首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A broad-host-range vibriophage, KVP40, was isolated from sea water by using Vibrio parahaemolyticus 1010 (EB101) as the indicator host. The host range of KVP40 extended over at least 8 Vibrio and 1 Photobacterium species. KVP40 was a large tailed phage containing double-stranded DNA and belonged to Ackermann's morphotype A2. KVP40 DNA was cleaved by 11 different type II restriction endonucleases including EcoRI and HindIII, but not by 17 other enzymes including BamHI, KpnI and SalI.  相似文献   

2.
3.
A broad-host-range vibriophage KVP40 originally isolated on Vibrio parahaemolyticus 1010 was restricted and modified by strains of at least five Vibrio and one Photobacterium species. 1010 was a non-restricting host. An anti-restriction mutant KVP40 aar1 was isolated after propagating the phage on a restricting host, V. anguillarum VIB36. KVP40 aar1 grown on either 1010 or VIB36, as well as the parental phage grown on VIB36, showed much higher efficiencies of plating on all the restricting hosts as compared with the parental phage grown on 1010, indicating that these restricting hosts probably share a common restriction-modification system active in vivo on KVP40.  相似文献   

4.
Abstract KVP40 is a broad-host-range vibriophage forming plaques on strains of at least eight Vibrio and one Photobacterium species. A spontaneous KVP40-resistant mutant, R4000, derived from Vibrio parahaemolyticus 1010 lacked a 26-kDa outer membrane protein designated OmpK. KVP40 was inactivated by outer membrane and OmpK prepared from 1010, but not by outer membrane from R4000. These results strongly suggest that OmpK is the receptor for KVP40. Immunoblotting analyses using an anti-OmpK rabbit serum revealed that OmpK or its homologs of molecular masses 25–29 kDa were distributed widely among Vibrio and Photobacterium strains including those naturally resistant to KVP40.  相似文献   

5.
In this study, the relative synonymous codon and amino acid usage biases of the broad-host range phage, KVP40, were investigated in an attempt to understand the structure and function of its proteins/protein-coding genes, as well as the role of its tRNAs. Synonymous codons in KVP40 were determined to be ATrich at the third codon positions, and their variations are dictated principally by both mutational bias and translational selection. Further analysis revealed that the RSCU of KVP40 is distinct from that of its Vibrio hosts, V. cholerae and V. parahaemolyticus. Interestingly, the expression of the putative highly expressed genes of KVP40 appear to be preferentially influenced by the abundant host tRNA species, whereas the tRNAs expressed by KVP40 may be required for the efficient synthesis of all its proteins in a diverse array of hosts. The data generated in this study also revealed that KVP40 proteins are rich in low molecular weight amino acid residues, and that these variations are influenced primarily by hydropathy, mean molecular weight, aromaticity, and cysteine content.  相似文献   

6.
7.
Vibrio anguillarum is an important pathogen in marine aquaculture, responsible for vibriosis. Bacteriophages can potentially be used to control bacterial pathogens; however, successful application of phages requires a detailed understanding of phage-host interactions under both free-living and surface-associated growth conditions. In this study, we explored in vitro phage-host interactions in two different strains of V. anguillarum (BA35 and PF430-3) during growth in microcolonies, biofilms, and free-living cells. Two vibriophages, ΦH20 (Siphoviridae) and KVP40 (Myoviridae), had completely different effects on the biofilm development. Addition of phage ΦH20 to strain BA35 showed efficient control of biofilm formation and density of free-living cells. The interactions between BA35 and ΦH20 were thus characterized by a strong phage control of the phage-sensitive population and subsequent selection for phage-resistant mutants. Addition of phage KVP40 to strain PF430-3 resulted in increased biofilm development, especially during the early stage. Subsequent experiments in liquid cultures showed that addition of phage KVP40 stimulated the aggregation of host cells, which protected the cells against phage infection. By the formation of biofilms, strain PF430-3 created spatial refuges that protected the host from phage infection and allowed coexistence between phage-sensitive cells and lytic phage KVP40. Together, the results demonstrate highly variable phage protection mechanisms in two closely related V. anguillarum strains, thus emphasizing the challenges of using phages to control vibriosis in aquaculture and adding to the complex roles of phages as drivers of prokaryotic diversity and population dynamics.  相似文献   

8.
KVP40 is a T4-related phage, composed of 386 open reading frames (ORFs), that has a broad host range. Here, we overexpressed, purified, and biophysically characterized two of the proteins encoded in the KVP40 genome, namely, gp5 and ORF334. Homology-based comparison between KVP40 and its better-characterized sister phage, T4, was used to estimate the two KVP40 proteins' functions. KVP40 gp5 shared significant homology with T4 gp5 in the N- and C-terminal domains. Unlike T4 gp5, KVP40 gp5 lacked the internal lysozyme domain. Like T4 gp5, KVP40 gp5 was found to form a homotrimer in solution. In stark contrast, KVP40 ORF334 shared no significant homology with any known proteins from T4-related phages. KVP40 ORF334 was found to form a heterohexamer with KVP40 gp5 in solution in a fashion nearly identical to the interaction between the T4 gp5 and gp27 proteins. Electron microscope image analysis of the KVP40 gp5-ORF334 complex indicated that it had dimensions very similar to those of the T4 gp5-gp27 structure. On the basis of our biophysical characterization, along with positional genome information, we propose that ORF334 is the ortholog of T4 gp27 and that it plays the role of a linker between gp5 and the phage baseplate.  相似文献   

9.
Twenty bacteriophages active against Vibrio parahaemolyticus and agar-digesting vibrios, isolated from oysters (Crassostrea gigas) and Dungeness crab (Cancer magister) and by induction of a lysogenic agar digester, were tested as to their host range. These phages were specific for V. parahaemolyticus and various agar-digesting vibrios, and interspecies lysis occurred only between these two groups. V. alginolyticus, V. anguillarum and related species, V. cholerae, and a group of marine psychrophilic and psychrotrophic vibrios were not affected. No correlation was observed between the O and K serotypes of V. parahaemolyticus strains and bacteriophage susceptibility patterns, and 7 of 28 strains of V. parahaemolyticus were not lysed by any of the phages. Only two of the phage isolates were capable of lysing all susceptible V. parahaemolyticus strains. No correlation was observed between the inter-and intraspecies genetic relatedness (DNA homologies) of V. parahaemolyticus and agar-digesting vibrios and susceptibility patterns to different bacteriophages. Some of the phages were capable of plaque formation on V. parahaemolyticus as well as on some strains of agar-digesting vibrios that were separated by 70 to 80% differences in their DNA homologies. The possible ecological significance of these vibrio bacteriophages, particularly those having a wide host range, is discussed.  相似文献   

10.
11.
Phage TP1, induced from Vibrio parahaemolyticus K-20 pilot strain by mitomycin C, exhibited a unique hexagonal head with knob-like projections which covered the whole capsid and a noncontractile tail. The appearance of this phage was very similar to those of phages VP3 and VP6, isolated from seawater. The host range of phage TP1 was similar to those of phages VP3 and VP6. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the three phage particles revealed almost identical patterns with four major polypeptides with apparent approximate molecular masses: 78, 42, 37 and 34.5 kDa. On the basis of HindIII digestion patterns on agarose gel electrophoresis, the lengths of phage TP1 and VP3 DNAs were estimated to be about 65 kilobase pairs (kbp) and that of VP6 DNA was about 74 kbp. The digestion patterns of all three phage DNAs by DraI, BamHI and MspI were very similar. The DNAs of TP1 and VP3 exhibited almost the same digestion patterns with HindIII and EcoRI, whereas the digestion patterns of VP6 DNA were significantly different from those of the former. From these findings, it seems likely that virulent phage VP3 is originated from a lysogenic phage, probably TP1, of V. parahaemolyticus.  相似文献   

12.
研究旨在筛选烈性噬菌体, 为副溶血弧菌(Vibrio parahaemolyticus, Vp)病害防控增加新的选择。以副溶血弧菌Vp13为宿主菌, 通过二层琼脂平板法筛选, 分离到了2株烈性噬菌体SX-2和SX-F。对其形态结构进行了透射电镜观察, 利用DNase I、 RNase A、Mung Bean Nuclease和Hind Ш酶进行噬菌体核酸类型鉴定, 并对噬菌体的裂解谱、最佳感染复数、一步生长曲线进行了测定。透射电镜观察结果显示: SX-2核衣壳头部长约110 nm, 宽约50 nm, 尾部长约150 nm, 宽约10 nm, 为典型的复合体制; SX-F核衣壳呈正六边形, 长约为56.86 nm,宽约50.74 nm, 未观察到尾部, 推测为正二十面体对称; 核酸测定结果显示两者均为线性双链DNA。依据国际病毒分类委员会第九次报告, SX-2符合肌尾噬菌体科特征, SX-F符合盖噬菌体科特征。噬菌体SX-2和SX-F对85株弧菌裂解结果显示: 噬菌体SX-2能够裂解23株副溶血弧菌和1株溶藻弧菌(Vibrio alginolyticus), 噬菌体SX-F能够裂解19株副溶血弧菌和1株溶藻弧菌。SX-2和SX-F的最佳感染复数均为0.0001。一步生长曲线结果显示: SX-F的潜伏期约10min, 裂解期约70min, 裂解量为116.2; 噬菌体SX-2的潜伏期小于10min, 裂解期大约70min, 裂解量为209.3。两株噬菌体生物学特性表明SX-2与SX-F均为烈性噬菌体, 这为进一步探讨噬菌体防治技术奠定了基础。  相似文献   

13.
Abstract The ompK gene of Vibrio parahaemolyticus 1010 (RIMD 2210001) encoding an outer membrane protein (OMP), OmpK, which serves as the receptor for a broad-host-range vibriophage, KVP40, was cloned and sequenced. The gene consisted of 789 nucleotides encoding 263 amino acids. Since the first 20 amino acids most likely constitute the signal peptide, mature OmpK would consist of 243 amino acids with a calculated molecular mass of 27458 Da. Sequence comparisons indicate that OmpK is unique among Vibrio OMPs so far sequenced, but may be distantly related to Tsx of enteric bacteria and is homologous to an Aeromonas hydrophila OMP, protein IV.  相似文献   

14.
Two coliphages, AR1 and LG1, were characterized based on their morphological, host range, and genetic properties. Transmission electron microscopy showed that both phages belonged to the Myoviridae; phage particles of LG1 were smaller than those of AR1 and had an isometric head 68 nm in diameter and a complex contractile tail 111 nm in length. Transmission electron micrographs of AR1 showed phage particles consisting of an elongated isometric head of 103 by 74 nm and a complex contractile tail 116 nm in length. Both phages were extensively tested on many strains of Escherichia coli and other enterobacteria. The results showed that both phages could infect many serotypes of E. coli. Among the enterobacteria, Proteus mirabilis, Shigella dysenteriae, and two Salmonella strains were lysed by the phages. The genetic material of AR1 and LG1 was characterized. Phage LG1 had a genome size of 49.5 kb compared to 150 kb for AR1. Restriction endonuclease analysis showed that several restriction enzymes could degrade DNA from both phages. The morphological, genome size, and restriction endonuclease similarities between AR1 and phage T4 were striking. Southern hybridizations showed that AR1 and T4 are genetically related. The wide host ranges of phages AR1 and LG1 suggest that they may be useful as biocontrol, therapeutic, or diagnostic agents to control and detect the prevalence of E. coli in animals and food.  相似文献   

15.
Some Properties of Five New Salmonella Bacteriophages   总被引:5,自引:2,他引:3       下载免费PDF全文
Five bacteriophages were isolated from lysogenic strains of Salmonella potdam. On the basis of plaque morphology, thermostability, serology, host range, one-step growth parameters, and phage morphology, they were divided into three groups: group A, phages P4 and P9c; group B, phages P3 and P9a; and group C, phage P10. Group A phages had a hexagonal head 55 nm in diameter with a short tail 15 nm long. These phages were particularly characterized by high thermostability, lack of serological relationship with any of the other phages, and restriction of lysis to other Salmonella strains of Kauffmann-White group C(1). Group B phages had a head identical in size and shape to that of the A phages, but they possessed a tail 118 nm long with a contractile sheath. A unique feature was the occurrence of tail fibers at the end of the core rather than at the base of the sheath. These phages were considerably less thermostable, had extended host ranges, and were serologically distinct from each other but unrelated to the A phages. The group C phage, P10, had a head identical to that of the A and B phages. It had a tail 95 nm in length, with tail fibers attached to a base plate at the end of a contractile sheath. P10 was highly sensitive to heat, lysed only smooth strains of Salmonella, and showed a degree of serological relationship to both B phages. The relationship of these phage groups to previous Salmonella phage grouping schemes is discussed.  相似文献   

16.
A set of 83 lytic dairy bacteriophages (phages) infecting flavor-producing mesophilic starter strains of the Leuconostoc genus was characterized, and the first in-depth taxonomic scheme was established for this phage group. Phages were obtained from different sources, i.e., from dairy samples originating from 11 German dairies (50 Leuconostoc pseudomesenteroides [Ln. pseudomesenteroides] phages, 4 Ln. mesenteroides phages) and from 3 external phage collections (17 Ln. pseudomesenteroides phages, 12 Ln. mesenteroides phages). All phages belonged to the Siphoviridae family of phages with isometric heads (diameter, 55 nm) and noncontractile tails (length, 140 nm). With the exception of one phage (i.e., phage ΦLN25), all Ln. mesenteroides phages lysed the same host strains and revealed characteristic globular baseplate appendages. Phage ΦLN25, with different Y-shaped appendages, had a unique host range. Apart from two phages (i.e., phages P792 and P793), all Ln. pseudomesenteroides phages shared the same host range and had plain baseplates without distinguishable appendages. They were further characterized by the presence or absence of a collar below the phage head or by unique tails with straight striations. Phages P792 and P793 with characteristic fluffy baseplate appendages could propagate only on other specific hosts. All Ln. mesenteroides and all Ln. pseudomesenteroides phages were members of two (host species-specific) distinct genotypes but shared a limited conserved DNA region specifying their structural genes. A PCR detection system was established and was shown to be reliable for the detection of all Leuconostoc phage types.  相似文献   

17.
Two coliphages, AR1 and LG1, were characterized based on their morphological, host range, and genetic properties. Transmission electron microscopy showed that both phages belonged to the Myoviridae; phage particles of LG1 were smaller than those of AR1 and had an isometric head 68 nm in diameter and a complex contractile tail 111 nm in length. Transmission electron micrographs of AR1 showed phage particles consisting of an elongated isometric head of 103 by 74 nm and a complex contractile tail 116 nm in length. Both phages were extensively tested on many strains of Escherichia coli and other enterobacteria. The results showed that both phages could infect many serotypes of E. coli. Among the enterobacteria, Proteus mirabilis, Shigella dysenteriae, and two Salmonella strains were lysed by the phages. The genetic material of AR1 and LG1 was characterized. Phage LG1 had a genome size of 49.5 kb compared to 150 kb for AR1. Restriction endonuclease analysis showed that several restriction enzymes could degrade DNA from both phages. The morphological, genome size, and restriction endonuclease similarities between AR1 and phage T4 were striking. Southern hybridizations showed that AR1 and T4 are genetically related. The wide host ranges of phages AR1 and LG1 suggest that they may be useful as biocontrol, therapeutic, or diagnostic agents to control and detect the prevalence of E. coli in animals and food.  相似文献   

18.
A filamentous phage, 'lvpf5,' of Vibrio parahaemolyticus O3:K6 strain LVP5 was isolated and characterized. The host range was not restricted to serotype O3:K6, but 7 of 99 V. parahaemolyticus strains with a variety of serotypes were susceptible to the phage. The phage was inactivated by heating at 80 C for 10 min and by treating with chloroform. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the phage exhibited a 3.8 kDa protein. The amino-terminal amino acid sequence of the coat protein was determined as AEGGAADPFEAIDLLGVATL. The phage genome consisted of a single-stranded DNA molecule. The activity of the phages was inhibited by anti-Na2 pili antibody.  相似文献   

19.
20.
We examined a number of bacteriophages with T4-type morphology that propagate in different genera of enterobacteria, Aeromonas, Burkholderia, and Vibrio. Most of these phages had a prolate icosahedral head, a contractile tail, and a genome size that was similar to that of T4. A few of them had more elongated heads and larger genomes. All these phages are phylogenetically related, since they each had sequences homologous to the capsid gene (gene 23), tail sheath gene (gene 18), and tail tube gene (gene 19) of T4. On the basis of the sequence comparison of their virion genes, the T4-type phages can be classified into three subgroups with increasing divergence from T4: the T-evens, pseudoT-evens, and schizoT-evens. In general, the phages that infect closely related host species have virion genes that are phylogenetically closer to each other than those of phages that infect distantly related hosts. However, some of the phages appear to be chimeras, indicating that, at least occasionally, some genetic shuffling has occurred between the different T4-type subgroups. The compilation of a number of gene 23 sequences reveals a pattern of conserved motifs separated by sequences that differ in the T4-type subgroups. Such variable patches in the gene 23 sequences may determine the size of the virion head and consequently the viral genome length. This sequence analysis provides molecular evidence that phages related to T4 are widespread in the biosphere and diverged from a common ancestor in acquiring the ability to infect different host bacteria and to occupy new ecological niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号