共查询到20条相似文献,搜索用时 0 毫秒
1.
Synthesis and turnover of cerebroside sulfate of myelin in adult and developing rat brain 总被引:8,自引:0,他引:8
F B Jungalwala 《Journal of lipid research》1974,15(2):114-123
The turnover of cerebroside sulfate (sulfatide) was followed in both microsomal and myelin fractions of developing and adult rat brains after an intracerebral injection of Na(2)(35)SO(4). In the adult rats, the specific radioactivity of sulfatide of the microsomal fraction reached a maximum 12 hr after the injection, and after 3 days it was reduced to less than 30% of the maximum. In contrast, the specific radioactivity of the myelin sulfatide did not reach a peak until 3 days after the injection and remained essentially at the same level for as long as 6 months. In the case of 17-day-old rats, the specific radioactivity of myelin sulfatide reached a maximum level around 12 hr after the injection and then appeared to decline. The decline was most marked 2-6 days after the injection, suggesting an apparently rapid turnover of myelin sulfatide. When a correction was made for deposition of newly formed sulfatide, the results indicated that the turnover of myelin in the developing animals was also relatively slow. In vitro experiments with purified myelin and 3'-phosphoadenosine-5'-[(35)S]phosphosulfate showed that myelin does not catalyze the galactocerebroside sulfotransferase reaction. This enzyme was found mainly in the microsomal fraction. In vivo studies suggested that a transfer of sulfatide molecules from the endoplasmic reticulum to myelin might occur. In order to obtain direct evidence for such a transfer, rat brain slices after pulse labeling with Na(2)(35)SO(4) were washed free of the isotope and reincubated with nonlabeled Na(2)SO(4). The specific radioactivity of the microsomal sulfatide declined, with a concomitant rise in the specific radioactivity of the myelin sulfatide. These observations are therefore consistent with the postulate that myelin sulfatide is probably synthesized in the endoplasmic reticulum. 相似文献
2.
The turnover of myelin phospholipids in the adult and developing rat brain 总被引:5,自引:7,他引:5 下载免费PDF全文
1. Inorganic [(32)P]phosphate, [U-(14)C]glycerol and [2-(14)C]ethanolamine were injected into the lateral ventricles in the brains of adult rats, and the labelling of individual phospholipids was followed over 2-4 months in both a microsomal and a highly purified myelin fraction. 2. All the phospholipids in myelin became appreciably labelled, although initially the specific radioactivities of the microsomal phospholipids were somewhat higher. Eventually the specific radioactivities in microsomal and myelin phospholipids fell rapidly at a rate corresponding to the decline of radioactivity in the acid-soluble pools. 3. Equivalent experiments carried out in developing rats with [(32)P]phosphate administered at the start of myelination showed some persistence of phospholipid labelling in the myelin, but this could partly be attributed to the greater retention of (32)P in the acid-soluble phosphorus pool and recycling. 4. It is concluded that a substantial part of the phospholipid molecules in adult myelin membranes is readily exchangeable, although a small pool of slowly exchangeable material also exists. 5. A slow incorporation into or loss of labelled precursor from myelin phospholipids does not necessarily give a good indication of the rate of renewal of the molecules in the membrane. As presumably such labelled molecules originate by exchange with those in another membrane site (not necessarily where synthesis occurs) it is only possible to calculate the turnover rate in the myelin membrane if the behaviour of the specific radioactivity with time of the phospholipid molecules in the immediate precursor pool is known. 相似文献
3.
Metabolism of cerebrosides and sulfatides in subcellular fractions of developing rat brain 总被引:2,自引:0,他引:2
Previous studies on myelinating rat brain indicated that microsomes, Golgi-enriched and cytosol fractions may process galactolipids destined for myelin. To extend these findings we labeled brain galactolipids in vivo and determined the specific radioactivity of cerebrosides and sulfatides in several subcellular fractions. 17-day-old rats were treated by intracranial injection with [14C]galactose 60 min prior to and [3H]galactose 15 min prior to killing. Subcellular fractions were prepared from brain stem, and concentrations of cerebrosides and sulfatides were determined, their radioactivity measured and the 3H/14C ratio compared. Our results showed that the heavier Golgi-enriched fraction (designated Fraction 2) is unique in its low galactolipid content and high specific radioactivities of cerebrosides and sulfatides. The low ratio of the specific activity of cerebroside to that of sulfatide in Fraction 2 compared to other fractions indicates that it may be the site of most rapid conversion of newly synthesized cerebrosides to sulfatides. The specific radioactivities of cerebrosides and sulfatides in cytosol are intermediate between those in Golgi-enriched Fraction 2 and microsomes and those in myelin, consistent with the role postulated for cytoplasmic elements in the transport of cerebrosides and sulfatides to myelin. 相似文献
4.
Thad A Rosenberger Jun Oki A David Purdon Stanley I Rapoport Eric J Murphy 《Journal of lipid research》2002,43(1):59-68
The rates of synthesis, turnover, and half-lives were determined for brain microsomal ether phospholipids in the awake adult unanesthetized rat. A multicompartmental kinetic model of phospholipid metabolism, based on known pathways of synthesis, was applied to data generated by a 5 min intravenous infusion of [1,1-(3)H]hexadecanol. At 2 h post-infusion, 29%, 33%, and 31% of the total labeled brain phospholipid was found in the 1-O-alkyl-2-acyl-sn-glycero-3-phosphate, ethanolamine, and choline ether phospholipid fractions, respectively. Autoradiography and membrane fractionation showed that 3% of the net incorporated radiotracer was in myelin at 2 h, compared to 97% in gray matter microsomal and synaptosomal fractions. Based on evidence that ether phospholipid synthesis occurs in the microsomal membrane fraction, we calculated the synthesis rates of plasmanylcholine, plasmanylethanolamine, plasmenylethanolamine, and plasmenylcholine equal to 1.2, 9.3, 27.6, and 21.5 nmol. g(-1). min(-1), respectively. Therefore, 8% of the total brain ether phospholipids have half-lives of about 36.5, 26.7, 23.1, and 15.1 min, respectively. Furthermore, we clearly demonstrate that there are at least two pools of ether phospholipids in the adult rat brain. One is the static myelin pool with a slow rate of tracer incorporation and the other is a dynamic pool found in gray matter.The short half-lives of microsomal ether phospholipids and the rapid transfer to synaptosomes are consistent with evidence of the marked involvement of these lipids in brain signal transduction and synaptic function. 相似文献
5.
Elongation of fatty acids by microsomal fractions from the brain of the developing rat. 总被引:4,自引:2,他引:4 下载免费PDF全文
Elongation of fatty acids by microsomal fractions obtained from rat brain was measured by the incorporation of [2-14C]malonyl-CoA into fatty in the presence of palmitoyl-CoA or stearoyl-CoA. 2. Soluble and microsomal fractions were prepared from 21-day-old rats; density gradient centrifugation demonstrated that the stearoyl-CoA elongation system was localized in the microsomal fraction whereas fatty acid biosynthesis de novo from acetyl-CoA occurred in the soluble fraction. The residual activity de novo in the microsomal fraction was attributed to minor contamination by the soluble fraction. 3. The optimum concentration of [2-14C]malonyl-CoA for elongation of fatty acids was 25 mum for palmitoyl-CoA or stearoyl-CoA, and the corresponding optimum concentrations for the two primer acyl-CoA esters were 8.0 and 7.2 muM respectively. 4. Nadph was the preferred cofactor for fatty acid formation from palmitoyl-CoA or stearoyl-CoA, although NADH could partially replace it. 5. The stearoyl-CoA elongation system required a potassium phosphate buffer concentration of 0.075M for maximum activity; CoA (1 MUM) inhibited this elongation system by approx. 30%. 6. The fatty acids formed from malonyl-CoA and palmitoyl-CoA had a predominant chain length of C18 whereas stearoyl-CoA elongation resulted in an even distribution of fatty acids with chain lengths of C20, C22 and C24. 7. The products of stearoyl-CoA elongation were identified as primarily unesterified fatty acids. 8. The developmental pattern of fatty acid biosynthesis by rat brain microsomal preparations was studied and both the palmitoyl-CoA and stearoyl-CoA elongation systems showed large increases in activity between days 10 and 18 after birth. 相似文献
6.
Enzyme activity and composition of myelin and subcellular fractions in the developing rat brain 总被引:12,自引:14,他引:12 下载免费PDF全文
1. Subcellular fractions and myelin were isolated from developing and adult rat brain. 2. Measurements of chemical composition and enzyme activities indicate the presence of a second myelin-like fraction mainly in the brain of developing rats. 3. This membrane fraction has a different lipid composition from myelin, but resembles myelin in its content of phosphohydrolase and aminopeptidase activity. 4. It is suggested that the second myelin-like fraction may be a submicrosomal contaminant or it may be derived from oligodendroglial plasma membrane during myelinogenesis. 相似文献
7.
The turnover of myelin in the adult rat 总被引:18,自引:0,他引:18
M E Smith 《Biochimica et biophysica acta》1968,164(2):285-293
8.
O K Langley 《The Biochemical journal》1975,148(3):375-380
Protein- and lipid-bound sialic acid was assayed in myelin fractions isolated by four different methods from rat brain homogenates. The extent to which non-myelin cellular membranes contaminate these fractions was assessed by electron microscopy and marker-enzyme assays. Small amounts of sialic acid found in the least contaminated myelin fractions are considered to be constituents of axonal and satellite cell plasma membranes known to be present. The data are discussed with reference to the ultrastructural appearance of myelin. 相似文献
9.
The turnover of classical Folch-Lees proteolipid proteins was studied after administration of [2,3-3H]tryptophan to both developing and adult rat brain. The animals were killed from 2h to 250 days after subcutaneous injections of [3H]tryptophan. The measured specific radioactivity in developing brain attained maximum value 24h after the administration of label, whereas the total radioactivity per brain reached a maximum 21 days after injection. The half-life of proteolipid protein from the measured specific radioactivity was 7-20 days, depending on the time-points used for the calculation, whereas calculation from total radioactivity between 28-77 and 91-257 days gave half-lives of 35-40 and 188 days respectively. In contrast, in animals injected at 40 days of age, the half-life from the whole-brain-radioactivity data was 188 days. The problem of the recycling of radioactivity for the synthesis of myelin proteins from either a general or a discrete amino acid pool is discussed. 相似文献
10.
11.
C W Campagnoni G D Carey A T Campagnoni 《Archives of biochemistry and biophysics》1978,190(1):118-125
Mice ranging in age from 14 to 39 days were injected intracerebrally with [3H]lysine and rates of incorporation of the isotope were measured into total trichloroacetic acid-precipitable protein and purified myelin basic proteins (MBPs). MBPs were isolated by O-(carboxymethyl)-cellulose chromatography of pH 3 extracts prepared from chloroform-methanol insoluble residues of whole brains. The MBPs prepared in this fashion were further separated by polyacrylamide gel electrophoresis. The gels were sliced and the radioactivity incorporated into each of the two proteins was determined. Analysis of the rates of synthesis of the two basic proteins (using a 2-h labeling period) as a function of age revealed that synthesis of both proteins appeared to peak at about 18 days of age in the mouse. These data suggest that the maximum rate of MBP synthesis coincides with the age of maximal myelin deposition in the mouse. Furthermore the relative rates of synthesis of L and S changed considerably over the developmental period examined. It was observed that the ratio of the rates of synthesis of the small:large basic protein (S/L) increased by approximately 50% between 2 and 4 weeks and declined thereafter. Throughout the developmental period examined, however, the small basic protein appeared to be synthesized at a greater rate than the large protein. The latter data are consistent with previous observations by us and other workers that mouse and rat myelin becomes increasingly enriched in the small relative to the large basic protein with maturation of the membrane. 相似文献
12.
Abstract— The amount of myelin basic protein in jimpy mutants and unaffected littermates was measured by radioimmunoassay during the period of most active myelination (11-21 days). This protein was examined in whole brain homogenates and in four subcellular fractions (nuclear, 900 g pellet; heavy membrane, 11,500 g pellet; microsomal, 100,000 g pellet; and cytosol, 100,000g supernatant solution). At all ages examined, the mutants, which have very little myelin in the CNS, had only about 2% the amount of basic protein found in controls. As expected, the amount of myelin basic protein increased 4-fold in the control animals during the developmental period studied. This was not the case in the jimpy mutants, where little increase in the whole brain basic protein was observed. In the jimpy mutants, all of the fractions had significantly less basic protein than control fractions, except the cytosol, where the amounts of basic protein were similar in controls and mutants. These results are discussed with respect to possible mechanisms of myelination and the site of the genetic lesion. 相似文献
13.
14.
The initial time and rate of myelin basic protein synthesis in neural tissues of the rat have been measured from birth to 120 days. The protein was quantitated by a radioimmunoassay directly applied to unfractionated cerebrum, cerebellum, olfactory bulb, midbrain, brain stem, optic and trigeminal nerve, and areas of the spinal cord. Because the protein is a specific myelin constituent and its appearance correlates precisely with the synthesis of myelin lipids, the data in this report can be interpreted in terms of myelin synthesis and oligodendrocyte activity. The results show striking heterogeneity in the initial time and rate of myelin synthesis in neural tissue. 相似文献
15.
Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) activity for myelin basic protein was found to be present in the myelin fraction of rat brain. The enzyme activity was in a latent form and solubilized by 0.2% Triton X-100 treatment with about 50% increase of activity. The cytosol fraction from bovine brain also had phosphoprotein phosphatase activity for myelin basic protein, which was resolved into at least two peaks of activity on DEAE-cellulose column chromatography. Myelin basic protein was the best substrate for both the solubilized myelin fraction and the cytosol enzymes among the substrate proteins tested. The Km values of the solubilized myelin fraction were 4.2 muM for myelin basic protein, 7.4 muM for arginine-rich histone, 8.0 muM for histone mixture and 14.3 muM for protamine, respectively. 相似文献
16.
17.
Abstract— Particulate fractions from rat brain homogenate containing the synaptosomes synthesize and release prostaglandins F and E on aerobic incubation. The prostaglandin of the F-typc released could be further identified as proslaglandin F2α using specific radioimmunoassays for prostaglandins F1α, and F2α-. The metabolite 13,14-dihydro-15-keto-prostaglandin F2α could not be detected. The amount of prostaglandins released is dependent on incubation time and temperature as well as pH and osmolarity of the incubation medium. Total brain homogenate released more prostaglandins than purified synaptosomes per mg protein, indicating that synaptosomes are probably not a main source of prostaglandins when compared with other subcellular brain fractions. While prostaglandin synthesis was only moderately increased by the addition of the precursor fatty acid arachidonic acid, anti-inflammatory drugs like indomethacin, high concentrations of some local anaesthetics and Δ1-tetrahydrocannabinol inhibited prostaglandin release. The neurotransmitters noradrenaline, dopamine and 5-hydroxytryptamine did not influence prostaglandin release from the synaptosomal rat brain fractions. 相似文献
18.
The synthesis and hydrolysis of long-chain fatty acyl-coenzyme A thioesters by soluble and microsomal fractions from the brain of the developing rat. 总被引:3,自引:1,他引:3 下载免费PDF全文
1. The specific activities of long-chain fatty acid-CoA ligase (EC6.2.1.3) and of long-chain fatty acyl-CoA hydrolase (EC3.1.2.2) were measured in soluble and microsomal fractions from rat brain. 2. In the presence of either palmitic acid or stearic acid, the specific activity of the ligase increased during development; the specific activity of this enzyme with arachidic acid or behenic acid was considerably lower. 3. The specific activities of palmitoyl-CoA hydrolase and of stearoyl-CoA hydrolase in the microsomal fraction decreased markedly (75%) between 6 and 20 days after birth; by contrast, the corresponding specific activities in the soluble fraction showed no decline. 4. Stearoyl-CoA hydrolase in the microsomal fraction is inhibited (99%) by bovine serum albumin; this is in contrast with the microsomal fatty acid-chain-elongation system, which is stimulated 3.9-fold by albumin. Inhibition of stearoyl-CoA hydrolase does not stimulate stearoyl-CoA chain elongation. Therefore it does not appear likely that the decline in the specific activity of hydrolase during myelogenesis is responsible for the increased rate of fatty acid chain elongation. 5. It is suggested that the decline in specific activity of the microsomal hydrolase and to a lesser extent the increase in the specific activity of the ligase is directly related to the increased demand for long-chain acyl-CoA esters during myelogenesis as substrates in the biosynthesis of myelin lipids. 相似文献
19.
20.
Myelin from developing rat brains was separated on a discontinuous sucrose gradient into subfractions of two different densities, i.e. light and heavy myelin. Electron photomicrographs showed that heavy myelin consisted primarily of large compacted multilamellar structures with a distinct intraperiod line characteristic of myelin in situ. Light myelin, on the other hand, was composed of small vesicles having a unilamellar structure. Similar to whole myelin, both membrane subfractions were highly enriched in 2',3'-cyclic nucleotide-3'-phosphohydrolase. The specific activity of the enzyme, however, showed no developmental trend. Both subfractions contained all the four major proteins characteristic of the whole myelin membrane. There were, however, quantitative differences in the relative distribution of these proteins between light and heavy myelin. Basic protein accounted for 55% and proteolipid protein for 46% of the total myelin proteins of light and heavy myelin, respectively. DM-20 (Agrawal, H.C., Burton, R. M., Fishman, M.A., Mitchell, R.F. and Prensky, A.L. (1972) J. Neurochem. 19, 2083-2089) exhibited a developmental "switch" between light and heavy myelin. Light myelin appeared to contain more DM-20 in 15- to 20-day-old rat brain, whereas the concentration of this protein was higher in heavy myelin at subsequent ages studied. 相似文献