首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleus lateralis posterior-pulvinar complex of the thalamus displays an integrative function. The efferent connections of this nuclear group were examined by the authors in the cat. In their work, they utilized also the earlier observations on the afferent connections of the nucleus. The nuclear complex projects to the associative fields encompassed by the visual- and the acoustic cortex without intruding into the primary cortical areas. On the other hand, its afferent connections are, apart from the associative field, also yielded by the primary visual and acoustic cortex. All this is completed by the reciprocal connections of the LP-pulvinar complex with the visual- and acoustic system, as well as between the associative areas of the cortex.  相似文献   

2.
The establishment of connectivity between specific thalamic nuclei and cortical areas involves a dynamic interplay between the guidance of thalamocortical axons and the elaboration of cortical areas in response to appropriate innervation. We show here that Sema6A mutants provide a unique model to test current ideas on the interactions between subcortical and cortical guidance mechanisms and cortical regionalization. In these mutants, axons from the dorsal lateral geniculate nucleus (dLGN) are misrouted in the ventral telencephalon. This leads to invasion of presumptive visual cortex by somatosensory thalamic axons at embryonic stages. Remarkably, the misrouted dLGN axons are able to find their way to the visual cortex via alternate routes at postnatal stages and reestablish a normal pattern of thalamocortical connectivity. These findings emphasize the importance and specificity of cortical cues in establishing thalamocortical connectivity and the spectacular capacity of the early postnatal cortex for remapping initial sensory representations.  相似文献   

3.
Cylindrical lesions (diameter 300-500 microns) were formed by poking needles into various parts of the cerebral cortex of adult albino rats. Degenerating axons were visualized in horizontal sections through the 'flattened' cortex using the silver impregnation method of Gallyas et al. [Stain Technol. 55: 291-297 (1980)] which stains degenerating axoplasm. The density and distribution of tangentially oriented axons were evaluated in the infragranular layers by TV image analysis. The sampling fields were concentrically arranged around the lesion at distances of 200, 400, 700 and 1,100 microns. The results indicate that the distribution patterns of degenerating (associational) axons covary with the cytoarchitectonic regions into which the lesions were placed. In the motor cortex, the majority of axons run in the antero-posterior direction. The density is generally lower around lesions in frontal regions than in parietal regions. The most extended degeneration was found around lesions near the border of or within the retrosplenial cortex, indicating an exceptionally strong internal connectivity in this area. Since only few degenerating axons were seen around lesions in the center of area 17, the high density of myelinated axons in the primary visual cortex seems to be due to fibers that originate in peristrate areas. It is concluded that the number and extension of fibers that degenerate tends to covary with some aspects of cortical architecture, but it is not area-specific.  相似文献   

4.
A hypothetical mechanism of the basal ganglia involvement in the occurrence of paradoxical sleep dreams and rapid eye movements is proposed. According to this mechanism, paradoxical sleep is provided by facilitation of activation of cholinergic neurons in the pedunculopontine nucleus as a result of suppression of their inhibition from the output basal ganglia nuclei. This disinhibition is promoted by activation of dopaminergic cells by pedunculopontine neurons, subsequent rise in dopamine concentration in the input basal ganglia structure. striatum, and modulation of the efficacy of cortico-striatal inputs. In the absence of signals from retina, a disinhibition of neurons in the pedunculopontine nucleus and superior colliculus allows them to excite neurons in the lateral geniculate body and other thalamic nuclei projecting to the primary and higher visual cortical areas, prefrontal cortex and back into the striatum. Dreams as visual images and "motor hallucinations" are the result of an increase in activity of definitely selected groups of thalamic and neocortical neurons. This selection is caused by modifiable action of dopamine on long-term changes in the efficacy of synaptic transmission during circulation of signals in closed interconnected loops, each of which includes one of the visual cortical areas (motor cortex), one of the thalamic nuclei, limbic and one of the visual areas (motor area) of the basal ganglia. pedunculopontine nucleus, and superior colliculus. Simultaneous modification and modulation of synapses in diverse units of neuronal loops is provided by PGO waves. Disinhibition of superioir colliculus neurons and their excitation by pedunculopontine nucleus lead to an appearance of rapid eye movements during paradoxical sleep.  相似文献   

5.

Background

Experience during early postnatal development plays an important role in the refinement of specific neural connections in the brain. In the mammalian visual system, altered visual experiences induce plastic adaptation of visual cortical responses and guide rearrangements of afferent axons from the lateral geniculate nucleus. Previous studies using visual deprivation demonstrated that the afferents serving an open eye significantly retract when cortical neurons are pharmacologically inhibited by applying a γ-aminobutyric acid type A receptor agonist, muscimol, whereas those serving a deprived eye are rescued from retraction, suggesting that presynaptic activity can lead to the retraction of geniculocortical axons in the absence of postsynaptic activity. Because muscimol application suppresses the spike activity of cortical neurons leaving transmitter release intact at geniculocortical synapses, local synaptic interaction may underlie the retraction of active axons in the inhibited cortex.

Method and Findings

New studies reported here determined whether experience-driven axon retraction can occur in the visual cortex inactivated by blocking synaptic inputs. We inactivated the primary visual cortex of kittens by suppressing synaptic transmission with cortical injections of botulinum neurotoxin type E, which cleaves a synaptic protein, SNAP-25, and blocks transmitter release, and examined the geniculocortical axon morphology in the animals with normal vision and those deprived of vision binocularly. We found that afferent axons in the animals with normal vision showed a significant retraction in the inactivated cortex, as similarly observed in the muscimol-treated cortex, whereas the axons in the binocularly deprived animals were preserved.

Conclusions

Therefore, the experience-driven axon retraction in the inactivated cortex can proceed in the absence of synaptic transmission. These results suggest that presynaptic mechanisms play an important role in the experience-driven refinement of geniculocortical axons.  相似文献   

6.
Neurons in the visual cortex receive input from the lateral geniculate nucleus (feed-forward), higher order visual areas (feedback) and local neurons in the surroundings (lateral interactions). Here we first briefly review the approximate timing and proportion of these three types of influences on the membrane potentials in visual areas 17, 18 and 19. Then we present original results from an independent component analysis of multiunit spike trains in the same visual areas to resolve the contribution from these three sources. We stimulated the visual cortex of the ferret with a small transient contrast square stimulus and recorded the multiunit activity in areas 17, 18 and 19 with single or multiple electrodes. The spike trains had three reproducible components having their maxima at 40, 55 and 105ms after the start of the presentation of the stimulus. The time course of the third component was significantly correlated with the population membrane potential in the supragranular layers of areas 17, 18 and 19. The first spike train component was interpreted as a feed-forward response, the second spike train component as driving the laterally spreading depolarization and the third spike train component as the firing caused by the lateral spreading- and the feedback depolarization.  相似文献   

7.
Cats were immobilized with D-tubocurarine. Responses of 231 neurons of the thalamic nucleus lateralis posterior to cortical stimulation in areas 5b and 21 of the suprasylvian gyrus were studied. Responses of 34 neurons were antidromic, indicating the existence of a direct projection of this nucleus to the cortical areas studied. This projection was most extensive in area 5b. The long latencies (up to 60 msec) of the antidromic responses of some neurons indicate that axons of certain neurons of thalamic nucleus lateralis posterior conduct excitation very slowly (0.3 m/sec). Orthodromic responses with latencies of 2–3 msec to cortical stimulation point to the presence of direct pathways from cortex to nucleus. The flow of afferent impulses into the nucleus from area 5b is stronger than from area 21. Convergence of impulses from these areas was observed on 44% of neurons of the nucleus. Cortical stimulation of areas 5b and 21 evoked postsynaptic inhibition in most neurons of the nucleus. It is concluded that two-way direct connections exist between nucleus lateralis posterior of the thalamus and the suprasylvian cortex.  相似文献   

8.
本文用出生前17周至36周胎儿标本10个,死后4小时内作常规灌注固定,取脑后作视皮质冰冻切片(30um),用一氧化氮合酶(NOS)组织化学法孵育切片2~4小时,在视皮质皮质下层(SP)可见NOS强阳性神经元。这些神经元胞体大小不一、形态各异、突起显示呈高尔基染色外观,部分神经纤维含有膨体和生长锥。20周以后,从SP层有NOS阳性神经纤维伸入皮质板或白质。随着胎龄增长,NOS阳性神经元密度增加,胞体切面积增大,神经元由幼稚趋向成熟。本研究还观察到胎儿SP内NOS阳性神经元可从形态上明显地划分为两个阶段,并推测NOS合成的一氧化氮(NO)在突触建立和修饰、突触间信息传递、传入纤维对靶器官的识别和脑组织局部血流调节等过程中起着重要作用。  相似文献   

9.
Visual and auditory projections to the cat caudate nucleus were investigated using the horseradish peroxidase retrograde axonal transport technique in conjunction with that of experimental degeneration of retinal axons. It was found that visual information may reach the caudate nucleus not just through well-known polysynaptic pathways from the cerebral cortex but also following oligosynaptic (transpulvinar, lateroposterior nucleus, suprageniculate nucleus, and nucleus limitans of the thalamus) as well as bisynaptic pathways (via the medial and lateral terminal nuclei of the accessory optical tract, pulvinar, pretectum, intermediary layer of the superior colliculus, and the supraoptic nucleus); some of these pathways were identified for the first time. Direct retinal inputs were found in the suprageniculate nucleus. Additional structures were discovered through which auditory information may reach the caudate nucleus, i.e., the dorsal nucleus of the parvocellular portion of the lateral geniculate body, the deep-lying superior colliculus, and the dorsal and ventral nuclei of the lateral lemniscus. The physiological significance of the pathways described for possible transmission of visual and auditory impulses is discussed and a new principle underlining the organization of sensory inputs into the caudate nucleus is put forward.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 512–520, July–August, 1987.  相似文献   

10.
Electrical responses to somatic, photic, and acoustic stimulation in the sensomotor, parietal, temporal, and occipital regions of the cortex were studied in the nucleus lateralis posterior and nucleus ventralis lateralis of the thalamus by recording averaged evoked potentials in kittens (aged 3 to 41 days) anesthetized with pentobarbital. A definite order of maturation of afferent inputs into cortical association areas was demonstrated. The parietal cortex was shown to become polysensory before the sensorimotor cortex. It is suggested that the nucleus lateralis posterior is the main thalamic nucleus responsible for conduction of visual information to the cortex in kittens during the first month of life. Incorporation of this nucleus into the system conducting somatic impulsation to the sensorimotor cortex takes place by the age of 3 weeks.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 476–482, September–October, 1982.  相似文献   

11.
Structural and ultrastructural changes in the frontal areas of the cortex and in the region of the globus pallidus were investigated after local and extensive destruction of the caudate nucleus. It was shown by the Fink-Heimer method that after local injury to the caudate nucleus by means of electrodes implanted 2–16 months before electrolytic destruction, only a few degenerating fibers of medium and thin caliber were present. Extensive destruction of the caudate nucleus (without preimplantation of electrodes) was followed by massive degeneration of fibers of different caliber in the frontal area of the cortex. After local injury to the caudate nucleus numerous thin degenerating axons 0.5–0.6 µ in diameter and degenerating terminals were found in the region of the globus pallidus. Degenerative changes in the axo-dendritic and axo-somatic terminals followed the "dark" type of course. It is concluded that no considerable direct projections of neurons of the caudate nucleus are present in the cortex. Degenerating fibers of average caliber in frontal areas of the cortex after destruction of the caudate nucleus are evidently axons of thalamic neurons and not from cells of the damaged nucleus.A. A. Bogomol'ets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 2, pp. 165–171, March–April, 1975.  相似文献   

12.
A hypothetical mechanism of the basal ganglia involvement in visual hallucinations is proposed. According to this mechanism, hallucination is the result of modulation of the efficacy of corticostriatal synaptic inputs and changes in spiny cell activity due to the rise of striatal dopamine concentration (or due to other reasons). These changes cause an inhibition of neurons in the substantia nigra pars reticulata and subsequent disinhibition of neurons in the superior colliculus and pedunculopontine nucleus (including its cholinergic cells). In the absence of afferentation from the retina this disinhibition leads to activation of neurons in the lateral geniculate nucleus, pulvinar and other thalamic nuclei projecting to the primary and highest visual cortical areas, prefrontal cortex, and also back to the striatum. Hallucinations as conscious visual patterns are the result of selection of signals circulating in several interconnected loops each of which includes one of above mentioned neocortical areas, one of thalamic nuclei, limbic and one of visual areas of the basal ganglia, superior colliculus and/or pedunculopontine nucleus. According to our model, cannabinoids, opioids and ketamine may lead to hallucinations due to their promotional role in the LTD of cortical inputs to GABAergic spiny cells of striatal striosomes projecting to dopaminergic neurons, disinhibition of the lasts, and increase in striatal dopamine concentration.  相似文献   

13.
Zhang H  Meng JJ  Wang K  Liu RL  Xi MM  Hua TM 《动物学研究》2012,33(2):218-224
心理物理学研究提示,初级视区毁损后的视觉残留可能是通过外纹状皮层的神经网络重组介导的,但缺少支持这一假说的电生理实验证据。采用在体细胞外单细胞记录技术,该研究分别检测了初级视区(主要包括17和18区)急性毁损猫和正常对照猫的高级视区(包括19、20和21区)神经元对不同视觉刺激的反应性。结果显示,与对照相比,急性毁损初级视区使99.3%的高级视区神经元丧失对运动光栅刺激的诱发反应,93%的神经元丧失对闪光刺激的反应。该结果表明,急性毁损成年猫的初级视皮层可能会导致其绝大部分视觉能力丧失。在幼年期实施初级视皮层毁损后,成年猫出现的残留视觉可能主要是由于手术后皮层下神经核团与外纹状皮层之间的通路重组引起的。  相似文献   

14.
Projections from the cerebral cortex are the major afferents of the caudoputamen and probably determine the functions subserved by each region of the nucleus. The corticostriatal system has been mapped using cytological techniques which give little information on the physiological importance of projections from individual cortical areas. The objective of this study was to characterize the three-dimensional topography of the corticostriatal system in the rat and to determine the physiological significance of these projections using electrophysiological techniques. Eight functionally distinct areas of the cerebral cortex (prefrontal, primary motor, rostral and caudal primary somatosensory, hindlimb, auditory, occipital and primary visual) were stimulated while recording the multiple unit activity in seven dorsal and seven ventral areas of the caudoputamen. Each stimulation site produced a distinctive pattern of activation within the caudoputamen. There was also a large site-dependent variation in electrophysiological activation produced by each stimulation. The motor and somatosensory areas produced the most powerful overall activation. In addition, a number of trends were obvious. There was a rostrocaudal topographical relationship between the site of stimulation and the area of the caudoputamen activated. Furthermore, more caudally and medially placed stimulation sites produced greater dorsal activation of the caudoputamen relative to ventral.  相似文献   

15.
The visual cortex in primates is parcellated into cytoarchitectonically, physiologically, and connectionally distinct areas: the striate cortex (V1) and the extrastriate cortex, consisting of V2 and numerous higher association areas [1]. The innervation of distinct visual cortical areas by the thalamus is especially segregated in primates, such that the lateral geniculate (LG) nucleus specifically innervates striate cortex, whereas pulvinar projections are confined to extrastriate cortex [2--8]. The molecular bases for the parcellation of the visual cortex and thalamus, as well as the establishment of reciprocal connections between distinct compartments within these two structures, are largely unknown. Here, we show that prospective visual cortical areas and corresponding thalamic nuclei in the embryonic rhesus monkey (Macaca mulatta) can be defined by combinatorial expression of genes encoding Eph receptor tyrosine kinases and their ligands, the ephrins, prior to obvious cytoarchitectonic differentiation within the cortical plate and before the establishment of reciprocal connections between the cortical plate and thalamus. These results indicate that molecular patterns of presumptive visual compartments in both the cortex and thalamus can form independently of one another and suggest a role for EphA family members in both compartment formation and axon guidance within the visual thalamocortical system.  相似文献   

16.
Projections from thalamic neurons to the visual (area 17) and parietal association cortex (area 7) were investigated in cats by means of retrograde axonal transport of fluorescent dyes. Pulvinar neurons may be divided into three groups on the basis of their connections with these areas: those projecting to area 7 (the largest (the largest group of cells), those projecting to area 17 (the smaller group), and others sending out axons to two cortical areas at the same time (a few isolated units). The two first groups only were found in the posterolateral thalamus. Divergence between axonal collaterals of pulvinar neurons may be responsible for parallel routes of information transmission to the visual and association cortex.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 513–520, July–August, 1990.  相似文献   

17.
The present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas. The coherence and Granger causality were applied to construct functional and effective connectivity matrices. These matrices were converted into graphs using a threshold, and the graph theory measures were calculated from it including degree and characteristic path length. Visual attention was found to reveal more information during the spatial-based task. The degree was higher while performing a spatial-based task, whereas characteristic path length was lower in the spatial-based task in both functional and effective connectivity. Primary and secondary visual cortex (17 and 18 Brodmann areas) were highly connected to parietal and prefrontal cortex while doing visual attention task. Whole brain connectivity was also calculated in both functional and effective connectivity. Our results reveal that Brodmann areas of 17, 18, 19, 46, 3 and 4 had a significant role proving that somatosensory, parietal and prefrontal regions along with visual cortex were highly connected to other parts of the cortex during the visual attention task. Characteristic path length results indicated an increase in functional connectivity and more functional integration in spatial-based attention compared with feature-based attention. The results of this work can provide useful information about the mechanism of visual attention at the network level.  相似文献   

18.
The results of recent experiments have thrown new light on the neuronal connections underlying orientation-selective responses in the primary visual cortex of adult animals. The pattern of afferent input from the lateral geniculate nucleus to the cortex appears to be specific for orientation, while intracortical inhibitory connections appear to be non-specific in this respect. Experimental and theoretical studies have suggested that the development of cortical cell orientation tuning is an activity-dependent process.  相似文献   

19.
In experiments on curarized cats unit responses in the dorsal lateral geniculate body to stimulation of various zones in area 17 of the visual cortex were analyzed. Of all cells tested 69% were found to respond antidromically and 8% orthodromically; in 7.6% of cells IPSPs occurred either after an initial antidromic spike or without it. The velocities of conduction of excitation along the corticopetal fibers of the optic radiation varied from 28 to 4.3 m/sec, but the three commonest groups of fibers had conduction velocities of 28–19, 14–12, and 10–9.5 m/sec. A difference between latent periods of antidromic responses of the same neurons was found to stimulation of different zones of the visual cortex; this indicates that axons of geniculo-cortical fibers split into several branches which form contacts with several neurons in area 17 of the visual cortex. The degree and possible mechanisms of cortical influences on neurons of the lateral geniculate body are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 243–249, May–June, 1976.  相似文献   

20.
Eye movements evoked by local electrical stimulation of the dorsal nucleus of the lateral geniculate body were analyzed after removal of the visual cortex and in intact animals during trials on awake cats. No significant difference was observed between the eye movement patterns of the two animal groups evoked by electrical stimulation. These movements could be classed into three main groups: those unassociated with the starting position of the eyes in orbit (or unidirectional movements), goal-directed, and centered movements, with direction depending on the initial position of the eyes in their orbits. Our findings indicate that the cortical visual areas are neither the principal nor an indispensable link in the chain for transmitting signals evoked by (electrically) stimulating the geniculate body from the cortical structures of the direct visual pathway towards the operative links of the oculomotor system. Potential pathways for conducting information from the dorsal nucleus of the lateral geniculate body to oculomotor system structures are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 164–170, March–April, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号