unglycosylated one from Escherichia coil. These two recombinant LIP4s showed higher esterase activities toward long-chain ester (C16 and C18) and exhibited higher lipase activities toward unsaturated and long-chain lipids. In addition, LIP4 does not show interfacial activation as compared with LIP1 toward lipid substrates of tributyrin and triolein. These observations demonstrated that LIP4 shows distinguished catalytic activities with LIP1 in spite of their high sequence homology.  相似文献   

20.
An extracellular lipase was purified to homogeneity with a purification factor of 5.5-fold from a bacterial strain Serratia marcescens ECU1010. The purified lipase is a dimer with two homologous subunits, of which the molecular mass is 65 kDa, and the pI is 4.2. The pH and temperature optima were shown to be pH 8.0 and 45 °C, respectively. Among p-nitrophenyl esters of fatty acids with varied chain length, the lipase showed the maximum activity on p-nitrophenyl myristate (C14). The lipase was activated by some surfactants such as Gum Arabic, polyvinyl alcohol (PVA) and Pg350me, but not by Ca2+. The enzyme displayed pretty high stability in many water miscible and immiscible solvents. This is a unique property of the enzyme which makes it extremely suitable for chemo-enzymatic applications in non-aqueous phase organic synthesis including enantiomeric resolution. Several typical chiral compounds were tested for kinetic resolution with this lipase, consequently giving excellent enantioselectivities (E = 83 >100) for glycidyl butyrate (GB), 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one acetate (HMPCA), naproxen methyl ester (NME) and trans-3-(4′-methoxyphenyl) glycidic acid methyl ester (MPGM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号