首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Globoid cell leukodystrophy (Krabbe disease) is an inherited neurological disorder caused by the pathogenomic accumulation of psychosine (galactosylsphingosine), a substrate for the deficient enzyme galactocerebroside beta-galactosidase. This study underscores the mechanism of action of psychosine in the regulation of oligodendrocyte cell death via the generation of lysophosphatidylcholine (LPC) and arachidonic acid (AA) by the activation of secretory phospholipase A2 (sPLA2). There was a significant increase in the level of LPC, indicating a phospholipase A2 (PLA2)-dependent pathobiology, in the brains of Krabbe disease patients and those of twitcher mice, an animal model of Krabbe disease. In vitro studies of the treatment of primary oligodendrocytes and the oligodendrocyte MO3.13 cell line with psychosine also showed the generation of LPC and the release of AA in a dose- and time-dependent manner, indicating psychosine-induced activation of PLA2. Studies with various pharmacological inhibitors of cytosolic phospholipase A2 and sPLA2 and psychosine-mediated induction of sPLA2 enzymatic activity in media supernatant suggest that psychosine-induced release of AA and generation of LPC is mainly contributed by sPLA2. An inhibitor of sPLA2, 7,7-dimethyl eicosadienoic acid, completely attenuated the psychosine-mediated accumulation of LPC levels, release of AA, and generation of reactive oxygen species, and blocked oligodendroyte cell death, as evident from cell survival, DNA fragmentation, and caspase 3 activity assays. This study documents for the first time that psychosine-induced cell death is mediated via the sPLA2 signaling pathway and that inhibitors of sPLA2 may hold a therapeutic potential for protection against oligodendrocyte cell death and resulting demyelination in Krabbe disease.  相似文献   

2.
3.
Globoid cell leukodystrophy or Krabbe disease (KD), is a hereditary disorder caused by galactosylceramidase deficiency. Progressive accumulation of psychosine is considered to be the critical pathogenetic mechanism of cell death in the Krabbe brain. Psychosine mechanism of action has not been fully elucidated. It seems to induce apoptosis in oligodendrocytes through a mitochondrial pathway and to up-regulate inflammatory cytokines production resulting in oligodendrocyte loss. Our aim was to evaluate the role of psychosine in apoptotic cell death and inflammatory response in a group of patients affected by KD using peripheral blood lymphocytes (PBLs) and peripheral blood mononuclear cells (PBMCs) as a cellular model. PBLs from KP and healthy controls were exposed to 20 microM psychosine and analysed by flow cytometry, agarose gel electrophoresis and fluorescence microscopy. Our results showed that psychosine induces apoptosis in PBLs through a mitochondrial pathway, but the apoptotic response was quite low especially KP. The role of psychosine in the up-regulation of cytokines (TNFalpha, IL8 and MCP1) has been evaluated by ELISA in PBMCs from KP and controls after stimulation with LPS and phytohemagglutinin. Both in basal condition and after LPS stimulation, cells from KP showed a significant increase in TNF-alpha production, reduced MCP1 levels and no modification in IL8. These results indicate that lymphomonocytes from KP had a basal proinflammatory pattern that was amplified by psychosine. In conclusion, the reduced apoptotic response and the atypical cytokine production observed in our experiments, suggest an involvement of inflammatory pattern in immune peripheral cells of KP.  相似文献   

4.
The plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (Lo or lipid raft) and more disordered (Ld) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the Lo and Ld domains in living cells on account of its large fluorescence lifetime variation in the two phases. The domain composition is straightforwardly obtained by the phasor approach to confocal fluorescence lifetime imaging, a graphical method that does not require global fitting of the fluorescence decay in every spatial position of the sample. Our imaging strategy was applied to recover the domain composition in human oligodendrocytes at rest and under treatment with galactosylsphingosine (psychosine). Exogenous psychosine administration recapitulates many of the molecular fingerprints of a severe neurological disease, globoid cell leukodystrophy, better known as Krabbe disease. We found out that psychosine progressively destabilizes plasma membrane, as witnessed by a shrinking of the Lo fraction. The unchanged levels of galactosyl ceramidase, i.e., the enzyme lacking in Krabbe disease, upon psychosine treatment suggest that psychosine alters the plasma membrane structure by direct physical effect, as also recently demonstrated in model membranes.  相似文献   

5.
The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.  相似文献   

6.
Infantile Krabbe disease results in the accumulation of lipid-raft-associated galactosylsphingosine (psychosine), demyelination, neurodegeneration and premature death. Recently, axonopathy has been depicted as a contributing factor in the progression of neurodegeneration in the Twitcher mouse, a bona fide mouse model of Krabbe disease. Analysis of the temporal-expression profile of MBP (myelin basic protein) isoforms showed unexpected increases of the 14, 17 and 18.5 kDa isoforms in the sciatic nerve of 1-week-old Twitcher mice, suggesting an abnormal regulation of the myelination process during early postnatal life in this mutant. Our studies showed an elevated activation of the pro-apoptotic protease caspase 3 in sciatic nerves of 15- and 30-day-old Twitcher mice, in parallel with increasing demyelination. Interestingly, while active caspase 3 was clearly contained in peripheral axons at all ages, we found no evidence of caspase accumulation in the soma of corresponding mutant spinal cord motor neurons. Furthermore, active caspase 3 was found not only in unmyelinated axons, but also in myelinated axons of the mutant sciatic nerve. These results suggest that axonal caspase activation occurs before demyelination and following a dying-back pattern. Finally, we showed that psychosine was sufficient to activate caspase 3 in motor neuronal cells in vitro in the absence of myelinating glia. Taken together, these findings indicate that degenerating mechanisms actively and specifically mediate axonal dysfunction in Krabbe disease and support the idea that psychosine is a pathogenic sphingolipid sufficient to cause axonal defects independently of demyelination.  相似文献   

7.
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) is an activator of AMP activated protein kinase (AMPK) and a regulator of de novo purine synthesis. There are several earlier reports indicating that AICAR treatment suppresses cell growth via regulation of AMPK or de novo purine synthesis. We found cell growth to be suppressed by AICAR treatment in HepG2 because of p53 accumulation, which was associated with p53-Ser15 phosphorylation. Moreover, a motif very similar to the consensus motif of AMPK phosphorylation was found around p53-Ser15, and Ser15 phosphorylation was detected in AICAR treated HepG2 as was in vitro phosphorylation by AMPK. Our results suggest that AICAR may regulate cell growth via p53 phosphorylation, and also indicate the possibility of p53 phosphorylation.  相似文献   

8.
While transplanted neural stem cells (NSCs) have been shown to hold promise for cell replacement in models of a number of neurological disorders, these examples have typically been under conditions where the host cells become dysfunctional due to a cell autonomous etiology, i.e. a 'sick' cell within a relatively supportive environment. It has long been held that cell replacement in a toxic milieu would not likely be possible; donor cells would succumb in much the same way as endogenous cells had. Many metabolic diseases are characterized by this situation, suggesting that they would be poor targets for cell replacement therapies. On the other hand, models of such diseases could prove ideal for testing the capacity for cell replacement under such challenging conditions. In the twitcher (twi ) mouse -- as in patients with Krabbe or globoid cell leukodystrophy (GLD), for which it serves as an authentic model -- loss of galactocerebrosidase (GalC) activity results in the accumulation of psychosine, a toxic glycolipid. Twi mice, like children with GLD, exhibit inexorable neurological deterioration presumably as a result of dysfunctional and ultimately degenerated oligodendrocytes with loss of myelin. It is believed that GLD pathophysiology is related to a psychosine-filled environment that kills not only host oligodendrocytes but theoretically any new cells placed into that milieu. Through the implantation of NSCs into the brains of both neonatal and juvenile/young adult twi mice, we have determined that widespread oligodendrocyte replacement and remyelination is feasible. NSCs appear to be intrinsically resistant to psychosine -- more so in their undifferentiated state than when directed ex vivo to become oligodendrocytes. This resistance can be enhanced by engineering the NSCs to over-express GalC. Some twi mice grafted with such engineered NSCs had thicker white tracts and lived 2-3 times longer than expected. While their brains had detectable levels of GalC, it was probably more significant that their psychosine levels were lower than in twi mice that died at a younger age. This concept of resistance based on differentiation state extended to human NSCs which could similarly survive within the twi brain. Taken together, these results suggest a number of points regarding cellular therapies against degenerative diseases with a prominent cell non-autonomous component: Cell replacement is possible if cells resistant to the toxic environment are employed. Furthermore, an important aspect of successful treatment will likely be not only cell replacement but also cross-correction of host cells to provide them with enzyme activity and hence resistance. While oligodendrocyte replacement alone was not a sufficient treatment for GLD (even when extensive), the replacement of both cells and molecules -- e.g. with NSCs that could both become oligodendrocytes and 'pumps' for GalC -- emerges as a promising basis for a multidisciplinary strategy. Most neurological disease are complex in this way and will likely require multifaceted approaches, perhaps with NSCs serving as the 'glue'.  相似文献   

9.
Twenty five years ago in 1972, a hypothesis was introduced to explain the pathogenetic mechanism underlying the unusual cellular and biochemical characteristics of globoid cell leukodystrophy (Krabbe disease). It postulated that galactosylsphingosine (psychosine), which cannot be degraded due to the underlying genetic defect, is responsible for the very rapid loss of the oligodendrocytes and the consequent paradoxical analytical finding, the lack of accumulation of the primary substrate, galactosylceramide, in patients' brain. It took nearly ten years before the actual accumulation of psychosine was demonstrated in human Krabbe patients and also in the brain of twitcher mice, an equivalent murine mutant. Meanwhile this psychosine hypothesis has been extended to Gaucher disease and then to a more general hypothesis encompassing all sphingolipidoses that the lyso-derivatives of the primary sphingolipid substrates of the defective enzymes in respective disorders play a key role in their pathogenesis. Some of these extensions not only remain speculative without conclusive factual evidence but may eventually turn out to be an overstretching. This article attempts, from my personal perspective, at tracing historical development of the psychosine hypothesis and examining its current status and possible future directions.  相似文献   

10.

Background

AMP-activated protein kinase (AMPK) is an important enzyme in regulation of cellular energy homeostasis. We have previously shown that AMPK activation by 5-aminoimidazole-4-carboxamide (AICAR) results in suppression of immune responses, indicating the pivotal role of AMPK in immune regulation. However, the cellular mechanism underpinning AMPK inhibition on immune response remains largely to be elucidated. The study aimed to investigate the effects of AMPK inhibition on reactive oxygen species (ROS)-nuclear factor κB (NFκB) signaling and endotoxemia-induced liver injury.

Methodology/Principal Findings

RAW 264.7 cells were pretreated with AMPK activator or inhibitor, followed by LPS challenge. In addition, LPS was injected intraperitoneally into mice to induce systemic inflammation. The parameters of liver injury and immune responses were determined, and survival of mice was monitored respectively. LPS challenge in RAW 264.7 cells resulted in AMPK activation which was then inhibited by compound C treatment. Both AMPK activation by AICAR or inhibition by compound C diminished LPS-induced ROS generation, inhibited phosphorylation of IKK, IκB, and NFκB p65, and consequently, decreased TNF production of RAW 264.7 cells. AICAR or compound C treatment decreased ALT, AST, and TNF levels in serum, reduced CD68 expression and MPO activity in liver tissue of mice with endotoxemia. Moreover, AICAR or compound C treatment improved survival of endotoxemic mice.

Conclusions

AICAR or compound C treatment attenuates LPS-induced ROS-NFκB signaling, immune responses and liver injury. Strategies to activate or inhibit AMPK signaling may provide alternatives to the current clinical approaches to inhibit immune responses of endotoxemia.  相似文献   

11.
12.
13.
14.
Globoid cell leukodystrophy (GLD) or Krabbe disease is an autosomal recessively inherited neurological disease caused by mutations in the gene coding for the lysosomal enzyme galacto-cerebrosidase (GALC). GALC is responsible for the degradation of specific galactolipids, including several that are important in the production of compact, stable myelin. A failure to adequately degrade galactosylceramide and psychosine (galactosylsphingosine) results in the characteristic pathological findings observed in tissue from humans and animals affected with GLD. These galactosphingolipids are normally synthesized during active myelination, and psychosine accumulates in individuals with very low GALC activity. Psychosine is highly toxic to the myelin-forming oligodendrocytes, causing their death and the paucity of myelin found on autopsy. While most human patients present with symptoms before six months of age and die before 18 months of age, older children and adults can also be diagnosed with GLD[1,2]. The cloning of both the human GALC cDNA and the GALC gene opened the way for the identification of mutations causing GLD in humans and animals and the development of novel strategies to treat this severe and fatal disease[3]. The pheno-typic differences between human patients result from the wide range of mutations identified, as well as additional unknown factors. Treatment of late-onset patients and pre-symptomatic individuals (identified either because prenatal testing was not requested or a fetus predicted to be affected was not aborted) by hemato-poietic stem cell transplantation (HSCT) resulted in a less severe phenotype than was predicted and, in some cases, a significant delay in the onset of symptoms[4]. Attempts to treat this disorder by in utero HSCT have not been successful[5].GLD in dogs  相似文献   

15.
AMPK is an AMP-activated protein kinase that plays an important role in regulating cellular energy homeostasis. Metabolic stress, such as heat shock and glucose starvation, causes an energy deficiency in the cell and leads to elevated levels of intracellular AMP. This results in the phosphorylation and activation of AMPK. LKB1, a tumor suppressor, has been identified as an upstream kinase of AMPK. We found that in response to treatment with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), the LKB1 deficient cancer cell line, HeLa, exhibited AMPK-α phosphorylation. This indicates the existence of an LKB1-independent AMPK-α phosphorylation pathway. ATM is a protein that is deficient in the disease ataxia telangiectasia (A-T). We measured the activation of AMPK by AICAR in the normal mouse embryo fibroblast cell line, A29, and the mouse cell line lacking the ATM protein, A38. In A38 cells, the level of AICAR-induced AMPK-α phosphorylation was significantly lower than that found in A29 cells. Furthermore, phosphorylation of AMPK in HeLa and A29 cells was inhibited by an ATM specific inhibitor, KU-55933. Our results demonstrate that AICAR treatment could lead to phosphorylation of AMPK in an ATM-dependent and LKB1-independent manner. Thus, ATM may function as a potential AMPK kinase in response to AICAR treatment.  相似文献   

16.
Krabbe disease is caused by a deficiency of the lysosomal galactosylceramidase (GALC) enzyme, which results in the accumulation of galactosylceramide (GalCer) and psychosine. In Krabbe disease, the brunt of demyelination and neurodegeneration is believed to result from the dysfunction of myelinating glia. Recent studies have shown that neuronal axons are both structurally and functionally compromised in Krabbe disease, even before demyelination, suggesting a possible neuron-autonomous role of GALC. Using a novel neuron-specific Galc knockout (CKO) model, we show that neuronal Galc deletion is sufficient to cause growth and motor coordination defects and inflammatory gliosis in mice. Furthermore, psychosine accumulates significantly in the nervous system of neuron-specific Galc-CKO. Confocal and electron microscopic analyses show profound neuro-axonal degeneration with a mild effect on myelin structure. Thus, we prove for the first time that neuronal GALC is essential to maintain and protect neuronal function independently of myelin and may directly contribute to the pathogenesis of Krabbe disease.

Krabbe disease is a demyelinating neurodegenerative disorder caused by a deficiency of the enzyme lysosomal galactosylceramidase (GALC), which results in the accumulation of galactosylceramide and psychosine. This study uses a novel neuron-specific knockout model in the first in vivo attempt to investigate the role of neuronal GALC in neuronal function and the etiology of Krabbe disease.  相似文献   

17.
AMP-activated protein kinase (AMPK) regulates metabolism in skeletal muscle, and myostatin (MSTN) negatively regulates skeletal muscle development and growth. In the present study, AMPK activation and the relationship between AMPK and MSTN during myogenic differentiation were investigated in cultures derived from bovine skeletal muscle. Myoblasts capable of forming myotubes were obtained from bovine skeletal muscle and treated with AICAR to activate AMPK, resulting in suppressed myotube formation. AICAR treatment significantly reduced the expression of MSTN mRNA during myogenic differentiation. Combined treatment with AICAR and MSTN suppressed myotube formation to a greater extent than AICAR alone. SB431542, an inhibitor of MSTN signaling, promoted myotube formation during myogenic differentiation. However, simultaneous treatment with AICAR blocked this effect of SB431542. Therefore, AMPK activation inhibits myogenic differentiation but may suppress MSTN expression to balance muscle development.  相似文献   

18.
Extensive studies over the years have shown that the AMP-activated kinase (AMPK) exhibits negative regulatory effects on the activation of the mammalian target of rapamycin (mTOR) signaling cascade. We examined the potential involvement of AMPK in the regulation of growth and survival of malignant melanoma cells. In studies using the AMPK activators AICAR or metformin, we found potent inhibitory effects of AMPK activity on the growth of SK-MEL-2 and SK-MEL-28 malignant melanoma cells. Induction of AMPK activity was also associated with inhibition of the ability of melanoma cells to form colonies in an anchorage-independent manner in soft agar, suggesting an important role of the pathway in the control of malignant melanoma tumorigenesis. Furthermore, AICAR-treatment resulted in malignant melanoma cell death and such induction of apoptosis was further enhanced by concomitant statin-treatment. Taken together, our results provide evidence for potent inhibitory effects of AMPK on malignant melanoma cell growth and survival and raise the potential of AMPK manipulation as a novel future approach for the treatment of malignant melanoma.  相似文献   

19.
5'-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the alpha(1)- and alpha(2)-isoforms of AMPK, with a corresponding increase in the rate of 3-O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3-O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.  相似文献   

20.
Fatty acids induce apoptosis in primary astrocytes by enhancing ceramide synthesis de novo. The possible role of the AMP-activated protein kinase (AMPK) in the control of apoptosis was studied in this model. Long-term stimulation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) prevented apoptosis. AICAR blunted fatty acid-mediated induction of serine palmitoyltransferase and ceramide synthesis de novo, without affecting fatty acid synthesis and oxidation. Prevention of ceramide accumulation by AICAR led to a concomitant blockade of the Raf-1/extracellular signal-regulated kinase cascade, which selectively mediates fatty acid-induced apoptosis. Data indicate that AMPK may protect cells from apoptosis induced by stress stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号